
Locality-Aware Parallel Sparse Matrix-Vector
and Matrix-Transpose-Vector Multiplication

on Many-Core Processors
M. Ozan Karsavuran, Kadir Akbudak, and Cevdet Aykanat

Abstract—Sparse matrix-vector and matrix-transpose-vector multiplication (SpMMTV) repeatedly performed as z ATx and y A z

(or y A w) for the same sparse matrix A is a kernel operation widely used in various iterative solvers. One important optimization for

serial SpMMTV is reusing A-matrix nonzeros, which halves the memory bandwidth requirement. However, thread-level parallelization

of SpMMTV that reuses A-matrix nonzeros necessitates concurrent writes to the same output-vector entries. These concurrent writes

can be handled in two ways: via atomic updates or thread-local temporary output vectors that will undergo a reduction operation, both

of which are not efficient or scalable on processors with many cores and complicated cache-coherency protocols. In this work, we

identify five quality criteria for efficient and scalable thread-level parallelization of SpMMTV that utilizes one-dimensional (1D) matrix

partitioning. We also propose two locality-aware 1D partitioning methods, which achieve reusing A-matrix nonzeros and intermediate

z-vector entries; exploiting locality in accessing x-, y-, and z-vector entries; and reducing the number of concurrent writes to the same

output-vector entries. These two methods utilize rowwise and columnwise singly bordered block-diagonal (SB) forms of A. We evaluate

the validity of our methods on a wide range of sparse matrices. Experiments on the 60-core cache-coherent Intel Xeon Phi processor

show the validity of the identified quality criteria and the validity of the proposed methods in practice. The results also show that the

performance improvement from reusing A-matrix nonzeros compensates for the overhead of concurrent writes through the proposed

SB-based methods.

Index Terms—Cache locality, sparse matrix, sparse matrix-vector multiplication, matrix reordering, singly bordered block-diagonal form,

Intel Many Integrated Core Architecture (Intel MIC), Intel Xeon Phi

Ç

1 INTRODUCTION

THE focus of this work is parallelization of sparse
matrix-vector and matrix-transpose-vector multiplica-

tion (SpMMTV) operations on many-core processors. Sev-
eral iterative methods perform repeated and consecutive
computations of sparse matrix-vector (SpMV) and sparse

matrix-transpose-vector (SpMTV) multiplications that
involve the same sparse matrix A.

Typical examples include iterative methods for solving
linear programming (LP) problems through interior point
methods [1], [2]; the Biconjugate Gradient (BCG), the Conju-
gate Gradient for the Normal Equations (CGNE), the Conju-
gate Gradient for the Normal Residual (CGNR), and the
Lanczos Biorthogonalization methods [3] for solving non-
symmetric linear systems; the LSQR method [4] for solving
the least squares problem; the Surrogate Constraints
method [5], [6] for solving the linear feasibility problem; the
Hyperlink-Induced Topic Search (HITS) algorithm [7], [8]
for rating web pages; and the Krylov-based balancing algo-
rithms [9] used as preconditioners for sparse eigensolvers.

In the LP application, the SpMV operation immediately

follows the SpMTV operation in such a way that the output

vector of SpMTV becomes the input vector of SpMV. In
CGNE, LSQR, Surrogate Constraints, and CGNR methods,

the input vector of SpMTV is obtained from the output vec-
tor of SpMV through linear vector operations. In BCG, Lanc-
zos Biorthogonalization, HITS, and Krylov-based balancing

algorithms, the SpMV and SpMTV operations are totally
independent.

The SpMV operation is known to be memory bound [10],
[11], [12], [13] due to low operational intensity (flop-to-byte
ratio, i.e., the ratio of the number of arithmetic operations to
the number of memory accesses). Exploiting temporal local-
ity through reusing input and/or output vector entries is
expected to increase performance through reducing the
memory bandwidth requirement of SpMV operations.
Here, temporal locality refers to the reuse of data words
(e.g., vector entries and matrix nonzeros) within a relatively
small time duration, actually before eviction of the words

from cache. As the SpMMTV operation involves two SpMV
operations with the same sparse matrix, reusing A-matrix
nonzeros (together with their indices) is an opportunity
towards further performance improvement over the oppor-
tunity of reusing input, output, and intermediate vector
entries. Such data reuse opportunities become much more
important on cache-coherent architectures involving large
number of cores, such as the Xeon Phi processor.

In this work, we propose and discuss efficient parallel

SpMMTV algorithms that utilize the above-mentioned data

� The authors are with the Department of Computer Engineering, Bilkent
University, 6800, Ankara, Turkey.
E-mail: {ozan.karsavuran, kadir, aykanat}@cs.bilkent.edu.tr.

Manuscript received 30 Nov. 2014; revised 23 May 2015; accepted 23 June
2015. Date of publication 7 July 2015; date of current version 18 May 2016.
Recommended for acceptance by D. Trystram.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TPDS.2015.2453970

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 27, NO. 6, JUNE 2016 1713

1045-9219� 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



reuse opportunities. The proposed algorithms are directly
applicable to the LP application as well as to the applica-

tions in which SpMV and SpMTV operations are indepen-
dent. The proposed algorithms are also applicable to the
remaining applications as long as the intermediate linear
vector operations that incur dependency between SpMV

and SpMTV operations do not require synchronization in
parallelization. The applicability issues for these applica-
tions are discussed in Section 3.5.

We investigate four parallel SpMMTV approaches that
utilize one-dimensional (1D) rowwise and columnwise par-

titioning of A and AT matrices. We identify five quality cri-

teria for efficient thread-level parallelization of SpMMTV
based on the utilization of different data reuse opportuni-
ties. Four out of the five quality criteria refer to data reuse
opportunities on reusing A-matrix nonzeros, reusing the
intermediate vector entries, and data reuse in accessing vec-
tor entries during individual SpMVs. Reusing A-matrix
nonzeros introduces the crucial problem of concurrent
writes to either the intermediate or the output vector. The
fifth quality criterion refers to the trade-off between the
reuse of A-matrix nonzeros and concurrent writes.

We propose permuting A and AT matrices into dual
singly bordered block-diagonal (SB) forms to satisfy all
five quality criteria simultaneously. We obtain two dis-

tinct parallel SpMMTV algorithms by permuting A into a
rowwise SB form, which induces a columnwise SB form

of AT , and permuting A into a columnwise SB form,

which induces a rowwise SB form of AT . We show that
the objective of minimizing the size of the row or column
border in the SB form of A corresponds to minimizing the
number of concurrent writes in the respective parallel

SpMMTV algorithm.
We evaluate the validity of our proposed SpMMTV algo-

rithms on a single Xeon Phi processor for a wide range of
sparse matrices. Although we experiment with Xeon Phi,
our contributions are also viable for other cache-coherent
shared memory architectures. The experimental results
show that the performance improvement from reusing
A-matrix nonzeros compensates for the overhead of concur-
rent writes through the proposed SB-form scheme. To our
knowledge, this is the first work that successfully achieves

reusing matrix nonzeros in SpMMTV operations on many-
core architectures.

The rest of the paper is organized as follows: Four viable
parallel SpMMTV approaches that utilize 1D rowwise and

columnwise partitioning of A and AT matrices are dis-
cussed in Section 2. The five quality criteria for efficient

thread-level parallelization of SpMMTV are presented in

Section 3.1 and the two proposed SB-based SpMMTV
schemes achieving all these criteria are described in
Section 3.2. Section 3.3 discusses the existing hypergraph-
partitioning (HP)-based method utilized for permuting a
sparse matrix into an SB form. The merits of using an SB
form are discussed in Section 3.4 and the applicability of the
proposed schemes to the iterative methods are investigated
in Section 3.5. We present the experimental results in
Section 4. The related work on SpMV on Xeon Phi and

SpMMTV algorithms is reviewed in Section 5. Finally, we
conclude the paper in Section 6.

2 PARALLEL SpMMTV ALGORITHMS BASED

ON 1D MATRIX PARTITIONING

Consider an iterative algorithm involving SpMMTV opera-

tions of the form y AATx, which are performed as two

successive SpMV operations z ATx and y A z.

