
Reduce Operations: Send Volume Balancing
While Minimizing Latency

M. Ozan Karsavuran , Seher Acer , and Cevdet Aykanat

Abstract—Communication hypergraph model was proposed in a two-phase setting for encapsulating multiple communication cost

metrics (bandwidth and latency), which are proven to be important in parallelizing irregular applications. In the first phase,

computational-task-to-processor assignment is performed with the objective of minimizing total volume while maintaining

computational load balance. In the second phase, communication-task-to-processor assignment is performed with the objective of

minimizing total number of messages while maintaining communication-volume balance. The reduce-communication hypergraph

model suffers from failing to correctly encapsulate send-volume balancing. We propose a novel vertex weighting scheme that enables

part weights to correctly encode send-volume loads of processors for send-volume balancing. The model also suffers from increasing

the total communication volume during partitioning. To decrease this increase, we propose a method that utilizes the recursive

bipartitioning framework and refines each bipartition by vertex swaps. For performance evaluation, we consider column-parallel SpMV,

which is one of the most widely known applications in which the reduce-task assignment problem arises. Extensive experiments on 313

matrices show that, compared to the existing model, the proposed models achieve considerable improvements in all communication

cost metrics. These improvements lead to an average decrease of 30 percent in parallel SpMV time on 512 processors for 70 matrices

with high irregularity.

Index Terms—Communication hypergraph, communication cost, maximum communication volume, communication volume, latency,

recursive bipartitioning, hypergraph partitioning, sparse matrix, sparse matrix-vector multiplication

Ç

1 INTRODUCTION

SEVERAL successful partitioning models and methods have
been proposed for efficient parallelization of irregular

applications on distributedmemory systems. These partition-
ing models and methods aim at reducing communication
overhead while maintaining computational load balance [1],
[2], [3], [4], [5], [6]. Encapsulating multiple communication
cost metrics is proven to be important in reducing communi-
cation overhead for scaling irregular applications [7], [8], [9],
[10], [11], [12], [13], [14], [15].

The communication hypergraph model was proposed for
modeling the minimization of multiple communication
cost metrics in a two-phase setting [7], [8], [9], [10]. This model
was first proposed by Uçar and Aykanat [7] for parallel
sparse matrix-vector multiplication (SpMV) based on one-
dimensional (1D) partitioning of sparse matrices. Later, this
model was extended for two-dimensional (2D) fine-grain
partitioned sparse matrices [8] and 2D-checkerboard and
2D-jagged partitioned sparse matrices [9]. Communication
hypergraph models were also developed for parallel
sparse matrix-matrix multiplication operations based on 1D
partitions [10].

The communication hypergraph model encapsulates
multiple communication cost metrics in a two-phase setting
as follows. In the first phase, computational-task-to-processor
assignment is performed with the objective of minimizing
total communication volume while maintaining computa-
tional load balance. Several successful graph/hypergraph
models and methods are proposed for the first phase [1], [3],
[5], [8], [10], [16], [17]. In the second phase, communication-
task-to-processor assignment is performed with the objective
of minimizing total number of messages while maintaining
communication-volume balance. The computational-task-to-
processor assignment obtained in the first phase determines
the communication tasks to be distributed in the second
phase. The communication hypergraph model was proposed
for assigning these communication tasks to processors in the
second phase.

In the communication hypergraph model, vertices repre-
sent communication tasks (expand and/or reduce tasks) and
hyperedges (nets) represent processors where each net is
anchored to the respective part/processor via a fixed vertex.
The partitioning objective of minimizing the cutsize correctly
encapsulates minimizing the total number of messages, i.e.,
total latency cost.

In this model, the partitioning constraint of maintaining
balance on the part weights aims to encode maintaining bal-
ance on the communication volume loads of the processors.
Communication volume balancing is expected to decrease
the communication load of the maximally loaded processor.
The communication volume load of a processor is consid-
ered as its send-volume load, whereas receive-volume load
is omitted with the assumption that each processor has
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enough local computation that overlaps with incoming mes-
sages in the network [7], [8], [9], [10].

