
Improving the Performance of Independent
Task Assignment Heuristics MinMin,

MaxMin and Sufferage
E. Kartal Tabak, B. Barla Cambazoglu, and Cevdet Aykanat

Abstract—MinMin, MaxMin, and Sufferage are constructive heuristics that are widely and successfully used in assigning independent

tasks to processors in heterogeneous computing systems. All three heuristics are known to run in OðKN2Þ time in assigningN tasks to

K processors. In this paper, we propose an algorithmic improvement that asymptotically decreases the running time complexity of

MinMin to OðKN log NÞ without affecting its solution quality. Furthermore, we combine the newly proposed MinMin algorithm with

MaxMin as well as Sufferage, obtaining two hybrid algorithms. The motivation behind the former hybrid algorithm is to address the

drawback of MaxMin in solving problem instances with highly skewed cost distributions while also improving the running time

performance of MaxMin. The latter hybrid algorithm improves the running time performance of Sufferage without degrading its solution

quality. The proposed algorithms are easy to implement and we illustrate them through detailed pseudocodes. The experimental

results over a large number of real-life data sets show that the proposed fast MinMin algorithm and the proposed hybrid algorithms

perform significantly better than their traditional counterparts as well as more recent state-of-the-art assignment heuristics. For the

large data sets used in the experiments, MinMin, MaxMin, and Sufferage, as well as recent state-of-the-art heuristics, require days,

weeks, or even months to produce a solution, whereas all of the proposed algorithms produce solutions within only two or three

minutes.

Index Terms—Parallel processors, heterogeneous systems, load balancing, independent task assignment, MinMin, MaxMin, Sufferage, con-

structive heuristics

Ç

1 INTRODUCTION

THE focus of this work is on the independent task
assignment problem, which often arises in applica-

tions related to heterogeneous computing systems. In
this problem, we have a set T ¼ fT1; T2; . . . ; TNg of N
independent tasks, a set P ¼ fP1; P2; . . . ; PKg of K hetero-
geneous processors, and an expected-time-to-compute
matrix E ¼ fxi;kgN�K , where xi;k denotes the expected
execution cost of task Ti on processor Pk. The objective is
to find a task-to-processor assignment that results in the
minimum turnaround time (makespan). In other words,
the objective is to minimize the load of the maximally
loaded (bottleneck) processor. This problem is known to
be NP-complete [1].

The MinMin heuristic is first introduced in [1] and since
then it is used many times for solving the independent task
assignment problem, which commonly emerges in the con-
text of heterogeneous systems [1], [2], [3], [4], [5], [6], [7],
[8], [9], [10], [11], [12], [13]. MinMin is a constructive heuris-
tic with some desirable properties. It is free of parameters
that require tuning and is easy to implement. Moreover, it

is reported to produce “high quality” solutions. Since its
first proposal, the running time of the MinMin algorithm is
reported to be OðKN2Þ in the literature [1], [4], [5], [8], [9],
[10], [11], [12], [13]. Despite its success, the quadratic run-
ning time complexity of the heuristic prevents its use in
problem instances where the number of tasks to be
assigned is very large. Recently, the MinMin algorithm is
parallelized to enable the application of the algorithm to
large data sets [14]. This parallel version runs in
OðN2K=P þN2 þN log P Þ time, where P denotes the
number of homogenous processors used in parallelization
of the MinMin algorithm (P may be different than K).

We believe that the computational complexity of Min-
Min is overlooked in the parallel and distributed com-
puting literature. This mainly stems from the task-
oriented view of MinMin, constituting a lower bound of
VðKN2Þ on the running time. In this paper, we propose
an OðKN log NÞ-time algorithm that improves this qua-
dratic lower bound by switching from the task-oriented
view to a processor-oriented view. The proposed MinMin

algorithm, which is referred to herein as MinMin+,
attains exactly the same solution quality as MinMin with-
out degrading the ease of implementation. The results of
our experiments over a wide range of problem instances
indicate that MinMin+ runs several orders of magnitude
faster than MinMin. For a large data set that contains
about 2.5 million tasks, MinMin finds a 16-way assign-
ment in about 22 days, whereas MinMin+ finds the same
assignment in about a minute.

Two other well-known constructive heuristics used for
solving the independent task assignment problem are

� E.K. Tabak is with HAVELSAN A.S., Ankara, Turkey.
E-mail: ktabak@havelsan.com.tr.

� C. Aykanat is with the Department of Computer Engineering, Bilkent Uni-
versity, Ankara, Turkey. E-mail: aykanat@cs.bilkent.edu.tr.

� B.B. Cambazoglu is with Yahoo Labs, Barcelona, Spain.
E-mail: barla@yahoo-inc.com.

Manuscript received 12 Dec. 2012; revised 22 Mar. 2013; accepted 31 Mar.
2013.; date of publication 7 Apr. 2013; date of current version 21 Mar. 2014.
Recommended for acceptance by O. Beaumont.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TPDS.2013.107

1244 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 25, NO. 5, MAY 2014

1045-9219 � 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

MaxMin (MaxMin) [1], [2], [8], [15] and Sufferage (Suff)
[9]. These heuristics differ from MinMin in the task selec-
tion policy adopted during the task-to-processor assign-
ment process. In this work, we propose improvements
over these two heuristics as well. We combine MaxMin

with MinMin+ as well as Suff with MinMin+ to obtain
the hybrid algorithms MaxMin+ and Suff+, respectively.

The assignment of large tasks to their favorite process-
ors1 is important to obtain a good makespan, especially
in skewed data sets. Although the MaxMin heuristic
assigns the largest task to its favorite processor, its inher-
ent mechanism is likely to fail to assign remaining large
tasks to their favorite processors. The motivation behind
MaxMin+ is to address this drawback of MaxMin in
solving problem instances with highly skewed cost distri-
butions while also improving the running time perfor-
mance of MaxMin.

Suff is reported to be among the algorithms that yield
high-quality solutions [9], [16], [17]. Despite its success, the
quadratic running time prevents the application of this heu-
ristic to large data sets. The motivation behind Suff+ is to
improve the running time performance of Suff without
degrading the solution quality.

Although both MaxMin+ and Suff+ are, in the worst
case, still OðKN2Þ-time algorithms, our experimental
results show that they run considerably faster than the
traditional MaxMin and Suff heuristics, respectively. The
experimental results also indicate that MaxMin+ finds
considerably better solutions than MaxMin while Suff+

finds slightly better solutions than Suff, on average.
MinMin is also used as a component in the design of

more complex algorithms [2], [18], [19]. Genetic algorithm
(GA) [2], [18] is a typical example of such complex algo-
rithms. In this work, we also demonstrate that the running
time performance of the GA algorithm can be significantly

improved simply by replacing MinMin with MinMin+,
without affecting the original solution quality at all.