Based on 1Dmatrix partitioning, there are two viable par-

allel SpMV algorithms, namely row parallel and column par-

allel. The row-parallel SpMV algorithm utilizes rowwise

partitioning, where each thread is held responsible for per-

forming the submatrix-vector multiplication associated with

a distinct row slice (submatrix). The column-parallel SpMV

algorithm utilizes columnwise partitioning, where each

thread is held responsible for performing the submatrix-vec-

tor multiplication associatedwith a distinct column slice.
In terms of inter-dependence among threads, the row-

parallel algorithm incurs concurrent reads of the same
input-vector entries, whereas the column-parallel algorithm
incurs concurrent writes to the same output-vector entries.
Concurrent reads do not incur any race conditions, how-
ever, concurrent writes do incur race conditions, which
must be handled via either atomic updates or thread-local
temporary output vectors. So, due to the more-expensive
concurrent write operations, the row-parallel SpMV can be
considered to be more advantageous than the column-paral-
lel SpMV on shared memory architectures.

There are four viable parallel SpMMTV algorithms based

on 1D partitioning of A and AT matrices:

� Column-Column parallel (CCp)
� Row-Row parallel (RRp)
� Column-Row parallel (CRp)
� Row-Column parallel (RCp)

The CCp algorithm utilizes the column-parallel SpMV in both

y A z and z ATx, whereas the RRp algorithm utilizes

the row-parallel SpMV in both y A z and z ATx. The
CRp algorithm utilizes the column-parallel SpMV for y A z

and row-parallel SpMV for z ATx, whereas the RCp algo-

rithm utilizes the row-parallel SpMV for y A z and column-

parallel SpMV for z ATx.
Fig. 1 illustrates the four SpMMTV algorithms for a paral-

lel system with four threads. In each figure, the z ATx
computation involving the matrix on the right is performed
first, then the y A z computation involving the matrix on
the left is performed. In the figure, a gray scale tone indicates
the data exclusively used and/or computed by a single
thread. The black color on the x, y, and z vectors indicates the
data concurrently read and/orwritten bymultiple threads.

In Fig. 1, a horizontal vector on the top of a matrix denotes
the input vector of the respective SpMV computation,
whereas a vertical vector denotes the output vector of the
respective SpMV computation. Note that the intermediate z
vector appears twice in each figure, vertical as the output
vector of the first SpMV and horizontal as the input vector of

the second SpMV. For example, in the SpMTV computation
of the RRp algorithm, each of the four z subvectors is exclu-
sively computed by threads, whereas the whole z vector is
concurrently read by all threads in the SpMV computation.

All the above-mentioned SpMMTV methods are viable on
distributed-memory architectures, however, CCp is not viable
on cache-coherent many-core processors because it requires

1714 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 27, NO. 6, JUNE 2016



expensive concurrent writes in both SpMV operations. For
this reason, CCp is not investigated in the rest of the paper.

3 THE PROPOSED SpMMTVMETHODS

3.1 Quality Criteria for Efficient Parallelization

We identify five quality criteria given in Table 1 for efficient
thread-level parallelization of the above-mentioned

SpMMTV algorithms, which utilize 1D matrix partitioning.
The RRp algorithm has the nice property of avoiding

expensive concurrent writes in both SpMVs, therefore, it
automatically satisfies quality criterion (e). However, RRp
fails to satisfy criterion (b) since it necessitates storing A and

AT matrices separately. RRp also fails to satisfy criterion (a)
since all threads require the whole z vector during the row-
parallel SpMV y A z.

The CRp algorithm automatically satisfies quality
criterion (a), whereas RCp fails to satisfy this criterion. Both
CRp and RCp have the potential of satisfying quality
criterion (b) since neither of them necessitates storing A and

AT separately. Both CRp and RCp fail to satisfy quality

criterion (e) since both of them contain expensive concurrent
writes to thewhole output vector in one of the two SpMVs.

In this work, we utilize a special form of sparse matrices –
namely SB form – to develop parallel CRp andRCp algorithms
that satisfy all quality criteria. We will show that SB forms
together with the proposed CRp and RCp algorithms auto-
matically satisfy criteria (a) and (b). Two 1D matrix partition-
ing schemes are adopted to find row/column reorderings to
permuteA andAT matrices into the desired SB forms. In both
partitioning schemes, the partitioning objective corresponds to
satisfying the remaining three criteria (c), (d), and (e).

3.2 CRp and RCp Algorithms Based on SB Forms

We propose two methods for SpMMTV: The first method
uses the CRp algorithm with the rowwise SB form of A,
whereas the second one utilizes the RCp algorithm together
with the columnwise SB form of A. Here and hereafter, the
first and second methods will be respectively referred to as
sbCRp and sbRCp. The following two subsections,
Sections 3.2.1 and 3.2.2, present the proposed 1Dmatrix par-

titioning schemes together with the associated SpMMTV
algorithms. More details are given for sbCRp in Section 3.2.1,
and sbRCp is summarized in Section 3.2.2 because sbRCp
can be considered a dual form of sbCRp.

3.2.1 The sbCRp Method

The Parallel Algorithm. Consider a row/column reordering
that permutes matrix A into a rowwise SB form as:

Â ¼ ArSB ¼ PrAPc

¼

A11

A22

. .
.

AKK

AB1 AB2 . . . ABK

2
66666664

3
77777775
¼

R1

R2

..

.

RK

RB

2
66666664

3
77777775

¼ ½ C1 C2 . . . CK �:

(1)

Fig. 1. Four baseline SpMMTV algorithms for computing y A z after z ATx by four threads.

TABLE 1
Quality Criteria for Efficient Parallelization

of SpMMTV Algorithms

Quality criteria

(a) Reusing z-vector entries generated in z ATx and then
read in y A z

(b) Reusing matrix nonzeros (together with their indices)
in z ATx and y A z

(c) Exploiting temporal locality in reading input vector entries
in row-parallel SpMVs

(d) Exploiting temporal locality in updating output vector
entries in column-parallel SpMVs

(e) Minimizing the number of concurrent writes performed
by different threads in column-parallel SpMVs

KARSAVURAN ETAL.: LOCALITY-AWARE PARALLEL SPARSE MATRIX-VECTOR AND MATRIX-TRANSPOSE-VECTOR MULTIPLICATION ON... 1715



In (1), Pr and Pc respectively denote the row and column
permutation matrices. Akk denotes the kth diagonal block of
ArSB.Rk and Ck respectively denote the kth row and column
slices of ArSB for k ¼ 1; 2; . . . ; K. RB denotes the row border
as follows:

RB ¼ AB1 AB2 . . . ABK½ �: (2)

Here, ABk denotes the kth border block in the row border
RB. In ArSB, the columns of diagonal blocks are coupled by
rows in the row border. That is, each coupling row in RB

has nonzeros in the columns of at least two diagonal blocks.
A coupling row ri 2 RB is said to have a connectivity of
�ðriÞ if and only if ri 2 RB has at least one nonzero at each
of the �ðriÞ ABk submatrices.

The rowwise SB form of A given in (1) induces the col-

umnwise SB form of AT as follows:

ðArSBÞT ¼ ÂT ¼ AT
cSB ¼ PcA

TPr

¼

AT
11 AT

B1

AT
22 AT

B2

. .
. ..

.

AT
KK AT

BK

2
66664

3
77775
¼

CT
1

CT
2

..

.

CT
K

2
66664

3
77775

¼ RT
1 RT

2 . . . RT
K RT

B

� �
: (3)

In (3), AT
kk denotes the kth diagonal block of AT

cSB. C
T
k and RT

k

respectively denote the kth row and column slice of AT
cSB for

k ¼ 1; 2; . . . ; K.RT
B denotes the column border as follows:

RT
B ¼

AT
B1

AT
B2

..

.

AT
BK

2
66664

3
77775
: (4)

Here, AT
Bk denotes the kth border block in the column bor-

der RT
B. In AT

cSB, the rows of diagonal blocks are coupled by
columns in the column border. That is, each coupling col-

umn in RT
B has nonzeros in the rows of at least two diagonal

blocks. A coupling column cj 2 RT
B is said to have a connec-

tivity of �ðcjÞ if and only if cj 2 RT
B has at least one nonzero

at each of �ðcjÞ AT
Bk submatrices.