An accurate vertex weighting scheme is needed for part
weights to encode send-volume loads of processors. The vertex
weighting scheme proposed for the expand-communication
hypergraph enables the part weights to correctly encode the
send-volume loads of processors [7]. However, the vertex
weighting scheme proposed for the reduce-communication
hypergraph fails to encode send-volume loads of processors
as already reported in [7]. The authors of [7] explicitly stated
that their partitioning constraint corresponds to an approxi-
mate the send-volume load balancing and report this
approximation to be a reasonable one only if net degrees are
close to each other.

In this work, in order to address the above-mentioned defi-
ciency of the reduce-communication hypergraph model, we
propose a novel vertexweighting scheme so that a partweight
becomes exactly equal to the send-volume load of the respec-
tive processor. The proposed vertex weighting scheme
involves negative vertexweights. Since the current implemen-
tations of hypergraph partitioning tools do not support nega-
tive vertex weights, we propose a vertex reweighting scheme
to transform all vertexweights to positive values.

The communication hypergraph models also suffer from
outcast vertex assignment. In a partition, a vertex assigned
to a part is said to be outcast if it is not connected by the net
anchored to that part. Outcast vertices have the following
adverse effects: First, communication volume increases
with increasing number of outcast vertices, so that balanc-
ing the communication volume loads of processors begins
to loosely relate to minimizing the maximum communica-
tion volume load. Second, the correctness of the proposed
vertex weighting scheme may decrease with increasing
number of outcast vertices. So the number of outcast verti-
ces should be reduced as much as possible to avoid these
adverse effects.

In this work, we also propose a method for decreasing the
number of outcast vertices during the partitioning of the
reduce-communication hypergraph. The proposed method
utilizes the well known recursive bipartitioning (RB) frame-
work. After each RB step, the proposed method refines the
bipartition by swapping outcast vertices so that they are not
outcast anymore. This method involves swapping as many
outcast vertices as possible without increasing the cutsize and
without disturbing the balance of the current bipartition.

For evaluating the performance of the proposed models,
we consider column-parallel SpMV, which is one of the most
widely known applications in which the reduce-task assign-
ment problem arises. We conduct extensive experiments on
the reduce-communication hypergraphs obtained from 1D
column-wise partitioning of 313 sparse matrices. The perfor-
mance of the proposed models are reported and discussed
both in terms ofmultiple communication costmetrics attained
for column-parallel SpMV as well as runtime of column-
parallel SpMV on a distributedmemory system. Compared to
the baseline model, the proposed model achieves an average
improvement of 30 percent in parallel SpMV time on 512 pro-
cessors for 70matrices that have high level of irregularity.

The rest of the paper is organized as follows: Section 2
defines the reduce-task assignment problem, gives the back-
ground material on the reduce-communication hypergraph

model, and then explains its above-mentioned deficiencies.
The proposed vertex weighting scheme and outcast vertex
elimination algorithm are described in Section 3. Section 4
presents experiments, and Section 5 concludes.

2 COMMUNICATION HYPERGRAPH FOR REDUCE

OPERATIONS

2.1 Reduce-Task Assignment Problem

Assume that the target application to be parallelized involves
computational tasks that produce partial results for possibly
multiple data elements. Also assume that computational-
task-to-processor assignment has already been determined in
the first phase. Based on this assignment, if there are at least
two processors that produce a partial result for an output data
element, then those results are reduced to obtain a final value
through communication. Here and hereinafter, reducing the
partial results to a final value is referred to as a reduce-task.
Each reduce-task is assigned to a processor, which is the sole
processor that holds the final value of the respective output
data element.