The rest of the paper is organized as follows. Table 1
summarizes the notation used throughout the paper.
Section 2 describes the existing algorithms. The proposed
MinMin+, MaxMin+, Suff+ algorithms, and the
improved GA algorithm are discussed in Section 3. In Sec-
tion 4, our experimental setup and results are presented.
This paper is concluded in Section 5.

2 EXISTING ALGORITHMS

MinMin. The MinMin heuristic [1] proceeds in N iterations.
At each iteration, a previously unassigned task is selected
and assigned to a processor. The selected task is removed
from further consideration in the remaining iterations. The
task-to-processor assignment in each iteration is decided
based on a two-step procedure. In the first step, MinMin
computes the minimum completion time (MCT) of each
unassigned task over the processors to find the best proces-
sor, which can complete the processing of that task at earli-
est time. This decision is made taking into account the
current loads of processors (ek) and the execution time of
the task on each processor (xi;k). In the second step, MinMin
selects the task with the minimum MCT among all unas-
signed tasks and assigns the task to its best processor found
in the first step. Due to the task selection policy adopted in
the second step, MinMin favors the assignment of tasks
with lower costs in earlier iterations, and hence the assign-
ment of tasks with higher costs are usually performed dur-
ing the later iterations. The two-step selection algorithm is
provided in Algorithm 1. An OðKN2Þ-time algorithm for
MinMin is given in Algorithm 2.

MaxMin. MaxMin [1], [2], [8], [15] differs from MinMin

in the task selection policy adopted in the second step
of the task-to-processor assignment procedure. Unlike

TABLE 1
The Notation Used Throughout the Paper

1. A processor Pk is said to be a favorite processor for a task Ti if the
expected cost of Ti is minimum on Pk, i.e., k ¼ argmin‘ xi;‘.

TABAK ET AL.: IMPROVING THE PERFORMANCE OF INDEPENDENT TASK ASSIGNMENT HEURISTICS MINMIN, MAXMIN AND... 1245

MinMin, which selects the task with the minimum MCT,
MaxMin selects the task with the maximum MCT and
then assigns it to the best processor found in the first step
(Algorithm 3). Due to this task selection policy, MaxMin
performs the assignment of tasks with higher costs in ear-
lier iterations. The algorithm for MaxMin is presented in
Algorithm 4.

RASA. In [20], the drawbacks of MaxMin and MinMin are
analyzed and a hybrid algorithm, referred to as RASA, is
proposed. RASA alternates between MaxMin and MinMin in
its iterations. In particular, MaxMin is used in odd rounds
while MinMin is used in even rounds. The RASA algorithm,
which runs in OðKN2Þ time, is displayed in Algorithm 5.

Sufferage. The main difference between Suff [9] and
MinMin is the task selection policy. In the first step of
the process, Suff computes the second MCT value in
addition to the MCT value for each task. In the second
step, the sufferage value, which is defined as the differ-
ence between the MCT and the second MCT values of a
task, is taken into account. Suff selects the task with
the largest sufferage and assigns it to the best processor

found in the first step. The algorithm for Suff is pre-
sented in Algorithm 7.

Relative Cost (RC). RC [17] is a constructive heuristic sim-
ilar to MinMin, but it uses a different selection criterion
which does not lead to a bias between small tasks and large
tasks. At each iteration of the algorithm, RC selects the task
with the lowest relative cost, which is calculated as

g ¼
mink xi;k þ ek

� �

avgk xi;k þ ek
� �

 !

þ
xi;k�ðiÞ

avgk xi;k
� �

 !�

; (1)

where k�ðiÞ ¼ argminkfxi;k þ ekg in the current iteration.
The selected task is assigned to processor k�ðiÞ. � is a param-
eter in the ½0; 1� range and is used to control the effects of the
first and second terms in Eq. (1). RC is reported as a high-
quality algorithm and runs in OðKN2Þ time. The RC algo-
rithm is displayed in Algorithm 8.

Genetic algorithm. GA [2], [18] is an example of more com-
plex algorithms that use MinMin as a component. GA uses
MinMin as an initial chromosome and improves the solu-
tion of MinMin using genetic algorithm techniques. In this
approach, each chromosome represents a different task-to-
processor assignment. Assuming G chromosomes, one of
the chromosomes is initially populated with MinMin while
the remaining G�1 chromosomes are populated with ran-
dom assignments. Maintaining the best assignment (elit-
ism) guarantees that the solution quality of GA is not worse
than the quality of MinMin. Crossover is implemented as
a single random cross on the paired chromosomes. Muta-
tion is defined as reassigning a random task to a random

1246 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 25, NO. 5, MAY 2014

processor. The initial population runs in OðKN2þ
G log Gþ NGÞ time. Each iteration of GA runs in OðNGþ
G2Þ time. Hence, GA runs in OðKN2 þHNGþHG2Þ time,
where H is the number of iterations.

3 PROPOSED ALGORITHMS

3.1 MinMin+

The high running time complexity of the MinMin algo-
rithm stems from the OðKNÞ-time cost that is incurred
while computing the MCT values for every unassigned
task and processor pair. Note that the MCT values and
the best processor of an unassigned task may change at
each iteration of the loop in Algorithm 2. This is because
the ek þ xi;k value associated with an unassigned task Ti
and processor Pk may change as the ek values are updated
throughout the iterations. Without any loss of generality,
let us assume that a task is assigned to a processor Pk in
the previous iteration. This assignment increases the ek
value. Therefore, in the next iteration, the ek þ xi;k values
for all unassigned tasks need to be recomputed for pro-
cessor Pk. This task-oriented view of the MinMin algo-
rithm forms a lower bound of VðKN2Þ on the running
time of the algorithm.

In this work, we demonstrate that the above-men-
tioned quadratic lower bound can be avoided by switch-
ing from the task-oriented view to a processor-oriented
view. To this end, we propose a novel algorithm, referred
to as MinMin+. In this algorithm, the MCT values that are
associated with each processor are separately maintained,
instead of being unnecessarily recomputed at each itera-
tion for every unassigned task. In particular, we use a pri-
ority queue Qk for each processor Pk to maintain the
completion times of all tasks on that processor. More spe-
cifically, each task Ti is maintained in K different priority
queues, keyed by their xi;k values. Each priority queue Qk

supports the MIN, DELETE, and BUILD operations.
MINðQkÞ is a query operation that returns the id of the
unassigned task that has the minimum completion time

on processor Pk. DELETEðQk; iÞ is an update operation
that removes task Ti from Qk. The BUILDðkÞ operation
initializes the data structures. We also maintain a boolean
array F of size N . Each array element F ½i� indicates
whether task Ti is yet assigned to a processor or not.
Initially, we set all F ½i� values to FALSE since no task is
assigned to a processor at the beginning.