In the proposed partitioning scheme, K is selected in
such a way that the size of each column slice Ck together
with the associated input and output subvectors is below

the size of the cache of a single core. Both submatrix-trans-

pose-vector multiplication zk  CT
k x and submatrix-vector

multiplication y Ck zk are considered as an atomic task,
which is assigned to a thread executed by a single core of
the Xeon Phi architecture. So this partitioning and task-to-
thread assignment scheme leads to the sbCRp method, as
shown in Algorithm 1. In this algorithm, as well as in
Algorithm 2, the “for ... in parallel do” constructs mean that
each iteration of the for loop can be executed in parallel.
Fig. 2a displays the matrix view of the parallel sbCRp
method given in Algorithm 1. In this figure, the xB and yB
vectors are also referred to as “border subvectors” through-
out the paper. In this figure, as well as in Fig. 2b, concur-
rently accessed subvectors are colored black.

Algorithm 1. The Proposed sbCRp Method

Require: Akk and ABk matrices; x, y, and z vectors
1: for k 1 toK in parallel do
2: zk  AT

kk xk
o
zk  CT

k x
3: zk  zk þAT

Bk xB

4: yk  Akk zk
5: yB  yB þABk zk " Concurrent writes

o
y Ck zk

6: end for

The row-parallel SpMV algorithm incurs input depen-
dency, whereas the column-parallel SpMV algorithm incurs
output dependency among threads. As seen in Algorithm 1,
the proposed method utilizing the SB form enables both
input and output independency among threads for SpMV
computations on diagonal blocks and their transposes. That

is, SpMV computations zk  AT
kk xk and yk  Akk zk in

lines 2 and 4 are performed concurrently and independently
by threads. Note that the write-read dependency between
these two SpMV computations incurs only intra-thread

dependency due to the zk vector. The zk  zk þAT
Bk xB

computation in line 3 incurs input dependency among
threads via the border subvector xB. The yB  yB þABk zk
computation in line 5 incurs output dependency among
threads via the border subvector yB.

Quality criteria coverage. The working set of every for-loop
iteration fits into the cache of a single core due to the parti-
tioning and task-to-thread assignment scheme adopted in
the sbCRp method. Hence, the sbCRp method achieves
both quality criteria (a) and (b) by enabling the reuse of
z-vector entries and matrix nonzeros, respectively, between

zk  CT
k x and y Ck zk computations. Under a fully

Fig. 2. Proposed SB-based SpMMTV algorithms for computing y A z after z ATx by four threads.

1716 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 27, NO. 6, JUNE 2016



associative cache assumption, there will be no cache misses
during the y A z computation, neither in reading z-vector
entries nor in accessing A-matrix nonzeros. Note that misses
in a fully associative cache are compulsory or capacity
misses and are not conflict misses. Also note that quality
metric (b) can only be achieved by storing the A matrix only

once, that is, A and AT matrices are not stored separately.
Therefore, reusing nonzeros of diagonal blocks in

zk  AT
kk xk and yk  Akk zk computations can be achieved

by storing Akk in compressed sparse columns (CSC) format

which corresponds to storing AT
kk in compressed sparse

rows (CSR) format, or vice versa. Similarly, reusing

nonzeros of border blocks in zk  zk þAT
Bk xB and

yB  yB þABk zk computations can also be achieved by
storing ABk in CSC format, which corresponds to storing

AT
Bk in CSR format, or vice versa. To some extent, quality

metric (b) can be achieved by storing A in the Coordinate
(COO) format, however COO is likely to have lower perfor-
mance due to its higher index-storage overhead.

We make the following notes for achieving quality crite-
ria (c) and (d): For CSR-/CSC-based sequential SpMV, reor-
dering the rows/columns with similar sparsity patterns
nearby is likely to increase temporal locality in accessing
input-/output-vector entries as mentioned in [14]. So, for
row-/column-parallel SpMV, temporal locality in accessing
input-/output-vector entries can be exploited by clustering
rows/columns with similar sparsity patterns to the same
row/column blocks. In the following two paragraphs, we
show how the SB forms of matrix A are utilized to achieve

quality criteria (c) and (d) in parallel SpMMTV operations.
Also note that, in the rest of the paper, the analyses on the
number of data accesses are given under single-word line-
size assumption. The upper bounds given in these analyses
are still valid for multiple-word line-sizes.

For achieving quality criterion (c), temporal locality in

accessing input-vector (x-vector) entries in row-parallel

SpMV s zk  CT
k x can be exploited by utilizing the column-

wise SB form of the AT matrix as follows: The diagonal

block computations zk  AT
kk xk (line 2 of Algorithm 1)

share no xk-vector entries due to the structure of the col-

umnwise SB form. Hence, under a fully associative cache

assumption, only one cache miss will occur for each of such

xk-vector entries. On the other hand, the border block com-

putations zk  zk þAT
Bk xB (line 3 of Algorithm 1) do share

xB-vector entries because of the coupling columns in RT
B.

Under a fully associative cache assumption, column cj 2 RT
B

with a connectivity of �ðcjÞ will incur at most �ðcjÞ cache
misses due to accessing xj. �ðcjÞ is an upper bound on the

number of cache misses because of the possibility of reusing
xj, which can only occur when the SpMV computations

associated with two border blocks having nonzeros in col-
umn cj are executed consecutively on the same core. There-
fore, this upper bound is rather tight, and hence,
minimizing the sum of the connectivities of the coupling

columns in RT
B closely relates to minimizing the number of

cache misses in performing z ATx.
For achieving quality criterion (d), temporal locality in

updating the output-vector (y-vector) entries in column-par-
allel SpMVs y Ck zk can be exploited by utilizing the

rowwise SB form of the A matrix as follows: The diagonal
block computations yk  Akk zk (line 4 of Algorithm 1) share
no yk-vector entries due to the structure of the rowwise SB
form. Hence, under a fully associative cache assumption, at
most two cache misses (for reading and writing) will occur
for each of such yk-vector entries. On the other hand, the
border block computations yB  yB þABk zk (line 5 of
Algorithm 1) do share yB-vector entries because of the cou-
pling rows in RB. Under a fully associative cache assump-
tion, row ri 2 RB with a connectivity of �ðriÞ will incur at
most 2�ðriÞ cache misses due to updating yi. 2�ðriÞ is an
upper bound on the number of cache misses because of the
possibility of reusing yi, which can only occur when the
SpMV computations associated with two border blocks hav-
ing nonzeros on row ri are executed consecutively on the
same core. Therefore, this upper bound is rather tight, and
hence, minimizing the sum of the connectivities of the cou-
pling rows in RB closely relates to minimizing the number
of cache misses in performing y A z.

We make the following notes on how criteria (b), (c), and

(d) are related. Consider an SpMMTV algorithm that

achieves criterion (b). If this algorithm achieves criterion (c),

it automatically achieves criterion (d) and vice versa. This is

because criterion (b) can be achieved by storing the Amatrix

only once and a rowwise SB form of A induces a column-

wise SB form of AT and vice versa.
For achieving quality criterion (e), minimizing the num-

ber of concurrent writes to the output-vector (y-vector)
entries in column-parallel SpMV s y Ck zk can be accom-
plished by utilizing the rowwise SB form of the A matrix as
follows: Concurrent writes occur only during the border
block computations. Consider two possible implementa-
tions of each border block computation yB  yB þABk zk,
namely CSC and CSR schemes. The CSC scheme will incur
one concurrent write for each nonzero of the row border
RB, whereas the CSR scheme will incur only one concurrent
write for each nonzero row of the ABk matrices of RB. That
is, to update yi 2 yB, the CSC and CSR schemes will respec-
tively incur nnzðriÞ and �ðriÞ concurrent writes. Here,
nnzðriÞ and �ðriÞ respectively denote the number of non-
zeros and connectivity of row ri 2 RB. Hence, the CSR
scheme is selected since it requires a much smaller number
of concurrent writes. Therefore, each border block ABk is

stored in CSR format, which corresponds to storing AT
Bk in

CSC format. Hence, under this implementation scheme,
minimizing the sum of the connectivities of coupling rows
in RB exactly corresponds to minimizing the number of con-
current writes in performing y A z. This one-to-one cor-
respondence is valid when concurrent writes are handled
via atomic updates, however, this correspondence depends
on the algorithm used in reducing the temporary vectors
when concurrent writes are handled using thread-local tem-
porary vectors.