Let R ¼ fr1; r2; . . . ; rng denote the set of reduce tasks for
which at least two processors produce a partial result. Let
resultsðpkÞ�R denote the set of reduce tasks for which
processor pk produces a partial result. Fig. 1a illustrates
three processors, six reduce tasks and the partial results in
between. For example, p3 computes partial results for
reduce tasks r4, r5, and r6, that is resultsðp3Þ ¼ fr4; r5; r6g.
Reduce task r6 needs partial results from p2 and p3.

Let P ¼ fR1;R2; . . . ;RKg denote a K-way partition of
reduce tasks for a K-processor system, where reduce tasks
in Rk are assumed to be assigned to processor pk. Then pk
needs to send the partial results in resultsðpkÞ � Rk to the
processors to which respective reduce tasks are assigned.

In the reduce-task partition P, the amount of data sent by
pk, i.e., communication volume load of pk, is defined as

volPðpkÞ ¼ jresultsðpkÞ � Rkj; (1)

in terms of words. Then, the maximum volume of commu-
nication handled by processors becomes

volPmax ¼ max
k

volPðpkÞ: (2)

In the reduce-task partition P, the number of messages
sent by pk, i.e., latency cost of pk, is

nmsgPðpkÞ ¼ jfRm 6¼kjresultsðpkÞ \ Rm 6¼ ;gj: (3)

That is, nmsgPðpkÞ is equal to the number of distinct pro-
cessors to which the reduce tasks in resultsðpkÞ � Rk are

Fig. 1. (a) Three processors, six reduce tasks and partial results in
between and (b) A partition of reduce tasks in (a) (Rk assigned to pk).

1462 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 6, JUNE 2020

Authorized licensed use limited to: ULAKBIM UASL - Bilkent University. Downloaded on February 29,2020 at 01:22:04 UTC from IEEE Xplore.  Restrictions apply. 



assigned. Then, the total number of messages, i.e., total
latency cost, becomes

nmsgPtot ¼
XK

k¼1
nmsgPðpkÞ: (4)

Definition 1 The Reduce-Task Assignment Problem.
Consider a set of reduce tasksR ¼ fr1; r2; . . . ; rng. Assume that
resultsðpkÞ�R is given for k ¼ 1; 2; . . . ;K. Reduce-task
assignment problem is defined as the problem of finding aK-way
partitionP ¼ fR1;R2; . . . ;RKg ofRwith the objective of mini-

mizing both volPmax and nmsgPðpkÞ given in (2) and (4),
respectively.

Fig. 1b illustrates a 3-way partition P of the reduce tasks
displayed in Fig. 1a. In the figure, the set of reduce-tasks inRk

is assigned to processor pk for k ¼ 1; 2; 3. A dashed arrow line
denotes a processor producing a result for a local reduce task,
whereas a solid arrow line denotes a processor producing a
result for a reduce task assigned to another processor. So,
dashed arrow lines do not incur communication whereas
solid arrow lines incur communication. In P, volPðp2Þ ¼
jresultsðp2Þ � R2j ¼ jfr1; r2; r3; r4; r6g � fr3; r4gj ¼ 3. Simi-

larly volPðp1Þ ¼ 2 and volPðp3Þ ¼ 1. Then, volPmax ¼ volPðp2Þ ¼
3. InP, nmsgPðp2Þ ¼ jfR1;R3gj ¼ 2. Similarly nmsgPðp1Þ ¼ 2

and nmsgPðp3Þ ¼ 1. Then, nmsgPtot¼ 2þ 2þ 1 ¼ 5.

2.2 Reduce-Communication Hypergraph Model

2.2.1 Hypergraph Partitioning (HP) Problem

A hypergraph H ¼ ðV;NÞ is defined as the set V of vertices
and set N of nets. Each net n connects a subset of vertices,
which is denoted by PinsðnÞ. In H, each vertex v is assigned
a weight wðvÞ and each net n is assigned a cost cðnÞ.