The proposed MinMin+ algorithm is given in Algo-
rithm 9. The MinMin+Init function (Algorithm 10) is
called in the first line of the algorithm to perform the
necessary initializations. The following main loop
(lines 2-8) performs N iterations, assigning a task to a
processor at each iteration. The MinMin+Select func-
tion (Algorithm 11) invokes a MIN(Qk) operation on
each priority queue Qk to find a candidate task for pro-
cessor Pk. The candidate task Ti selected for processor Pk
is effectively the task that will increase the current com-
pletion time of Pk (i.e., ek) by the smallest amount if Ti is
assigned to Pk. For each processor Pk, the execution time
of the candidate task Ti on Pk is added to ek to compute
the updated ek value for Pk if Ti is assigned to Pk. A run-
ning-min operation performed over these K updated ek
values gives the minimum MCT value (min) for the cur-
rent iteration as well as the task-to-processor assignment
(i0; k0) that achieves this minimum MCT value. At the
end of each iteration of the main loop, the assigned task
Ti0 is deleted from all priority queues (lines 7 and 8).

For the implementation of the priority queue, we have
considered two alternatives: binary heap and sorted linear

TABAK ET AL.: IMPROVING THE PERFORMANCE OF INDEPENDENT TASK ASSIGNMENT HEURISTICS MINMIN, MAXMIN AND... 1247

array. Although both implementations lead to the same
worst-case running time complexity, our empirical results
indicate that the sorted linear array implementation yields
significantly lower execution times compared to the
binary-heap implementation. Hence, in what follows, we
present the running time analysis of the MinMin+ algo-
rithm only for the sorted linear array implementation.

In the sorted linear array implementation, for each pro-
cessor Pk, we maintain a linear array Qk, which contains N
tuples of the form i; xi;k

� �
. The BUILD operation sorts the

tuples in Qk in increasing order of the xi;k values. For each
Qk, we maintain an index bk, indicating the unassigned
task that currently has the smallest completion time on
processor Pk. The BUILD operation initializes the bk value
to 1. The overall running time of the BUILD operation is
OðN log NÞ. The MIN(Qk) operation can be realized in
Oð1Þ time, simply by returning the task id of the bk-th tuple
in Qk. After a task Ti is assigned to a processor, it is deleted
by setting F ½i� to TRUE and running a DELETE(Qk) opera-
tion on every Qk. Since Qk½1; . . . ; bk � 1� contains the tasks
that are already assigned, the DELETE(Qk) operation can
be realized by advancing the bk index on Qk until an unas-
signed task is encountered. Although the worst-case run-
ning time of an individual DELETE(Qk) operation is OðNÞ,
the amortized cost of DELETE(Qk) operation is Oð1Þ. This
is because N DELETE operations performed on Qk can
lead to at most N increments on bk. This simple yet effi-
cient implementation of the DELETE operation makes the
sorted linear array implementation preferable over the
binary heap implementation. The proposed MinMin+

algorithm involves K BUILD(k), K �N MIN(Qk), and
K �N DELETE(Qk) operations. Hence, the overall run-
ning time complexity is OðKN log N þKN þKNÞ ¼
OðKN log NÞ.

3.2 MaxMin+

In some problem instances, the task sizes follow a power-
law distribution, i.e., there are a small number of very large
tasks and a very large number of small tasks. In such cases,
the assignment of large tasks can have a significant impact
on the load of the most heavily loaded processor (i.e., make-
span) and determine the resulting solution quality. In case
of the MinMin heuristic, due to the adopted task selection
policy, smaller tasks are assigned in earlier iterations, delay-
ing the assignment of larger tasks to later iterations. The
solution quality obtained in the earlier iterations is likely to
deteriorate due to the late assignment of very large tasks. In
case of the MaxMin heuristic, the larger tasks are assigned
in earlier iterations, but not necessarily to their favorite pro-
cessors. To demonstrate the issue, let us consider the first
few iterations of MaxMin. The first iteration assigns the larg-
est task to its favorite processor. Let us assume that the sec-
ond largest task has the same favorite processor as the
largest task. In the second iteration, the task selection policy
of MaxMin prevents the assignment of the second largest
task to its favorite processor. In the next iteration, the third
largest task loses the flexibility of being assigned to the
favorite processors of the largest two tasks and so on.

To alleviate the above-mentioned drawbacks of the
MinMin and MaxMin heuristics, we combine these two
heuristics under a hybrid heuristic, which we refer to as

MaxMin+. Like MinMin and MaxMin, the MaxMin+ heu-
ristic involves a main loop that assigns a selected task to
a processor at each iteration. Within an iteration, the heu-
ristic first computes a task-to-processor assignment
according to the MinMin heuristic. The computed assign-
ment is realized only if it does not lead to an increase in
the makespan of the previous iteration. If, however, the
computed assignment increases the makespan, the task-
to-processor assignment is recomputed according to the
MaxMin heuristic.

The MaxMin+ algorithm is presented in Algorithm 12,
using the asymptotically faster MinMin+ algorithm pro-
posed in Section 3.1 instead of the standard MinMin algo-
rithm. In the algorithm, MinMin+Init (line 3) performs the
necessary initializations as in MinMin+. Line 5 computes
the task-to-processor assignment according to MinMin+.
The if statement at line 6 checks whether the computed
assignment increases the current makespan. Line 7 computes
the task-to-processor assignment according to MaxMin.

As described in Section 2, the RASA heuristic also
combines MinMin and MaxMin. In RASA, MinMin is exe-
cuted in odd-numbered iterations while MaxMin is exe-
cuted at even-numbered iterations. The proposed
MaxMin+ heuristic differs from RASA in that the choice
between MinMin and MaxMin at each iteration is made
in an adaptive manner, considering the current processor
loads. The experimental results reported in Section 4
shows the success of this adaptive policy with respect to
the policy adopted in RASA.

The running time of MaxMin+ depends on the frequency
of MaxMin-based assignments. In practice, MaxMin+ is
expected to run slower than MinMin+ since line 7 is executed
when the assignment is performed according to MaxMin.
MaxMin+ is expected to run faster than MaxMin. The perfor-
mance of MaxMin+ depends on the ratio of the MaxMin-
based assignments to the total number of assignments.