We should mention here that criteria (d) and (e) are
closely related for column-parallel SpMV. Criterion (e) is
given to clarify the conditions under which achieving
criterion (d) implies achieving criterion (e) of minimizing
the number of concurrent writes in a parallel implementa-
tion. These conditions are storing row border submatrices
in CSR format and identifying the output vector entries that

KARSAVURAN ETAL.: LOCALITY-AWARE PARALLEL SPARSE MATRIX-VECTOR AND MATRIX-TRANSPOSE-VECTOR MULTIPLICATION ON... 1717



will incur concurrent writes prior to execution of the

SpMMTV algorithm.
As a consequence of the above-mentioned discussions

about quality coverage, the proposed sbCRp method can
achieve criterion (c) byminimizing the sum of the connectivi-
ties of the coupling columns inRT

B and can achieve both qual-
ity criteria (d) and (e) by minimizing the sum of the
connectivities of the coupling rows in RB. Note that the for-
mer and latter minimization objectives are equivalent since

the columns of RT
B correspond to the rows of RB. Thus, the

sbCRp method can achieve all three quality criteria (c), (d),
and (e) by permutingmatrixA into the rowwise SB formwith
the objective of minimizing the sum of the connectivities of
the coupling rows. Consequently, sbCRp satisfies all quality
criteria since CRp already achieves quality criteria (a) and (b).

3.2.2 The sbRCp Method

The Parallel Algorithm. The sbRCp method utilizes the col-
umnwise SB form of matrix A as follows:

Â ¼ AcSB ¼ PrAPc

¼

A11 A1B

A22 A2B

. .
. ..

.

AKK AKB

2
66664

3
77775
¼

R1

R2

..

.

RK

2
66664

3
77775

¼ ½ C1 C2 . . . CK CB �:

(5)

This columnwise SB form of A induces the rowwise SB form

of AT as follows:

ðAcSBÞT ¼ Â ¼ AT
rSB ¼ PcA

TPr

¼

AT
11

AT
22

. .
.

AT
KK

AT
1B AT

2B AT
KB

2
66666664

3
77777775
¼

CT
1

CT
2

..

.

CT
K

CT
B

2
66666664

3
77777775

¼ ½ RT
1 RT

2 . . . RT
K �:

(6)

In this partitioning scheme, K is selected in such a way that
the size of each row slice Rk together with the associated
input and output subvectors is below the size of the cache
of a single core. The sbRCp method is presented in Algo-
rithm 2. Similar to the sbCRp method, the sbRCp method
given in Algorithm 2 enables both input and output inde-
pendency among threads for SpMV computations on diago-
nal blocks and their transposes (as shown in lines 2 and 4).
In a dual manner to the sbCRp method, the

zB  zB þAT
kB xk computation in line 3 incurs output

dependency among threads via border subvector zB,
whereas the yk  yk þAkB zB computation in line 7 incurs
input dependency among threads via border subvector zB.
The existence of both output and input dependencies on the
same border subvector zB incurs additional synchronization
overhead, as depicted by the two consecutive “for ... in par-
allel do” constructs in Algorithm 2. Fig. 2b displays the

matrix view of the parallel sbRCp method given in
Algorithm 2.

Algorithm 2. The Proposed sbRCp Method

Require: Akk and AkB matrices; x, y, and z vectors
1: for k 1 toK in parallel do
2: zk  AT

kk xk

3: zB  zB þAT
kB xk " Concurrent writes

o
z RT

k xk

4: yk  Akk zk
5: end for
6: for k 1 toK in parallel do
7: yk  yk þAkB zB

g yk  Rk z

8: end for

For the BCG, Lanczos Biorthogonalization, HITS, and
Krylov-based balancing algorithms, the two for loops of
sbRCp given in Algorithm 2 can be fused since there is no
input/output dependency between the z ATx and
y A w operations. On the average, the fusion of these two
for loops provides 10 percent performance improvement
over the non-fused case for the nonsymmetric square matri-
ces given in Table 4.

Quality criteria coverage. The matrix partitioning scheme
of the proposed sbRCp method can be considered a dual
form of the sbCRp method given in Section 3.2.1. So the dis-
cussion for the sbRCp method , in general, follows the dis-
cussion given for the sbCRp method in a dual manner.
Here, we will briefly discuss the sbRCp method, focusing on
the differences. The sbRCp method satisfies all quality crite-
ria in general. It satisfies quality criteria (c)–(e) for all respec-
tive computations. It also satisfies quality criteria (a) and (b)
for the zk  AT

kk xk and yk  Akk zk computations. How-
ever, it fails to satisfy quality criteria (a) and (b) for the

zB  zB þAT
kB xk and yk  yk þAkB zB computations.

Despite the above-mentioned disadvantages, sbRCp can
still be preferred since some of the nonsymmetric square
and rectangular matrices may be more suitable for permut-
ing into a columnwise SB form , whereas some other matri-
ces may be more suitable for permuting into a rowwise SB
form . This property is because of the differences in row and
column sparsity patterns of a given nonsymmetric square
or rectangular matrix.

3.3 Permuting Matrices into SB Form

For the proposed sbCRp and sbRCp algorithms, we utilize
the hypergraph-partitioning-based methods in [15] for per-
muting matrices into rowwise and columnwise SB forms
via row/column reordering. Here, we will briefly discuss
this HP approach for sbCRp, where a dual discussion
applies for sbRCp.

In sbCRp, the HP-based method utilizes the row-net
hypergraph model [16] for obtaining a rowwise SB form. In
the HP problem, the partitioning constraint is to maintain
balance on the weights of the parts and the partitioning
objective is to minimize the cutsize, defined as the sum of
the connectivities of the cut nets. For sbCRp, the partitioning
constraint encapsulates balancing the nonzero counts of the
column slices, which in turn corresponds to maintaining
balance on computational loads of K submatrix-vector and
submatrix-transpose-vector multiplications. The partition-
ing objective encapsulates minimizing the sum of the

1718 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 27, NO. 6, JUNE 2016



connectivities of the coupling rows in the row border RB of
ArSB, which in turn corresponds to satisfying quality
criteria (c), (d), and (e).

3.4 Merits of SB Forms in CRp and RCp Algorithms

Table 2 displays the comparison of the SpMMTV algo-
rithms in terms of quality criteria coverage. As seen in
the table, RRp does not satisfy quality criteria (a) or (b),
as mentioned in Section 3.1. On the other hand, separate

storages of A and AT enable avoiding concurrent writes,
which in turn corresponds to satisfying (e). Note that
RRp can be enhanced to satisfy criterion (c), and both
CRp and RCp can be enhanced to satisfy criteria (c) and
(d) via adopting intelligent cache-aware row/column
reordering methods such as the Reverse Cuthill-McKee
(RCM) algorithm [12], [17].

CRp satisfies only criteria (a) and (b). Utilizing the SB
form of A in the proposed sbCRp method extends the qual-
ity coverage of CRp so that criteria (c), (d), and (e) are satis-
fied by sbCRp. These merits of the SB form can also be
observed by comparing the black vectors/subvectors in
Figs. 1c and 2a. In the CRp algorithm, whole x and y vectors
are concurrently accessed by all threads, whereas in the
sbCRp method, only xB and yB subvectors are concurrently
accessed by all threads, and each of the other subvectors is
accessed by one distinct thread.

RCp satisfies none of the quality criteria. Utilizing the
SB form of A in the proposed sbRCp method enables reus-
ing z-vector entries and matrix nonzeros in the diagonal
submatrix-vector multiplies, whereas it cannot achieve
the reuse in the border submatrix-vector multiplies. So
sbRCp partially satisfies criteria (a) and (b) while satisfy-
ing criteria (c), (d), and (e). These merits of the SB form
can also be observed by comparing Figs. 1d and 2b. In
the RCp algorithm, the whole z vector is concurrently
accessed by all threads, whereas in the sbRCp method,
only the zB subvector is concurrently accessed by all
threads, and each of other subvectors is accessed by one
distinct thread.

3.5 Applicability of the Methods

The discussion given in Sections 3.2.1 and 3.2.2 about the
quality criteria coverage of the proposed methods is
based on the assumption that the second SpMV immedi-
ately follows the first SpMV with no intermediate compu-
tation, where the input of the second SpMV is equal to
the output of the first SpMV. The proposed methods
are therefore directly applicable to linear programming
problems.