P ¼ fV1;V2; . . . ;VKg denotes a K-way partition of the
vertices in hypergraph H. Let �ðnÞ denote the number of
parts that net n connects in P. Net n is called a cut net if it
connects at least two parts, i.e., �ðnÞ > 1, and internal
(uncut) otherwise. In P, the weight of part Vk is defined as

W ðVkÞ ¼
X

v2Vk
wðvÞ: (5)

In the HP problem, the partitioning objective is to mini-
mize the connectivity cutsize [1] which is defined as

cutsizeðPÞ ¼
X

n2N
ð�ðnÞ � 1ÞcðnÞ; (6)

and the partitioning constraint is to satisfy the constraint

WðVkÞ �Wavgð1þ �Þ; (7)

for each part Vk in P, for a given maximum allowed imbal-
ance ratio �. Here Wavg denotes the weight of each part
under perfect balance, that is,

Wavg ¼Wtot

K
, where Wtot ¼

XK

k¼1
WðVkÞ: (8)

Note that the total vertex weight Wtot is constant and
does not change with different partitions. Hence, the parti-
tioning constraint of maintaining balance on the part

weights (7) by utilizing sufficently small � values corre-
sponds to minimizing the maximum part weight.

The HP problem with fixed vertices is a version of the HP
problem in which the assignments of some vertices are deter-
mined before partitioning. These vertices are called fixed ver-
tices and F k denotes the set of vertices that are fixed to part
Vk. At the end of the partitioning, vertices in F k remain in Vk,
i.e.,F k�Vk. The rest of the vertices are called free vertices.

2.2.2 Reduce-Communication Hypergraph Model

The reduce-communication hypergraph model [7] H ¼ ðVp [
Vr;NÞ contains two types of vertices, which correspond to pro-
cessors and reduce tasks, and a single net type, which corre-
sponds to processors. Each processor pk is represented by a
vertex vpk in Vp, whereas each reduce task ri inR is represented
by a vertex vri inVr. Then the set of verticesV is formulated by

V ¼ Vp [ V r ¼ fvp1; vp2; . . . vpKg [ fvri : ri 2 Rg: (9)

Each processor pk is also represented by a net nk in N . Then
the set of netsN is formulated by

N ¼ fn1; n2; . . . ; nKg: (10)

Each net nk connects the vertex that represents pk as well as
the vertices that represent the reduce tasks for which pk pro-
duces a partial result. That is,

PinsðnkÞ ¼ fvpkg [ fvri : ri 2 resultsðpkÞg: (11)

The vertices in Vp are assigned zero weight, whereas the
vertices in Vr are assigned unit weight. That is,

wðvpkÞ ¼ 0; 8vpk 2 Vp
wðvri Þ ¼ 1; 8vri 2 Vr:

(12)

The nets inN are assigned unit cost. That is,

cðnkÞ ¼ 1; 8nk 2 N : (13)

The reduce-communication hypergraph model utilizes
fixed vertices. The vertices in Vp are fixed, whereas the verti-
ces in Vr are free. For k ¼ 1; 2; . . . ; K, vertex vpk in Vp is fixed
to part Vk, i.e., F k ¼ fvpkg.

Fig. 2 displays the reduce-communication hypergraph of
the reduce-task assignment problem shown in Fig. 1a. In the
figure, fixed and free vertices are represented by triangles and

Fig. 2. Reduce-communication hypergraph of the reduce-task assignment
problem given in Fig. 1a.
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circles, respectively. Nets and pins are represented by small
circles and lines, respectively.

AK-way partition

P ¼ �V1;V2; . . . ;VK
�
; where Vk ¼ fvpkg [ Vrk;

of reduce-communication hypergraph H is decoded as fol-
lows. Each free vertex vri in Vk induces that the reduce
task ri is assigned to processor pk since vpk2Vk in P. That
is, vertex partition fV1;V2; . . . ;VKg induces a reduce-task
partitioning fR1;R2; . . . ;RKg, where Rk contains the
reduce-tasks corresponding to the vertices in Vrk. So we use
the symbol P for both reduce-task partition/assignment
and hypergraph partition interchangeably.