In the following lemmas, we describe the theoretical
behavior of the MaxMin+ algorithm and find the
expected number of MaxMin-based assignments for some
statistical distributions. We present the proofs of our
lemmas and theorems in Appendix, which can be found
on the Computer Society Digital Library at http://
doi.ieeecomputersociety.org/10.1109/TPDS.2013.107.

1248 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 25, NO. 5, MAY 2014

Lemma 3.1. MaxMin+ makes one MaxMin-based assignment in
the best case, and makes N MaxMin-based assignments in the
worst case.

Lemma 3.2. MaxMin+ runs in OðKN log N þKNmÞ time,
where m is the number of MaxMin-based assignments.

In general, the number of MaxMin-based assignments
is expected to decrease with both increasing heterogeneity
and increasing K. The former expectation is due to the
higher variation in task execution costs with increasing
heterogeneity, which generally results in an increase in
the ratio between the weights of larger tasks and smaller
tasks. Hence, a MaxMin-based assignment of a large task
will be amortized by a large number of MinMin-based
assignments of smaller tasks. The latter expectation is due
to the extra processing power provided by the additional
processors, which results in more room for the MinMin

selections until the makespan changes. The experimental
results reported in Section 4.2.1 support this expectation.

We present the following theorems for the special and
possibly the worst case of K ¼ 2 homogenous processors.

Theorem 3.1. For K ¼ 2 homogenous processors, if the task
weights of a data set have a power-law distribution with
the probability density function fðxÞ ¼ Cx�a for x > xmin

and a > 2, the expected number of MaxMin-based assign-
ments is ð12Þ

a�1
a�2N .

Note that, if a gets closer to 2, the number of MaxMin-
based assignments decreases.

Theorem 3.2. For K ¼ 2 homogenous processors, if the task
weights of a data set are uniformly distributed between
xmin and xmax, the expected number of MaxMin-based
assignments is 2r�

ffiffiffiffiffiffiffiffiffiffi
2r2þ2
p
2r�2 N , where r ¼ xmax=xmin.

Corollary 3.1. For K ¼ 2 homogenous processors, if the task
weights of a data set are uniformly distributed between xmin

and xmax, the expected number of MaxMin-based assignments
is greater than 0:28N .

According to Theorem 3.1, for a skewed data set with a
typical a value of 2.33 [21], the expected upper bound on
the number of MaxMin-based assignments to be performed
by MaxMin+ is 0:061N . That is, at most 6.1 percent of the
assignments will be expensive MaxMin-based assignments.
This approximately corresponds to a speedup of 16 with
respect to MaxMin.

According to Theorem 3.2, for a uniform data set with
xmax=xmin ¼ 2, the expected number of MaxMin-based
assignments to be performed by MaxMin+ is 41 percent
of the total number of assignments. These theoretical
findings show that the relative speedup of MaxMin+

over MaxMin is expected to be much higher on skewed
data sets. The experimental results given in Section 4.2.1
validate this expectation.

3.3 Suff+

Despite the success of Suff in producing high quality
solutions [9], [16], [17], its quadratic running time pre-
vents the application of Suff to large data sets. To make
Suff applicable to large data sets, we combine it with
MinMin+, under a new heuristic referred to as Suff+.
The main idea behind the Suff+ heuristic is to perform

critical assignment decisions by Suff so that the solution
quality is not significantly degraded and perform non-
critical assignment decisions by the fast MinMin+ algo-
rithm. With this approach, we expect a considerable
decrease in the execution time of Suff with a small
potential degradation in the solution quality.

In Suff+, the criticality of an assignment decision is
determined by the effect of a possible MinMin+ assignment
on the makespan. At each assignment iteration, Suff+ first
computes a task-to-processor assignment according to
MinMin+. The computed assignment is realized only if it
does not lead to an increase in the makespan of the previ-
ous iteration. If, however, the MinMin+-based assignment
increases the makespan, the task-to-processor assignment
is recomputed according to the Suff heuristic.

The algorithm for Suff+ is provided in Algorithm 13. As
in MaxMin+, the MinMin+Init function (line 3) performs
the necessary initializations. Line 5 computes the assign-
ment according to MinMin+. The comparison operation
at line 6 checks whether makespan will change if the
computed assignment is used. Line 7 computes the task-to-
processor assignment according to Suff.

3.4 GA+

Traditionally, the MinMin heuristic is used as a submodule
in more complex task assignment algorithms. As mentioned
in Section 2, GA is such an algorithm since it uses MinMin to
find an initial solution. In the literature, GA is reported as a
slow algorithm, compared to OðKN2Þ algorithms such as
MaxMin and RC [2], [17].

Herein, we consider GA to illustrate the impact of using
MinMin+ instead of MinMin on the performance of complex
task assignment algorithms. Incorporation of the MinMin+

heuristic into GA leads to an asymptotically faster algorithm,
which we refer to as GA+. This combination retains the origi-
nal solution quality of GA. GA+ runs in OðKN log Nþ
HNGþHG2Þ time, making it run much faster than OðKN2Þ
algorithms and rendering it practical even for large data sets.

4 EXPERIMENTAL RESULTS

4.1 Data Sets

The data sets used in the experiments belong to different
application areas: social-network analysis, distributed

TABAK ET AL.: IMPROVING THE PERFORMANCE OF INDEPENDENT TASK ASSIGNMENT HEURISTICS MINMIN, MAXMIN AND... 1249

web crawling, image-space-parallel direct volume ren-
dering (DVR), and row-parallel sparse matrix vector
multiplication (SpMxV). In these contexts, the indepen-
dent task assignment problem arises in load balancing
of parallel/distributed applications. These data sets are
displayed in Table 2.

Our social network data sets (coauthorship and com-

monJob) are in the form of sparse graphs. In coauthor-

ship, each vertex represents an author and an edge
represents the coauthorship relation between two authors.
In commonJob, each vertex represents an employee and
there is an edge between two vertices if the respective
employees have ever worked in the same company. The
coauthorship and commonJob data sets are obtained
from DBLP2 and LinkedIn3, respectively. In both of these
graphs, a vertex represents a task to be processed. The degree
of a vertex corresponds to the cost of executing the task.

In distributed web crawling data sets (ClueWeb-A and
ClueWeb-B), the tasks represent the web sites and the
processors represent the crawlers that will download the
pages in the web sites. The weight of a task is set to the
number of pages in the respective web site. The ClueWeb-
A and ClueWeb-B data sets, which are obtained from the
ClueWeb-09 collection [22], are the largest two data sets
among our data sets.

In row-parallel DVR data sets (blunt and comb), ren-
dering each rectangular pixel block of an image forms a
separate task. The weight of a task is set to the expected
number of ray-face intersections to be performed while
rendering the pixels in the respective pixel block [23].
blunt (blunt fin) and comb (combustion) are two curvi-
linear data sets obtained from the NASA Ames Research
Center [24].