The quality coverage of the proposed methods is still
valid if the input of the second SpMV is obtained from
the output of the first SpMV via linear vector operations
that incur no thread synchronization. If, however,
intermediate parallel computations incur synchroniza-
tion, they disable the reuse of z-vector entries and
A-matrix nonzeros, thus preventing the proposed meth-
ods from satisfying quality criteria (a) and (b). Typically,
an intermediate synchronization point is incurred by an
inner-product computation that involves the output of
the first SpMV, the scalar result of which is used in com-
puting the input of the second SpMV via other linear
vector operations. Note that such intermediate synchro-
nization points do not adversely affect the coverage of

quality criteria (c), (d), or (e) for the SpMMTV algo-
rithms. Table 3 summarizes the computational structure
of several iterative algorithms to discuss coverage of
quality criteria (a) and (b). In the table, fð�Þ denotes a
set of linear vector operations that do not involve
explicit synchronization.

As seen in Table 3, the quality coverage of (a) and (b) for
the SpMMTV algorithms are disturbed only in the CGNR
method. This is expected since CGNR involves an interme-
diate synchronization point due to the inner-product com-
putation. Note that although CGNE has an intermediate
inner-product computation [3], this is not a problem since

TABLE 2
Quality Criteria Coverage of SpMMTV Algorithms

TABLE 3
Coverage of Quality Criteria (a) and (b) of the SpMMTV

Algorithms for Several Iterative Methods

Iterative Methods CRp RCp sbCRp sbRCp

Directly applicable

LP [1], [2]
z ATx
y Az

@ � @ @

Directly (no dependency since inner product can be delayed)

CGNE [3]
z q �Ax

b ðz; zÞ=ðq; qÞ
y ATz

@ � @ @

Directly (linear vector operations without synchronization)

LSQR [4]
z Ax
w fðzÞ
y ATw

@ � @ @

Surrogate
Constraints

[5], [6]

z Ax
w fðzÞ
y ATw

@ � @ @

Independent SpMV s (the two for loops of sbRCp can be fused.)

BCG [3]
z Ax
y ATw

@ � @ @

Lanczos
Biorthogonalization

[3]
z Ax
y ATw

@ � @ @

HITS [7], [8] z Ax
y ATw

@ � @ @

Krylov-based
Balancing

[9]
z Ax
y ATx

@ � @ @

Not applicable due to inner product and inter-dependency

CGNR [3]

z Ax
a jjyjj22=jjzjj22
y AT aw

� � � �

KARSAVURAN ETAL.: LOCALITY-AWARE PARALLEL SPARSE MATRIX-VECTOR AND MATRIX-TRANSPOSE-VECTOR MULTIPLICATION ON... 1719



the inner-product computation can be deferred to the end of
the second SpMV.

4 EXPERIMENTS

4.1 Data sets

The validity of the proposed methods are tested on 28 non-
symmetric square and rectangular sparse matrices arising
in different application domains. All test matrices are
selected from the University of Florida Sparse Matrix Col-
lection [18]. Twelve of the test matrices in the set are LP con-
straint matrices since the SpMMTV operation is directly
used in solving LP problems. Web-link matrices are also
included since PageRank computations implemented via
using Krylov-subspace methods (e.g., BCG) [19] and the
HITS algorithm [7], [8] operate on such matrices.

Table 4 displays properties of A matrices in the test set.
The matrices are listed in alphabetical order by name. In the
table, “avg” and “max”, respectively, denote the average
and the maximum number of nonzeros per row/column.
Table 4 also displays the number K of parts of the SB forms
of the test matrices in the last two columns.

4.2 Experimental Framework

The performances of the proposed SB-based sbCRp and
sbRCp methods are evaluated against the RRp, CRp, and
RCp algorithms. Recall that sbCRp and sbRCp given in
Algorithms 1 and 2 utilize rowwise and columnwise SB

forms of A, as illustrated in Figs. 2a and 2b, respectively.
Performance comparisons of sbCRp against CRp and sbRCp
against RCp are reported to experimentally validate the
merits (see Section 3.4) of the SB form in the CRp and RCp
algorithms. The performance of baseline algorithms CRp
and RCp are tested according to two different row/column
orderings of A: original ordering and RCM ordering. The
former and latter schemes will be respectively referred to as
orgCRp, orgRCp and rcmCRp, rcmRCp. rcmCRp and
rcmRCp respectively enable CRp and RCp to satisfy quality

criteria (c) and (d), as shown by “�3” in Table 2.
RRp is also selected as a baseline algorithm for perfor-

mance comparison. The performance of RRp is also tested
according to the original and RCMorderings ofA, whichwill
be referred to as orgRRp and rcmRRp, respectively. rcmRRp
enables RRp to satisfy quality criterion (c), as also shown by

“�3” in Table 2. In addition to our RRp implementation, a
vendor-provided SpMV routine, mkl_dcsrmv, of Intel Math
Kernel Library (MKL) [20], is also utilized to implement a
variant of RRp. The performance of MKL is also tested
according to the original and RCMorderings ofA, whichwill
be referred to as orgMKLand rcmMKL, respectively.

In all of the baseline implementations, except MKL,
either the original matrix or the RCM-ordered matrix is par-
titioned either rowwise or columnwise in such a way that
the size of each row/column slice is just above the cache
size threshold. For obtaining these partitionings, we utilize
a simple heuristic that assigns successive rows/columns to

TABLE 4
Properties of Test Matrices andK Values of Their SB Forms

1720 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 27, NO. 6, JUNE 2016



a new row/column slice until the size of the slice exceeds
the cache size threshold.

The SpMV operation associated with each row/column
slice is treated as an atomic task that will be executed by a
thread on a single core of the Xeon Phi architecture. This
scheme in general obtains fine-grained tasks so that OpenMP
scheduler can easily maintain balance on computational
loads of threads using dynamic scheduling. This scheme
also enables CRp to satisfy quality criteria (a) and (b).

The partitioning scheme described above for the baseline
algorithms is not used for MKL. Instead, the whole A or AT

matrix is given as input to mkl_dcsrmv, which utilizes row-
wise parallelization. The latter scheme is preferred because
of the dramatic performance degradation experimentally
observed for the former scheme due to calling mkl_dcsrmv

for each individual row/column slice. The CSB library [21] is
not utilized as another baseline algorithm since it is experi-
mentally observed that the CSB library does not perform
well on Xeon Phi when the latter scheme is adopted.

The proposed sbCRp and sbRCp algorithms are imple-
mented as described in Sections 3.2.1 and 3.2.2, respectively.
The matrices are permuted into SB forms using the HP-
based method, as described in Section 3.3. The HP tool
PaToH is used with the PATOH_SUGPARAM_SPEED parame-
ter, which is reported in [22] as producing reasonably good

partitions faster than the default parameter. The allowed
maximum imbalance ratio is set to 10 percent. K is selected
according to the cache size threshold, as in the baseline algo-
rithms. Since PaToH utilizes randomized algorithms, each
matrix is permuted into rowwise and columnwise SB forms
ten times for the sbCRp and sbRCp methods, respectively;
and average performance results are reported in Table 5
and Fig. 4, given in Section 4.3.

The experiments are carried out on a system with an Intel
Xeon Phi P5110 coprocessor. The coprocessor is used in off-
load mode so 59 out of 60 cores are used. The Level 2 (L2)
cache of each core is private to the core, eight-way set asso-
ciative, and 512 KB in size. Each core can handle up to four
hardware threads, so the effective cache size per thread can
be estimated as 128 KB when four threads run on the same
core. In the experiments, the cache size threshold utilized
by the partitioning algorithms for the baseline and proposed
methods is selected as 64 KB, which is half of the effective
cache size per thread.

All of the proposed and baseline parallel SpMMTV algo-
rithms are implemented in C using OpenMP and compiled
with icc (Intel’s C Compiler) version 13.1.3 with the O1

optimization flag. Double precision arithmetic is used. In
Table 5, the best performance result for 59, 118, 177, and 236
threads are reported; and in Fig. 4, performance results for

TABLE 5
Performance Results Normalized wrt Those of RRp for Original Order and Normalized Border Sizes

KARSAVURAN ETAL.: LOCALITY-AWARE PARALLEL SPARSE MATRIX-VECTOR AND MATRIX-TRANSPOSE-VECTOR MULTIPLICATION ON... 1721



1, 10, 20, 30, 40, 59, 118, 177, and 236 threads are reported.
We utilize dynamic scheduling with chunksizes 1, 2, 4,
and 8; and the best results are given. Environment
variables for the coprocessor are set as follows: KMP_AFFI-
NITY=granularity=fine,balanced to prevent
OpenMP threads from floating between different thread
contexts and to provide balanced assignments of threads to
cores; and MKL_DYNAMIC=false for forcing the library to
not automatically determine and change the number of

threads [20]. For each SpMMTV computation, we report the
average execution time of 1,000 iterations after performing
10 iterations as a warm-up. OpenMP’s atomic construct is
used for handling concurrent writes.