The partitioning objective of minimizing the cutsize (6)
encodes minimizing the number of messages, which is
also referred to as the latency cost (4). During partition-
ing communication hypergraphs, almost all nets remain
cut. This is because a communication hypergraph con-
tains small number (as many as the number of process-
ors/parts) of nets with possibly high degrees and an
uncut net refers to a processor that does not send any
messages. Therefore it is important to utilize the connec-
tivity cutsize metric in (6). The vertex weight definition
given in (12) encodes the part weight (5) as the number
of reduce-tasks assigned to the respective processor. So,
the partitioning constraint of maintaining balance on the
part weights corresponds to maintaining balance on the
number of reduce-tasks assigned to processors, i.e., jRkj
values.

2.3 Deficiencies of Reduce-Communication
Hypergraph

2.3.1 Failure to Encode Communication Volume Loads

of Processors

The part weights computed according to the vertexweighting
scheme utilized in the reduce-communication hypergraph
model fails to correctly encapsulate the communication
volume loads of processors. That is, the existing reduce-
communication hypergraph model computes the volume
load of processor pk as

volPðpkÞ ¼ jRkj; (14)

whereas the actual volume load of pk is

volPðpkÞ ¼ jresultsðpkÞ � Rkj: (15)

So, the partitioning constraint of maintaining balance on
part weights does not correctly correspond to maintaining
communication volume load balancing.

In regular reduce-task assignment instances, processors
produce partial results for similar number of reduce tasks, that
is, they have similar jresultsðpkÞj values, which corresponds to
similar net degrees. For such regular instances, the approxima-
tion provided by the existing reduce-communication hyper-
graph model can be considered reasonable, as also reported
in [7]. This is because the existing reduce-communication
hypergraphmodelmakes a similar amount of error in comput-
ing the volume loads of processors according to (14), hence
maintaining balance on the jRkj values corresponds to main-
taining balance on the volume loads. However, the deficiency

of the existing model in encapsulating correct communication
volume balancing increases with increasing irregularity in
net degrees.

Fig. 1b exemplifies the above-mentioned deficiency. Note
that jR1j ¼ jR2j ¼ jR3j ¼ 2 in P ¼ fR1;R2;R3g. Assume
that the perfect balance on these jRkj values is obtained via
achieving a perfect balance on part weights in partitioning
the reduce-communication hypergraph model. Also note
that jresultsðp1Þj ¼ 4, jresultsðp2Þj ¼ 5, and jresultsðp3Þj ¼ 3.
The imbalance on these jresultsðpkÞj values induces an
imbalance on volPðpkÞ values as volPðp1Þ ¼ 4� 2 ¼ 2,
volPðp2Þ ¼ 5� 2 ¼ 3, and volPðp3Þ ¼ 3� 2 ¼ 1.

2.3.2 Increase in Total Communication Volume

The existing reduce-communication hypergraph model also
suffers from the increase in the total communication volume
during the partitioning. A reduce task ri assigned to a proces-
sorwhich does not compute a partial result for ri is referred to
here as an outcast reduce task. Each outcast reduce-task assign-
ment increases the total communication volume by one. How-
ever, this increase due to the outcast reduce-tasks is controlled
neither by the problem formulation given in Section 2.1 nor by
the reduce-communication hypergraph model described
in Section 2.2.2. This deficiency has an adverse effect on
the correspondence between maintaining communication
volume balancing and minimizing the maximum communi-
cation volume in the communication hypergraph model. The
more the increase in the total communication volume is,
the more the above-mentioned adverse effect becomes
pronounced.

This is because attaining tight balance on processors’
communication volume loads while increasing the total
communication volume may not correspond to reducing
the maximum communication volume (2).