In row-parallel SpMxV data sets, each task corresponds
to computing the inner product of a distinct row of the
sparse matrix with a dense column vector. The weight of
a task is equal to the number of nonzeros in the respective
row. We use 13 sparse matrices that are selected from the
University of Florida sparse matrix collection [25].

For the distributed web crawling data sets, the ETC
value of each task on each crawler is calculated using the
techniques described in [26]. For the other data sets, the
ETC matrices are constructed using the high machine het-
erogeneity method discussed in [27]. For each xi;k, we
multiply the weight of the corresponding task with a ran-
dom integer in the range ½1 . . .R�, where R is the machine
heterogeneity constant. Following [27], we selected R as
100 to reflect high machine heterogeneity. For all data
sets, the ETC matrices are generated for K 2 f4; 8; 16;
24; 32g processors. Each data set and K value combination
forms a different assignment instance for our experiments.
Since we have 19 data sets and five different K values, we
have a total of 95 assignment instances.

In Table 2, the Max and Avg columns display the max-
imum and average task weights, respectively. The a col-
umn shows the exponent constant of the power-law
distribution pðwÞ ¼ Cw�a of task weights, together with
their error margins. The a values are computed by using
the linear least squares method on log-log distributions
of the data sets and are used here to identify the data sets
with power-law distributions. The data sets that have a

values with low error margin and high max/avg ratio
are good candidates to have power-law distributions. In
this respect, coauthorship, commonJob, ClueWeb-B,
ClueWeb-A, barrier2-1, and language data sets are
considered to have a power-law distribution. In the
remaining tables, the rows are colored in gray to indicate
skewed data sets.

Fig. 1 displays the log-log plots of the cumulative density
distribution of task weights for the data sets. In the figure,
the plots for skewed and non-skewed data sets are pre-
sented in (a)-(f) and (g)-(j), respectively. Note that the plots
for only four data sets out of 13 SpMxV data sets are dis-
played in Fig. 1. The complete list of plots can be found in
Appendix, available in the online supplemental material.

4.2 Performance Analysis

All of the algorithms are implemented in Java programming
language. All experiments were carried out on a Linux
workstation equipped with six 2100-MHz quad-core CPUs
and 132 GB of memory.

The load balancing quality of the assignment algorithms
are compared according to the percent load imbalance ratio
defined as

%LI ¼ 100�M �M
�

M� ; (2)

where M denotes the makespan of an assignment produced
by an algorithm and M� denotes the ideal makespan for the
given assignment instance. M� is computed as

M� ¼W
�
tot

K
¼
P

i minkfxi;kg
K

; (3)

TABLE 2
Properties of the Data Sets

ð�ÞRows in gray indicate skewed data sets.

2. http://www.informatik.uni-trier.de/�ley/db/.
3. http://www.linkedin.com/.

1250 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 25, NO. 5, MAY 2014

where W �
tot is the execution time obtained when the tasks

are assigned to their favorite processor. This value forms a
rather loose lower bound for the makespan. The optimal
makespan is potentially greater than M�.

Tables 3, 4, 5 and 6 display the load imbalance values
for 4-, 8-, 16-, 24-, and 32-way assignments obtained by
the existing (baseline) and proposed heuristics for differ-
ent types of data sets. Table 7 displays load imbalance
averages for different K values over all data sets. In these
tables, we display the results of MinMin and MinMin+ in
the same column, since these heuristics attain the same
results. The results of GA and GA+ are displayed in the
same column due to the same reason.

Tables 8, 9, 10 and 11 display the running times of the
heuristics for different types of data sets. Table 12

displays running time averages for different K values
over all data sets. These averages are obtained by normal-
izing the running time values with those attained by the
MinMin+ heuristic.

In Tables 6 and 11, the performance results for row-
parallel SpMxV data sets are presented only for four sam-
ple sparse matrices out of 13 matrices. The complete
results for this particular type of data sets are reported in
Appendix, available in the online supplemental material.
The average performance results displayed in Tables 7
and 12, however, are computed by considering the per-
formance results of all data sets.

In Tables 3, 4, 5 and 6, the bold value(s) in each row
indicate the best solution(s) in terms of load balancing
performance for the respective assignment instance. In

Fig. 1. Log-log plots of the cumulative density distribution of task weights for skewed data sets ((a)-(f)) and non-skewed data sets ((g)-(j)). x-axis:
weights of tasks, y-axis: cumulative density distribution, i.e., P ðX � xÞ.

TABLE 3
Percent Load Imbalance Values for Social Network Data Sets

TABLE 4
Percent Load Imbalance Values for Distributed Web Crawling Data Sets

TABAK ET AL.: IMPROVING THE PERFORMANCE OF INDEPENDENT TASK ASSIGNMENT HEURISTICS MINMIN, MAXMIN AND... 1251

all tables, the MinMin, MinMin+, MaxMin, and MaxMin+

heuristics are abbreviated as MM, MM+, MxM, and
MxM+, respectively.

4.2.1 Comparison with Traditional Counterparts

In this subsection, we discuss the performance of each pro-
posed heuristic against its traditional counterpart.

MinMin+ versus MinMin: As mentioned in Section 3.1,
MinMin+ finds exactly the same solutions as MinMin. How-
ever, MinMin+ is several orders of magnitude faster than
MinMin in all assignment instances. On average, MinMin+ is
5603-, 3703-, 4192-, 3214-, and 2947-times faster than MinMin
in 4-, 8-, 16-, 24-, and 32-way assignments, respectively.

As expected, the speedup of MinMin+ over MinMin

increases with increasing number of tasks. For the 16-way
assignment of the largest data set ClueWeb-A, which con-
tains about 2.5 million tasks, MinMin finds a solution in
about 22 days while MinMin+ finds the same solution in
about a minute, i.e., MinMin+ runs about 31,400 times faster
than MinMin.

MaxMin+ versus MaxMin: MaxMin+ finds drastically bet-
ter solutions than MaxMin in all assignment instances,
except for the 32-way assignment of ClueWeb-B and the
assignment instances of ClueWeb-A, where both heuristics
find solutions with the same makespan. The averages dis-
played in Table 7 demonstrate the large quality difference
between MaxMin+ and MaxMin. On average, MaxMin+

attains average load imbalance values of 177.74 and 0.62 per-
cent compared to 363.61 and 269.71 percent of MaxMin, for
skewed and non-skewed data sets, respectively. Moreover,
MaxMin+ is several orders of magnitude faster than
MaxMin in all assignment instances. On average, MaxMin+
runs 6917- and 404-times faster than MaxMin for skewed
and non-skewed data sets, respectively. Note that the

performance gaps between MaxMin+ and MaxMin in
load balancing and running time are much higher in non-
skewed data sets compared to skewed data sets in favor of
MaxMin+. The former is expected since MaxMin is highly
tuned for skewed data sets and fails to find good solutions
for non-skewed data sets, whereas MaxMin+ is a more bal-
anced heuristic. The latter is also expected since skewed
data sets generally contain much larger number of tasks
than non-skewed data sets.