4.3 Performance Evaluation

Table 5 displays the running times of the SpMMTV algo-
rithms on the Xeon Phi processor for the 28 test matrices
given in Table 4. In the table, running times of orgRRp are
given in terms of milliseconds, whereas running times of all
other algorithms are displayed as normalized values. Each
normalized value is calculated through dividing the running
time of the respective algorithm for a given matrix by that of
the orgRRp algorithm for the same matrix. The last row of
Table 5 displays the average of the normalized running times
of each algorithm over all test matrices. The averages are
computed using the geometric mean. Note that the average
normalized running time of orgRRp is effectively 1:00. In
each row of the table, a bold value indicates the minimum
normalized running time attained for the respective matrix.

Table 5 also displays the normalized border sizes of the
SB forms of the test matrices in the “Border size” columns.
For the rowwise SB form ArSB of a given matrix, a normal-
ized value is calculated through dividing the number of
rows in the border by the total number of rows of the same
matrix. Similarly, for the columnwise SB form AcSB of a
given matrix, a normalized value is calculated through
dividing the number of columns in the border by the total
number of columns of the same matrix.

As seen in Table 5, RCM ordering substantially improves
the running times of all baseline algorithms. On average,
RCM ordering respectively improves the running times of
RRp, MKL, CRp, and RCp by 24, 18.3, 20.5, and 10 percent.
These experimental findings show the validity of quality
criteria (c) and (d) (temporal locality in SpMV operations)

on the performance of SpMMTV.
Although both rcmCRp and sbCRp satisfy quality criteria

(c) and (d), as seen in Table 2, sbCRp performs 36.7 percent
faster than rcmCRp on average, as seen in Table 5. This sig-
nificant performance improvement of sbCRp over rcmCRp
mainly stems from the topological property of the SB form,
which minimizes the number of costly concurrent writes. A
similar discussion holds for the performance difference
between rcmRCp and sbRCp. These experimental findings
show the importance of quality criterion (e) on minimizing
concurrent writes for increasing the performance of parallel

SpMMTV operations.
As seen in Table 5, out of the 28 test matrices, the pro-

posed methods attain the highest performance for 26 test
matrices, whereas rcmRRp attains the highest performance
for only two matrices. These results can be attributed to the

quality of the SB forms of these two matrices, ohne2 and
para-6. An SB form of a given matrix is said to be “good”
if its border submatrix is small. Good rowwise SB forms do
not exist for matrices that have many dense columns. Good
columnwise SB forms do not exist for matrices that have
many dense rows. Neither good rowwise nor good column-
wise SB forms exist for matrices that have both many dense
columns and rows. Note that the number of nonzeros in a
dense column/row of a given matrix already establishes a
lower bound on the size of the row/column border of the
rowwise/columnwise SB form. As seen in Table 4, ohne2
and para-6 have dense columns and dense rows and a rel-
atively large average number of nonzeros per column and
row. As also seen in the “Border size” column of Table 5,
98 percent of ohne2’s rows and 88 percent of para-6’s
rows constitute the row borders of their respective rowwise
SB forms; and the same percents of columns constitute the
column borders of their respective columnwise SB forms.
These consequences explain the inferior performance of the
SB-based methods for these two matrices.

As seen in Table 5, out of the 26 test matrices for which
SB-based methods show superior performance, sbCRp
attains the highest performance for 22 test matrices. The infe-
rior performance of sbRCp is already expected since it incurs
an additional synchronization point, as seen in Algorithm 2
and partially satisfies quality criteria (a) and (b), as shown in
Table 2. Despite these disadvantages, sbRCp attains the
highest performance for the four matrices LargeRegFile,
neos, web-BerkStan, and web-Stanford. These matri-
ces have dense columns but not dense rows. As also seen in
Table 5, the normalized border sizes of the columnwise SB
forms of these matrices are significantly smaller than those
of their rowwise SB forms. As an example, Fig. 3 displays
the significant quality difference between rowwise and col-
umnwise SB forms of the web-Stanfordmatrix.

As discussed above, despite the advantages of sbCRp
over sbRCp, sbCRp may show inferior performance for
some matrices. For this reason, it will be more meaningful
to compare the best results obtained by sbCRp and sbRCp
against RRp. In Table 5, “The-best-of-CRp/RCp-SB” column
displays the minimum of the running times of sbCRp and
sbRCp for each matrix. For the sake of a fair comparison, a
similar “Best-of” approach is adopted for all baseline algo-
rithms. For each matrix, the minimum of the running times
of orgRRp, rcmRRp, orgMKL, and rcmMKL is displayed in
the “RRp” column, the minimum of the running times of
orgCRp and orgRCp is displayed in the “org.” column, and
the minimum of the running times of rcmCRp and rcmRCp
is displayed in the “RCM” column.

Fig. 3. The web-Stanford matrix A and its rowwise and columnwise
SB forms ArSB and AcSB.

1722 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 27, NO. 6, JUNE 2016



As seen in Table 5, reporting the best performance results
of the CRp/RCp algorithms significantly improves the aver-
age normalized performances of the original, RCM, and SB
schemes from 1.61/2.09 to 1.16, from 1.28/1.88 to 0.96, and
from 0.81/1.20 to 0.58, respectively. Considering that the
best-of-RRp achieves the average normalized performance
of 0.74, these results show that neither the original nor RCM
ordering of the best-of-CRp/RCp can attain better average
performance than the best-of-RRp, whereas the best-of-
sbCRp/sbRCp attains significantly better average perfor-
mance (22 percent better) than the best-of-RRp. These
results in turn show the validity of the proposed SB
approach in the sbCRp and sbRCp methods.

There are two distinct approaches for deciding on the
best of the sbCRp and sbRCp algorithms for a given
matrix. The first is to run both algorithms for a few itera-
tions and decide on the best one, as adopted in OSKI’s
offline optimization [23]. Although this scheme works
fine in practice, it suffers from doubling the preprocessing
overhead due to row/column reordering and partition-
ing. The second is to devise a simple recipe based on ana-
lyzing the sparsity pattern of matrix A, which is beyond
the scope of this work.

Fig. 4 shows the strong scaling results as speedup
curves for the best-of-RRp, best-of-CRp/RCp, and best-
of-sbCRp/sbRCp schemes on four matrices in terms of
giga flops per second (GFlops). As seen in the figure, the

proposed best-of-sbCRp/sbRCp scheme shows good scal-
ability and outperform the baseline best-of-RRp and best-
of-CRp/RCp schemes.

The preprocessing overhead of the methods is also inves-
tigated. For each matrix, PaToH’s running time on the host
system is divided by the best SpMMTV time on the Xeon
Phi processor. On the average, the overhead of the best of
sbCRp and sbRCp is 1,121 kernel invocations, whereas the
overhead of the RCM algorithm [24] is 84 invocations. The
relatively high overhead of the proposed sophisticated
methods over the simple RCM algorithm are expected to

amortize for large number of repeated SpMMTV computa-
tions that involve matrix Awith the same sparsity pattern.

5 RELATED WORK

5.1 SpMV

For thread-level parallelism of SpMV on the recently-
released Xeon Phi processor, Cramer et al. [25] experiment
with the conjugate gradient method, which involves SpMV,
and analyze the experimental results on the Xeon Phi archi-
tecture according to the Roofline model [10].

Saule et al. [12] evaluate the performance of SpMV with
multiple dense right-hand-side vectors (SpMM) on the Xeon
Phi. They also investigate the performance effect of row/
column reordering for exploiting cache locality via utilizing
the widely used bandwidth-reduction method, RCM.

Fig. 4. Speedup curves for four test matrices: degme, Stanford, LargeRegFile, and web-BerkStan.