Fig. 3 displays a reduce-task partition which contains one
outcast reduce task. This partition is obtained from the out-
cast-free partition given in Fig. 1b by changing the assign-
ments of r2 and r4 to processors p2 and p1, respectively. As
seen in the figure, reduce task r4 is outcast in the current
partition since processor p1 does not compute a partial
result for r4. Note that this change increases the total com-
munication volume by one.

In a K-way partition P of reduce-communication
hypergraph H, we define outcast vertices to identify the out-
cast reduce-task assignments. A vertex vri is called outcast if
vri is assigned to a part Vk, where net nk does not connect v

r
i ,

that is, vri 2Vk and vri =2PinsðnkÞ. Note that vri 2Vk signifies
that reduce task ri is assigned to processor pk and

Fig. 3. A partition of reduce-tasks shown in Fig. 1a with an outcast
reduce task (r4).
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vri =2PinsðnkÞ signifies that pk does not compute a partial
result for ri.

In a partition P, the existence of outcast vertices does not
necessarily disturb the partitioning objective of minimizing
cutsize (6). Indeed, partitioning the hypergraph while trying
to maintain balance without increasing the cutsize might
motivate the partitioning tool to assign vertices to parts
where they become outcast. Moreover, in the case the parti-
tioning tool discovers a partition with outcast vertices, it
has no motivation to refine it as long as the cutsize and the
imbalance on the part weights remain the same.

3 CORRECT REDUCE-COMMUNICATION

HYPERGRAPH MODEL

3.1 A Novel Vertex Weighting Scheme

In order to minimize the maximum communication volume
handled by processors, we propose a novel vertex weight-
ing scheme that encapsulates the communication volume
loads of processors via part weights.

Consider a K-way outcast-vertex-free partition Pof of a
given reduce-communication hypergraph H ¼ ðVp[Vr;NÞ.
Here and hereafter, we refer to outcast-vertex-free partition
shortly as outcast-free partition. Note that in an outcast-free
partition each reduce task ri is assigned to a processor that
computes a partial result for ri. Let fR1;R2; . . . ;RKg denote
the reduce-task partition/assignment induced by Pof .
Then the communication volume load of each processor pk
becomes

volPof ðpkÞ ¼ jresultsðpkÞ � Rkj (16a)

¼ jresultsðpkÞj � jRkj (16b)

¼ ðjPinsðnkÞj � 1Þ � jVrkj: (16c)

We obtain (16b) from (16a) since Rk�resultsðpkÞ for each
part Rk in an outcast-free partition. We obtain (16c)
from (16b) by utilizing the hypergraph theoretical view.

According to (16b), for any outcast-free partition,
jresultsðpkÞj is an upper bound on the send volume load of
processor pk and each reduce-task assigned to processor pk
reduces the communication volume load of pk by one. In other
words, each free vertex that is connected bynk and assigned to
part Vk reduces the volume load of processor pk by one. Sowe
propose the following vertexweighting scheme

wðvpkÞ ¼ jresultsðpkÞj; 8vpk 2 Vp
wðvri Þ ¼ �1; 8vri 2 Vr:

(17)

Then the weight of part Vk becomes

W ðVkÞ ¼
X

v2Vk
wðvÞ (18a)

¼ wðvpkÞ þ
X

vr
i
2Vr

k

wðvri Þ (18b)

¼ jresultsðpkÞj þ
X

vr
i
2Vr

k

ð�1Þ (18c)

¼ jresultsðpkÞj � jVrkj (18d)

¼ jresultsðpkÞj � jRkj (18e)

¼ volPof ðpkÞ: (18f)

That is, part weight W ðVkÞ will correctly encode the volume
of data sent by processor pk.

As seen in (17), the proposed vertex weighting scheme
assigns a negative weight to all free vertices. However, cur-
rent implementations of hypergraph/graph partitioning
tools (PaToH [1], hMETIS [18], METIS [19]) do not support
negative vertex weights. We propose the following vertex
reweighting scheme for transforming all vertex weights to
positive values.