Table 13 displays the number of MaxMin-based assign-
ments performed by MaxMin+. As seen in this table, in gen-
eral, the number of MaxMin-based assignments
considerably decreases with increasing K values, thus con-
forming with the expectation given in Section 3.2. This
behavior explains the decrease in the running time perfor-
mance gap between MaxMin+ and MinMin+ with increas-
ing K as shown in Table 12. Even for the smallest K value
of four, the number of MaxMin-based assignments is much
smaller than the number of MinMin-based assignments for
each instance. For K ¼ 4, the worst case occurs for the big
matrix, where only 9.25 percent of the assignments are Max-
Min-based assignments. These results show that the
expected number of MaxMin-based assignments given in
Theorem 3.1 for K ¼ 2 homogenous processors is a rather
loose upper bound for K � 4 heterogeneous processors.

As seen in Table 13, MaxMin+ makes only one MaxMin-
based assignment for the 32-way assignment of ClueWeb-
B and all K-way assignments of ClueWeb-A. ClueWeb-A

TABLE 6
Percent Load Imbalance Values for Parallel SpMxV Data Sets

TABLE 5
Percent Load Imbalance Values for Parallel DVR Data Sets

TABLE 7
Averages of Percent Load Imbalance Values over All Data Sets

1252 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 25, NO. 5, MAY 2014

has an extremely large task whose weight is greater than the
sum of the weights of all other tasks. The assignment of
such a large task to its favorite processor avoids the need
for a second MaxMin-based assignment in future iterations.
A similar reasoning holds for the 32-way assignment of
ClueWeb-B. In fact, MaxMin is also expected to find a
“good” solution in such assignment instances. As seen in
Tables 3, 4, 5, and 6, these are the only assignment instances
where MaxMin was able to find a solution with the same
makespan as MaxMin+.

MaxMin+ versus RASA: Although RASA finds slightly
better solutions than MaxMin, MaxMin+ finds signifi-
cantly better solutions than RASA in all assignment
instances, except for the 32-way assignment of ClueWeb-
B and the assignment instances of ClueWeb-A, where all
three heuristics find solutions with the same makespan.
On average, MaxMin+ attains average load imbalance val-
ues of 177.74 and 0.62 percent compared to 319.40 and
173.46 percent of RASA, for skewed and non-skewed data
sets, respectively. These results validate the success of

the proposed adaptive selection policy of MaxMin+ over
that of RASA. MaxMin+ is several orders of magnitude
faster than RASA in all assignment instances. On average,
MaxMin+ runs 5953- and 333-times faster than RASA for
skewed and non-skewed data sets, respectively.

Suff+ versus Suff: Out of 95 assignment instances,
Suff+ finds better solutions than Suff in 83 instances,
whereas Suff finds better solutions than Suff+ in only
six instances. In the remaining six assignment instances
(five assignment instances of ClueWeb-A and the 32-
way assignment of ClueWeb-B), both Suff and Suff+

find solutions with the same makespan. As seen in
Table 7, in terms of average load balancing quality,
Suff+ shows comparable performance with Suff for
skewed data sets, whereas Suff+ performs better than
Suff for non-skewed data sets. On average, Suff+

attains average load imbalance values of 178.31 and
0.51 percent compared to 178.12 and 1.37 percent of
Suff, for skewed and non-skewed data sets, respec-
tively. As seen in Table 12, Suff+ is a few orders of

TABLE 9
Running Times (Seconds) of Heuristics for Distributed Web Crawling Data Sets

TABLE 8
Running Times (Seconds) of Heuristics for Social Network Data Sets

TABLE 10
Running Times (Seconds) of Heuristics for Parallel DVR Data Sets

TABAK ET AL.: IMPROVING THE PERFORMANCE OF INDEPENDENT TASK ASSIGNMENT HEURISTICS MINMIN, MAXMIN AND... 1253

magnitude faster than Suff in all assignment instances.
On average, Suff+ runs 6078- and 194-times faster than
Suff for skewed and non-skewed data sets, respectively.

GA+ versus GA: As mentioned in Section 3.4, GA+ finds
exactly the same solutions as GA. However, GA+ is signifi-
cantly faster than GA in all assignment instances. On aver-
age, GA+ is 19-, 16-, 23-, 22-, and 38-times faster than GA in
4-, 8-, 16-, 24-, and 32-way assignments, respectively. For
the 16-way assignment of the largest data set ClueWeb-A,
GA finds a solution in about 23 days while GA+ finds the

same solution in less than four hours, i.e., GA+ runs about
154 times faster than GA for that assignment instance.

4.2.2 General Comparison

For general performance comparison, we will only consider
MinMin+,MaxMin+,Suff+,GA+, andRC since the improved
versions perform better than their traditional counterparts
and MaxMin+performs significantly better than RASA.

For the six skewed data sets, both of the proposed hybrid
algorithms, MaxMin+ and Suff+, find considerably better

TABLE 11
Running Times (Seconds) of Heuristics for Parallel SpMxV Data Sets

TABLE 13
Number of MaxMin-Based Assignments Performed by MaxMin+

TABLE 12
Normalized Running Time Averages over All Data Sets

1254 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 25, NO. 5, MAY 2014

solutions than MinMin+, in terms of load balancing quality.
Out of 30 assignment instances of skewed data sets, RC,
MaxMin+, and Suff+ find the best solutions in 14, 11, and
11 assignment instances, respectively. As seen in Table 7,
MaxMin+ and Suff+ respectively attain load imbalance
values of 177.74 and 178.31 percent compared to 177.26 per-
cent of RC, on average. Hence, MaxMin+ and Suff+ display
comparable performance with RC in terms of load balancing
quality. However, both MaxMin+ and Suff+ are signifi-
cantly faster than RC in all of these 30 assignment instances.
On average, MaxMin+ and Suff+ respectively run 2657-
and 1588-times faster than RC. Hence, the use of RC in large
data sets is not feasible.

For skewed data sets, we recommend the use of MaxMin+.
Because, as seen in Tables 7 and 12, MaxMin+ is considerably
faster than Suff+ and yields comparable performance in
terms of load balancing quality.