KARSAVURAN ETAL.: LOCALITY-AWARE PARALLEL SPARSE MATRIX-VECTOR AND MATRIX-TRANSPOSE-VECTOR MULTIPLICATION ON... 1723



Liu et al. [13] use the ELLPACK Sparse Block (ESB) for-
mat for SpMV operation on the Xeon Phi. The ESB format
uses bitmasks for storing the sparsity pattern and sorts
rows within blocks according to their nonzero counts –
instead of sorting whole matrix – with the purpose of
increasing the nonzero density of the columns of com-
pressed row blocks, as well as reducing disturbance of the
input-vector locality provided by the original matrix. The
column blocks are multiplied in parallel, so thread-local
temporary output vectors are used and hence a reduction
operation is performed after the computation. The authors
use three schedulers for load balancing: partitioning based
on cache-miss simulation; hybrid scheduling consisting of
sharing and stealing tasks; and 1D partitioning [26] of rows
according to their computational loads, which are deter-
mined via executing SpMV operations.

Sarıy€uce et al. [27] use an SpMM-based formulation for
the closeness centrality of a given graph to fully utilize the
vector units of Xeon processors and the Xeon Phi architec-
ture. The SpMM-based formulation is obtained via process-
ing multiple vertices of the graph in simultaneous breadth-
first search operations.

Pichel and Rivera [28] analyze the effects of SpMV opti-
mization techniques (reordering, blocking, and compres-
sion) on an experimental processor with 48 cores connected
through a mesh network. They report that the subject archi-
tecture benefits considerably from locality improvements in
parallel SpMV computations.

Park et al. [29] run the newly established high-perfor-
mance conjugate gradient (HPCG) benchmark [30] on a
Xeon Phi cluster. They apply optimization techniques such
as task scheduling and matrix reordering.

Kreutzer et al. [11] show that a unified storage format can
perform ideally for a wide range of matrix types involved in
parallel SpMV operation on various architectures, including
CPU, GPU, and Xeon Phi.

5.2 SpMMTV

For improving performance of the sequential SpMMTV
operation, Vuduc et al. [31] propose reusing A-matrix non-
zeros. The intermediate subvector zk is computed as

zk  CT
k x, using nonzeros of the kth column slice Ck, then

partial results for output vector y is computed as y Ck zk,
using the same nonzeros. A naive parallelization of this
scheme (our CRp scheme) results in concurrent writes to
the whole output vector, so scalability of this parallel algo-
rithm is limited.

For the parallel SpMMTV operation on many-core pro-
cessors, Buluç et al. [21] propose a blocking method called
Compressed Sparse Blocks (CSB) with a scheduling algo-
rithm for dynamically assigning the blocks to threads.
Using the same data structure for performing both y A z

and z ATx with no performance degradation is non-
trivial, and this is successfully achieved by CSB via using a
triple for each nonzero and using indices relative to the

block. Their method performs y AATx as two separate
row-parallel SpMV s (with no A-matrix nonzero reuse) and
recursively divides row-slices into blocks, yielding a two-
dimensional parallelization scheme for reducing load
imbalance due to irregularity in sparsity pattern of the input

matrix. Their method handles concurrent writes via using
temporary arrays for each thread that contributes to the
same output subvector. Although the CSB scheme uses a
single storage of matrix A, authors’ multiplication algorithm

cannot simultaneously perform y A z and z ATx. Our
proposed methods perform these two SpMV operations
simultaneously, and hence satisfy the quality criterion of
reusing A-matrix nonzeros as well as other quality criteria

via casting the efficient parallelization of SpMMTV as a
combinatorial optimization problem. The CSB scheme can
also be integrated into our proposed methods for handling
diagonal blocks.

Yang et al. [8] propose a tiling-based method to increase
data reuse in GPUs for data mining algorithms such as Pag-
eRank, HITS, and Random Walk with Restart. These data
mining algorithms utilize SpMV operations that involve
sparse matrices representing power-law graphs. In [8], A

and AT are stored separately, i.e., A-matrix nonzeros are not
reused. One of the baseline SpMV algorithms assigns each
row to a thread, which in turn corresponds to our RRp algo-
rithm with a row-level thread assignment.

Martone [32] compares the performance of Recursive
Sparse Blocks (RSB) format [33], which is based on space
filling curves, against those of MKL and CSB [21] for SpMV

and SpMMTV operations. Although a single storage of

matrix A is used in [32], SpMV and SpMTV operations are
performed separately, without any nonzero reuse. The
scheduling algorithm in [32] does not assign submatrices
that will write to the subvector, which is currently being
written by another thread. It is reported in [32] that this
scheduling algorithm is not scalable because critical sec-
tions are used in assigning blocks to threads. The use of
space-filling curves is expected to further increase data
locality while multiplying each block in our proposed

SpMMTV algorithms.
The above-mentioned works on parallel SpMV and

SpMMTV generally aim to increase utilization of vector
units, and some also provide algorithmic contributions.
Although one must use vectorization to efficiently use vec-
tor units, vectorization provided by compilers or hand-
tuned code is not used in the current work because its scope
is mainly to achieve data reuse. Data structures and kernels
based on vectorization can also benefit such locality
improvements.

Our work differs from the above-mentioned works on

SpMMTV in that we encode the efficient parallelization of

SpMMTV as a combinatorial optimization problem via
using the identified five quality criteria. None of the existing

parallel SpMMTV algorithms can reuse matrix nonzeros.
Additionally, to our knowledge, there is no previous study

on parallel SpMMTV algorithms for the Xeon Phi processor.

6 CONCLUSION

For cache-coherent many-core processors, we presented a
parallel sparse matrix-vector and matrix-transpose-vector
multiplication (SpMMTV) framework based on one-
dimensional matrix partitioning, and identified five qual-
ity criteria that affect performance. In various iterative

methods, SpMMTV operations are repeatedly performed

1724 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 27, NO. 6, JUNE 2016



as consecutive sparse matrix-vector and sparse matrix-
transpose-vector multiplication operations on the same
matrix. We proposed two novel methods based on permut-
ing sparse matrices into singly bordered block-diagonal
forms. The two SB-based methods simultaneously achieve

reducing the memory bandwidth requirement of SpMMTV
operations via utilizing data reuse opportunities and
minimizing the number of concurrent writes.

We tested the validity of the identified quality criteria
and the proposed methods within the framework on a wide
range of sparse matrices. Experiments on a 60-core cache-
coherent Intel Xeon Phi processor verified the validity of the
proposed framework through showing the performance
improvements from data reuse opportunities on processors
with many cores and complex cache-coherency protocols.
The experiments also showed that reusing matrix nonzeros
compensates for the overhead of concurrent writes through
the proposed SB-based methods.

ACKNOWLEDGMENTS

This work was partially supported by the PRACE 4IP proj-
ect funded in part by Horizon 2020 The EU Framework
Programme for Research and Innovation (2014-2020) under
grant agreement number 653838.

REFERENCES

[1] N. Karmarkar, “A new polynomial-time algorithm for linear pro-
gramming,” in Proc. 16th Annu. ACM Symp. Theory Comput., 1984,
pp. 302–311.

[2] S. Mehrotra, “On the implementation of a primal-dual interior
point method,” SIAM J. Optimization, vol. 2, no. 4, pp. 575–601,
1992.

[3] Y. Saad, Iterative Methods for Sparse Linear Systems. Philadelphia,
PA, USA: SIAM, 2003.

[4] C. C. Paige and M. A. Saunders, “LSQR: An algorithm for sparse
linear equations and sparse least squares,” ACM Trans. Math.
Softw., vol. 8, no. 1, pp. 43–71, 1982.

[5] K. Yang and K. G. Murty, “New iterative methods for linear
inequalities,” J. Optimization Theory Appl., vol. 72, no. 1, pp. 163–
185, 1992.

[6] B. Uçar, C. Aykanat, M. Ç. Pınar, and T. Malas, “Parallel image
restoration using surrogate constraint methods,” J. Parallel Distrib.
Comput., vol. 67, no. 2, pp. 186–204, 2007.

[7] J. M. Kleinberg, “Authoritative sources in a hyperlinked environ-
ment,” J. ACM, vol. 46, no. 5, pp. 604–632, 1999.

[8] X. Yang, S. Parthasarathy, and P. Sadayappan, “Fast sparsematrix-
vector multiplication on GPUs: Implications for graph mining,”
Proc. VLDBEndowment, vol. 4, no. 4, pp. 231–242, Jan. 2011.