For the 13 non-skewed data sets, GA+ finds the best
solutions in 51 assignment instances out of 65 assignment
instances in terms of load balancing quality. GA+ per-
forms better than the other heuristics in assignment
instances where MinMin+ already shows good perfor-
mance (e.g., SpMxV and DVR data sets). This can be
attributed to the fact that GA+ improves the initial assign-
ment provided by MinMin+. Furthermore, GA+ is approx-
imately two orders of magnitude slower than MinMin+.
Hence, to analyze the performance of MinMin+, we
exclude GA+ in the statistics given in the following para-
graph to show the relative performance of the algorithms
in finding the best assignments.

Out of 65 assignment instances of the non-skewed
data sets, RC, MinMin+, MaxMin+, and Suff+ find the
best assignments in 17, 17, 18, and 17 assignment instan-
ces, respectively. As seen in Table 7, MinMin+, MaxMin+
and Suff+ respectively attain load imbalance values of
0.62, 0.62, and 0.51 percent compared to 0.61 percent of
RC, on average. Hence, MinMin+, MaxMin+, and Suff+

display comparable load-balancing performance with RC

for non-skewed data sets. However, for these 65 assign-
ment instances, MinMin+, MaxMin+, and Suff+ respec-
tively run 2229-, 499-, and 236-times faster than RC, on
average. Hence, the use of RC is not feasible also for
large non-skewed data sets. For these 65 assignment
instances, MinMin+ runs 13- and 52-times faster than
MaxMin+ and Suff+, respectively, on average. We
observe a trade-off between the solution quality and run-
ning times of MinMin+ and GA+. GA+ displays better
load balancing performance than MinMin+, whereas
MinMin+ is significantly faster (110-times, on average).

For non-skewed data sets, we recommend the use of
MinMin+, since MinMin+ runs significantly faster than
both MaxMin+ and Suff+ while achieving comparable
load balancing performance. The use of GA+ should be
considered only if the significantly higher running time
of GA+ can be amortized by the improved load balancing
on the target application.

5 CONCLUSION

We presented certain performance improvements over
the popular independent task assignment heuristics

MinMin, MaxMin, and Suff. In particular, we proposed
the MinMin+ heuristic which improves the worst-case
runtime complexity of MinMin from OðKN2Þ to
OðKN log NÞ in assigning N independent tasks to K pro-
cessors. Moreover, we proposed the MaxMin+ and
Suff+ heuristics, which are hybrid versions of MaxMin
and Suff, obtained by combining the latter heuristics
with MinMin. We evaluated the performance of all heu-
ristics over a large number of real-life data sets. The
experiments indicate that each of our heuristics runs
considerably faster than their traditional counterparts,
MinMin+ being the fastest. In terms of the solution qual-
ity, both MaxMin+ and Suff+ are found to perform con-
siderably better than MinMin+ for skewed data sets
while MinMin+ is found to perform comparable for non-
skewed data sets. Considering the tradeoffs between
the solution quality and the running times of the pro-
posed assignment algorithms, we recommend the use of
MinMin+ for non-skewed data sets and recommend
MaxMin+ for skewed data sets.

REFERENCES

[1] O.H. Ibarra and C.E. Kim, “Heuristic Algorithms for Scheduling
Independent Tasks on Nonidentical Processors,” J. ACM, vol. 24,
no. 2, pp. 280-289, 1977.

[2] T.D. Braun, H.J. Siegel, N. Beck, L.L. B€ol€oni, M. Maheswaran, A.I.
Reuther, J.P. Robertson, M.D. Theys, B. Yao, D. Hensgen, and R.F.
Freund, “A Comparison of Eleven Static Heuristics for Mapping a
Class of Independent Tasks onto Heterogeneous Distributed
Computing Systems,” J. Parallel and Distributed Computing, vol. 61,
no. 6, pp. 810-837, 2001.

[3] H.J. Siegel and S. Ali, “Techniques for Mapping Tasks to Machines
in Heterogeneous Computing Systems,” J. Systems Architecture,
vol. 46, no. 8, pp. 627-639, 2000.

[4] R. Duan, R. Prodan, and T. Fahringer, “Performance and Cost
Optimization for Multiple Large-Scale Grid Workflow
Applications,” Proc. ACM/IEEE Conf. Supercomputing, pp. 1-12,
2007.

[5] P. Luo, K. L€u, and Z. Shi, “A Revisit of Fast Greedy Heuristics For
Mapping a Class of Independent Tasks onto Heterogeneous Com-
puting Systems,” J. Parallel and Distributed Computing, vol. 67,
pp. 695-714, 2007.

[6] E. Davis and J.M. Jaffe, “Algorithms for Scheduling Tasks on
Unrelated Processors,” J. ACM, vol. 28, pp. 721-736, 1981.

[7] P.C. SaiRanga and S. Baskiyar, “A Low Complexity Algorithm for
Dynamic Scheduling of Independent Tasks onto Heterogeneous
Computing Systems,” Proc. 43rd Ann. Southeast Regional Conf.,
pp. 63-68, 2005.

[8] R. Armstrong, D. Hensgen, and T. Kidd, “The Relative Perfor-
mance of Various Mapping Algorithms is Independent of Sizable
Variances in Run-Time Predictions,” Proc. IEEE Seventh Heteroge-
neous Computing Workshop, pp. 79-87, 1998.

[9] M. Maheswaran, S. Ali, H.J. Siegel, D. Hensgen, and R.F. Freund,
“Dynamic Mapping of a Class of Independent Tasks onto Hetero-
geneous Computing Systems,” J. Parallel and Distributed Comput-
ing, vol. 59, pp. 107-131, 1999.

[10] C. Liu and S. Baskiyar, “A General Distributed Scalable Grid
Scheduler for Independent Tasks,” J. Parallel and Distributed Com-
puting, vol. 69, pp. 307-314, 2009.

[11] A.J. Page, T.M. Keane, and T.J. Naughton, “Multi-Heuristic
Dynamic Task Allocation Using Genetic Algorithms in a Hetero-
geneous Distributed System,” J. Parallel and Distribued Computing,
vol. 70, pp. 758-766, 2010.

[12] S.S. Chauhan and R.C. Joshi, “QoS Guided Heuristic Algorithms
for Grid Task Scheduling,” Int’l J. Computer Applications, vol. 2,
no. 9, pp. 24-31, 2010.

[13] K. Kaya and C. Aykanat, “Iterative-Improvement-Based Heuris-
tics for Adaptive Scheduling of Tasks Sharing Files on Heteroge-
neous Master-Slave Environments,” IEEE Trans. Parallel and
Distributed Systems, vol. 17, no. 8, pp. 883-896, Aug. 2006.

TABAK ET AL.: IMPROVING THE PERFORMANCE OF INDEPENDENT TASK ASSIGNMENT HEURISTICS MINMIN, MAXMIN AND... 1255

[14] F. Pinel, B. Dorronsoro, and P. Bouvry, “Solving very Large
Instances of the Scheduling of Independent Tasks Problem on the
GPU,” J. Parallel and Distributed Computing, vol. 73, pp. 101-110,
2012.

[15] R.F. Freund, M. Gherrity, S. Ambrosius, M. Campbell, M. Hal-
derman, D. Hensgen, E. Keith, T. Kidd, M. Kussow, J.D. Lima,
F. Mirabile, L. Moore, B. Rust, and H.J. Siegel, “Scheduling
Resources in Multi-User, Heterogeneous, Computing Environ-
ments with SmartNet,” Proc. Seventh Heterogeneous Computing
Workshop, pp. 184-199, 1998.

[16] K. Kaya, B. Uçar, and C. Aykanat, “Heuristics for Scheduling File-
Sharing Tasks on Heterogeneous Systems with Distributed
Repositories,” J. Parallel and Distributed Computing, vol. 67, no. 3,
pp. 271-285, 2007.

[17] M.-Y. Wu and W. Shu, “A High-Performance Mapping Algorithm
for Heterogeneous Computing Systems,” Proc. 15th Int’l Parallel
and Distributed Processing Symp., Apr. 2001.

[18] L. Wang, H.J. Siegel, V.R. Roychowdhury, and A.A. Maciejewski,
“Task Matching and Scheduling in Heterogeneous Computing
Environments Using a Genetic-Algorithm-Based Approach,” J.
Parallel and Distributed Computing, vol. 47, no. 1, pp. 8-22, Nov.
1997.

[19] F. Xhafa, E. Alba, B. Dorronsoro, and B. Duran, “Efficient Batch
Job Scheduling in Grids Using Cellular Memetic Algorithms,” J.
Math. Modelling and Algorithms, vol. 7, pp. 217-236, 2008.

[20] S. Parsa and R. Entezari-Maleki, “RASA - A New Grid Task
Scheduling Algorithm,” Int’l J. Digital Content Technology and Its
Applications, vol. 3, no. 4, pp. 91-99, 2009.

[21] M. Hardy, “Pareto’s Law,” The Math. Intelligencer, vol. 32, pp. 38-
43, 2010.

[22] “The ClueWeb09 Dataset, CMU-LTI,” http://boston.lti.cs.cmu.
edu/Data/clueweb09, 2009.

[23] H. Kutluca, T.M. Kurç, and C. Aykanat, “Image-Space Decompo-
sition Algorithms for Sort-First Parallel Volume Rendering of
Unstructured Grids,” The J. Supercomputing, vol. 15, no. 1, pp. 51-
93, 2000.

[24] “NASA Advanced Supercomputing Division (NAS) Dataset
Archive,” http://www.nas.nasa.gov/Research/Datasets/
datasets.html.

[25] T. Davis, “University of Florida Sparse Matrix Collection, NA
Digest,” vol. 97, no. 23, http://www.cise.ufl.edu/research/
sparse/matrices, June 1997.

[26] B.B. Cambazoglu, E. Varol, E. Kayaaslan, C. Aykanat, and R.
Baeza-Yates, “Query Forwarding in Geographically Distributed
Search Engines,” Proc. 33rd Int’l ACM SIGIR Conf. Research and
Development in Information Retrieval, pp. 90-97, 2010.

[27] S. Ali, H.J. Siegel, M. Maheswaran, S. Ali, and D. Hensgen, “Task
Execution Time Modeling for Heterogeneous Computing Sys-
tems,” Proc. Ninth Heterogeneous Computing Workshop, pp. 185-199,
2000.

E. Kartal Tabak received BS and PhD degrees
in computer engineering from Bilkent University,
Ankara, Turkey. He is currently working as Sys-
tems Engineer at HAVELSAN A.S., Ankara. His
research interests mainly include parallel com-
puting and algorithms, high-performance web
search engines, computer vision, simulation and
software engineering.

B. Barla Cambazoglu received the BS, MS, and
PhD degrees all in computer engineering from
the Computer Engineering Department of Bilkent
University, Ankara, Turkey, in 1997, 2000, and
2006, respectively. He has then worked as a
postdoctoral researcher in the Biomedical Infor-
matics Department of the Ohio State University,
Columbus. He is currently employed as a senior
researcher in Yahoo Labs. He has worked in sev-
eral research projects, funded by the Scientific
and Technological Research Council of Turkey,

the European Union Sixth and Seventh Framework Programs, and the
National Cancer Institute. In 2007, he received the Embodying the Vision
award as a developer in the caBIG project. His research interests
include information retrieval, web search, and distributed computing. He
has papers published in prestigious journals including IEEE Transac-
tions on Parallel and Distributed Systems, Journal of Parallel and Distrib-
uted Computing, ACM Transactions on the Web, Information Systems,
and Information Processing & Management, as well as top-tier conferen-
ces such as WWW, SIGIR, KDD, WSDM, and CIKM.

Cevdet Aykanat received the BS and MS
degrees both in electrical engineering from
Middle East Technical University, Ankara,
Turkey, and the PhD degree in electrical and
computer engineering from Ohio State Univer-
sity, Columbus. He was a Fulbright scholar dur-
ing his PhD studies. He worked at the Intel
Supercomputer Systems Division, Beaverton,
Oregon, as a research associate. Since 1989, he
has been affiliated with the Department of Com-
puter Engineering, Bilkent University, Ankara,

Turkey, where he is currently a professor. His research interests mainly
include parallel computing, parallel scientific computing and its combina-
torial aspects, parallel computer graphics applications, parallel data min-
ing, graph and hypergraph theoretic models for load balancing, high-
performance information retrieval systems, parallel and distributed data-
bases, and grid computing. He has (co)authored more than 70 technical
papers published in academic journals indexed in the Institute for Scien-
tific Information (ISI), and his publications have received more than 600
citations in ISI indexes. He is the recipient of the 1995 Young Investiga-
tor Award of The Scientific and Technological Research Council of Tur-
key and 2007 Parlar Science Award. He was appointed a member of
IFIP Working Group 10.3 (Concurrent System Technology) in April
2004, a member of the EU-INTAS Council of Scientists in June 2005,
and an associate editor of the IEEE Transactions of Parallel and Distrib-
uted Systems in December 2008.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

1256 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 25, NO. 5, MAY 2014

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