[9] T.-Y. Chen and J. W. Demmel, “Balancing sparse matrices for
computing eigenvalues,” Linear Algebra Appl., vol. 309, no. 13,
pp. 261–287, 2000.

[10] S. Williams, A. Waterman, and D. Patterson, “Roofline: An
insightful visual performance model for multicore architectures,”
Commun. ACM, vol. 52, no. 4, pp. 65–76, 2009.

[11] M. Kreutzer, G. Hager, G. Wellein, H. Fehske, and A. Bishop, “A
unified sparse matrix data format for efficient general sparse
Matrix-vector multiplication on modern processors with wide
SIMD units,” SIAM J. Sci. Comput., vol. 36, no. 5, pp. C401–C423,
2014.

[12] E. Saule, K. Kaya, and U. V. Cataly€urek, “Performance evaluation
of sparse matrix multiplication kernels on Intel Xeon Phi,” in Proc.
10th Int. Conf. Parallel Process. Appl. Math., 2014, pp. 559–570.

[13] X. Liu, M. Smelyanskiy, E. Chow, and P. Dubey, “Efficient sparse
matrix-vector multiplication on x86-based many-core processors,”
in Proc. Int. Conf. Supercomput., 2013, pp. 273–282.

[14] K. Akbudak, E. Kayaaslan, and C. Aykanat, “Hypergraph parti-
tioning based models and methods for exploiting cache locality in
sparse Matrix-vector multiplication,” SIAM J. Sci. Comput., vol. 35,
no. 3, pp. C237–C262, 2013.

[15] C. Aykanat, A. Pinar, and U. V. Catalyurek, “Permuting sparse
rectangular matrices into Block-diagonal form,” SIAM J. Sci. Com-
put., vol. 25, pp. 1860–1879, 2002.

[16] U. V. Catalyurek and C. Aykanat, “Hypergraph-partitioning-
based decomposition for parallel sparse-matrix vector multi-
plication,” IEEE Trans. Parallel Distrib. Syst., vol. 10, no. 7, pp. 673–
693, Jul. 1999.

[17] M. Krotkiewski and M. Dabrowski, “Parallel symmetric sparse
matrix-vector product on scalar multi-core CPUs,” Parallel Com-
put., vol. 36, no. 4, pp. 181–198, 2010.

[18] T. A. Davis and Y. Hu, “The University of Florida sparse matrix
collection,” ACM Trans. Math. Softw., vol. 38, no. 1, p. 1, 2011.

[19] G. M. D. Corso, A. Gull, and F. Romani, “Comparison of Krylov
subspace methods on the PageRank problem,” J. Comput. Appl.
Math., vol. 210, no. 12, pp. 159–166, 2007.

[20] (2015). MKL [Online]. Available: http://software.intel.com/en-
us/articles/intel-mkl/

[21] A. Buluç, J. T. Fineman, M. Frigo, J. R. Gilbert, and C. E. Leiserson,
“Parallel sparse matrix-vector and matrix-transpose-vector multi-
plication using compressed sparse blocks,” in Proc. 21st Symp. Par-
allelism Algorithms Archit., 2009, pp. 233–244.

[22] U. V. Cataly€urek and C. Aykanat, “PaToH: A multilevel hyper-
graph partitioning tool, version 3.0,” Dept. Comput. Eng., Bilkent
University, Ankara, 1999.

[23] R. Vuduc, J. W. Demmel, and K. A. Yelick, “OSKI: A library of
automatically tuned sparse matrix kernels,” J. Phys.: Conf. Series,
vol. 16, no. 1, p. 521, 2005.

[24] J. Burkardt. (2003). Reverse Cuthill McKee ordering [Online].
Available: http://people.sc.fsu.edu/ ~jburkardt/cpp_src/rcm/
rcm.html, 2003.

[25] T. Cramer, D. Schmidl, M. Klemm, and D. an Mey, “OpenMP pro-
gramming on Intel Xeon Phi coprocessors: An early performance
comparison,” in Proc. Many-Core Appl. Res. Community Symp.
RWTH Aachen Univ., pp. 38–44, 2012.

[26] A. Pınar and C. Aykanat, “Fast optimal load balancing algorithms
for 1D partitioning,” J. Parallel Distrib. Comput., vol. 64, no. 8,
pp. 974–996, 2004.

[27] A. E. Sarıy€uce, E. Saule, K. Kaya, and U. V. Cataly€urek,
“Hardware/software vectorization for closeness centrality on
multi-/many-core architectures,” in Proc. IEEE Int. Parallel Distrib.
Process. Symp. Workshops, May 2014, pp. 1386–1395.

[28] J. C. Pichel and F. F. Rivera, “Sparse Matrix–vector multiplication
on the Single-chip cloud computer many-core processor,” J. Paral-
lel Distrib. Comput., vol. 73, no. 12, pp. 1539–1550, 2013.

[29] J. Park, M. Smelyanskiy, K. Vaidyanathan, A. Heinecke, D. D.
Kalamkar, X. Liu, M. M. A. Patwary, Y. Lu, and P. Dubey,
“Efficient shared-memory implementation of high-performance
conjugate gradient benchmark and its application to unstructured
matrices,” in Proc. Int. Conf. High Perform. Comput., Netw., Storage
Anal., 2014, pp. 945–955.

[30] J. Dongarra and M. A. Heroux, “Toward a new metric for ranking
high performance computing systems,” Sandia Rep., SAND2013-
4744, vol. 312, 2013.

[31] R. Vuduc, A. Gyulassy, J. Demmel, and K. Yelick, Memory Hierar-
chy Optimizations and Performance Bounds for Sparse AT Ax, ser.
Lecture Notes in Computer Science, P. Sloot, D. Abramson, A.
Bogdanov, Y. Gorbachev, J. Dongarra, and A. Zomaya, Eds.
Springer Berlin Heidelberg, 2003, vol. 2659.

[32] M. Martone, “Efficient multithreaded untransposed, transposed
or symmetric sparse Matrix-vector multiplication with the recur-
sive sparse blocks format,” Parallel Comput., vol. 40, no. 7, pp. 251–
270, 2014.

[33] M. Martone, S. Filippone, S. Tucci, M. Paprzycki, and M. Ganzha,
“Utilizing recursive storage in sparse matrix-vector multiplica-
tion- preliminary considerations,” in Proc. 25th Int. Conf. Comput.
Their Appl., 2010, pp. 300–305.

M. Ozan Karsavuran received the BS and MS
degrees in 2012 and 2014, respectively, in com-
puter engineering from Bilkent University, Ankara,
Turkey, where he is currently working toward the
PhD degree. His research interests include paral-
lel computing, cache-aware methods, and high-
performance computing.

KARSAVURAN ETAL.: LOCALITY-AWARE PARALLEL SPARSE MATRIX-VECTOR AND MATRIX-TRANSPOSE-VECTOR MULTIPLICATION ON... 1725



Kadir Akbudak received the BS and MS degrees
in 2007 and 2009, respectively, in computer
engineering from Hacettepe and Bilkent Univer-
sities, Ankara, Turkey. He is currently working
toward the PhD degree at the Computer Engi-
neering Department, Bilkent University. His
research interests include locality-aware parti-
tioning and scheduling methods for exascaling
irregular applications, cache-locality exploiting
methods for scientific computational kernels.

Cevdet Aykanat received the BS and MS
degrees from Middle East Technical University,
Ankara, Turkey, both in electrical engineering,
and the PhD degree from Ohio State University,
Columbus, in electrical and computer engineer-
ing. He was at the Intel Supercomputer Systems
Division, Beaverton, Oregon, as a research asso-
ciate. Since 1989, he has been affiliated with the
Department of Computer Engineering, Bilkent
University, Ankara, Turkey, where he is currently
a professor. His research interests mainly include

parallel computing, parallel scientific computing and its combinatorial
aspects. (co)authored about 80 articles published in academic journals
indexed in ISI and his publications received above 700 citations in ISI
indexes. He received the 1995 Young Investigator Award of The Scientific
and Technological Research Council of Turkey and 2007 Parlar Science
Award. He has served as a member of IFIP Working Group 10.3 (Concur-
rent System Technology) since 2004 and as an associate editor of IEEE
Transactions of Parallel andDistributedSystems between 2009 and 2013.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

1726 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 27, NO. 6, JUNE 2016



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