We first multiply each vertex weight with �1. This scal-
ing transforms the weights of all free vertices to þ1, while
transforming the weight of each fixed vertex vpk to a negative
value of �jresultsðpkÞj. Then we shift the weights of fixed
vertices to positive values by adding the maximum fixed-
vertex weight to the weight of all fixed vertices.

That is, after the proposed reweighting scheme, vertex
weights become

ŵðvpkÞ ¼ �jresultsðpkÞj þMfvw; 8vpk 2 Vp;
ŵðvri Þ ¼ þ1; 8vri 2 Vr;

(19)

where Mfvw denotes the maximum fixed vertex weight, i.e.,
Mfvw ¼ max‘jresultsðp‘Þj.

Under the proposed vertex reweighting scheme, we can
compute the weight of part Vk as

ŴðVkÞ ¼Mfvw � volPof ðpkÞ; (20)

by following the steps of Equation (18) for an outcast-free
partition Pof . As seen in (20), the part weights encode send
volume loads of processors with the same constant shift
amountMfvw.

Note that maintaining balance on the part weights corre-
sponds to maintaining balance on the send-volume loads of
processors. Hence, perfect balance on the part weights corre-
sponds to minimizing the maximum send volume (2) which
is one of the objectives of the Reduce-Task Assignment
Problem.

We present the following theorem to address the validity
of the proposed vertex reweigting scheme.

Theorem 1. Let ðH; wÞ denote the reduce-communication hyper-
graph model with the vertex weighting scheme proposed
in (17). Let ðH; ŵÞ denote the model with the vertex reweight-
ing scheme proposed in (19). Then P� is a perfectly-balanced
partition of ðH; wÞ if and only if it is a perfectly-balanced parti-
tion of ðH; ŵÞ.

Proof. We find the relation between the total vertex
weights Wtot and Ŵtot to derive the relation between aver-
age part weights Wavg and Ŵavg for two vertex weighting
schemes w and ŵ, respectively. The derivations of expres-
sions for Wavg and Ŵavg are important since in a perfectly-
balanced partition the weight of each part should be equal
to the average part weight by (7), that is,WðVkÞ ¼Wavg and
ŴðVkÞ ¼ Ŵavg for k ¼ 1; . . . ;K.
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From (18f) and (20) we obtain

WðVkÞ ¼Mfvw � ŴðVkÞ: (21)

Then, we compute the sum of both sides of (21) for all k

XK

k¼1
WðVkÞ ¼

XK

k¼1
ðMfvw � ŴðVkÞÞ; (22a)

Wtot ¼ KMfvw � Ŵtot: (22b)

Finally, we divide both sides of (22b) byK to obtain

Wavg ¼Mfvw � Ŵavg: (23)

(23) holds because reduce-communication hypergraph
model contains K fixed vertices in total, whereas (21)
holds because it contains exactly one fixed vertex in each
part. Hence shifting the weight of each fixed vertex by
Mfvw, shifts each part weight and average weight by the
same amountMfvw.
) Assume that P� is a perfectly-balanced partition of

ðH; wÞ. Then, we have

W ðVkÞ ¼Wavg for k ¼ 1; . . . ; K: (24)

Replacing left hand side by (21) and right hand side
by (23), (24) becomes

Mfvw � ŴðVkÞ ¼Mfvw � Ŵavg;

and hence

ŴðVkÞ ¼ Ŵavg for k ¼ 1; . . . ; K:

This shows that P� is also a perfectly-balanced partition
of ðH; ŵÞ.
( A dual proof holds. That is, assume Ŵ ðVkÞ ¼ Ŵavg

and then showWðVkÞ ¼Wavg for k ¼ 1; . . . ; K. tu
Fig. 4 illustrates a perfectly-balanced partition of the com-

munication hypergraph given in Fig. 2 with vertex weights
assigned by the proposed vertex (re)weighting scheme.
Dashed pins denote partial results for local reduce tasks,
whereas solid pins denote partial results for external ones. So,

the number of solid lines (except the one connected to the
fixed vertex) incident to each net is equal to the communica-
tion volume load of the respective processor As seen in the
figure, the weight of fixed vertex vp1 is ŵðvp1Þ ¼ �jresultsðp1Þj
þMfvw ¼ �4þ 5 ¼ 1. Similarly, ŵðvp2Þ¼ �5þ 5 ¼ 0 and
ŵðvp3Þ ¼ �3þ 5 ¼2. As seen in the figure, parts V1, V2, and V3
contain two, three, and one free vertices, respectively. Note
that Ŵ ðV1Þ ¼ 1þ 2 ¼ 3, ŴðV2Þ ¼ 0þ 3 ¼ 3, and ŴðV3Þ ¼
2þ 1 ¼ 3. Also note that volP

�
of ðp1Þ ¼ jresultsðp1Þj� jR1j ¼

4� 2 ¼ 2, volP
�
of ðp2Þ ¼ jresultsðp2Þj � jR2j ¼ 5� 3 ¼ 2, and

volP
�
of ðp3Þ ¼ jresultsðp3Þj � jR3j ¼ 3� 1 ¼ 2.

3.2 Eliminating Outcast Vertices via Recursive
Bipartitioning

In this section, we propose a RB-based framework that aims
at minimizing the total number of outcast vertices. In this
context, we first describe how RB framework works for par-
titioning communication hypergraphs, which contain one
fixed vertex in each part of the resulting K-way partition.
Without loss of generality, we assume that the number K of
processors is an exact power of 2.

In the RB paradigm, the given hypergraph is bipartitioned
into two subhypergraphs, which are further bipartitioned
recursively untilK parts are obtained. This procedure produ-
ces a complete binary tree with log 2K levels which is referred
as the RB tree. 2‘ hypergraphs in the ‘th level of the RB
tree are denoted by H‘

0; . . . ;H‘
2‘�1 from left to right for

0�‘� log 2K.
A bipartition P2 ¼ fVL;VRg of an ‘th level hypergraphH‘

k

forms two new vertex-induced subhypergraphs H‘þ1
2k ¼

ðVL;N LÞ and H‘þ1
2kþ1 ¼ ðVR;N RÞ, both in level ‘þ 1. Here, VL

andVR respectively refer to the left and right parts of the bipar-
tition. Internal nets of the left and right parts are assigned to
net sets N L and N R as is, respectively, whereas the cut-nets
are assigned to both net sets, only with the pins found in the
respective part. That is, N L ¼ fni :PinsðniÞ\VL 6¼;g, where
PinsðnL

j Þ ¼ PinsðnjÞ\VL for each nL
j 2N L, whereas N R is

formed in a dual manner. This way of formingN L andN R is
known as the cut-net splitting method [1] which is proposed
to encode the connectivity cutsizemetric (6) in the finalK-way
partition. Although every net of the reduce-communication
hypergraph model connects exactly one fixed vertex, subhy-
pergraphs may contain nets that do not connect a fixed vertex.
This stems from the cut-net splittingmethod described above.

At each RB step, one half of the fixed vertices in the current
hypergraph are assigned to VL, whereas the other half are
assigned to VR, in order to attain one fixed vertex in each part
of the finalK-way partition. In this way, hypergraphH‘

k con-
tainsK=2‘ fixed vertices.

Algorithm 1 shows the basic steps of the proposed RB-
based scheme. In the algorithm, BIPARTITION at line 4
denotes a call to a 2-way HP tool to obtain P2 ¼ fVL;VRg,
whereas lines 6 and 7 show the formation of left and right sub-
hypergraphs according to the above-mentioned cut-net split-
ting technique. The proposed scheme is applied after
obtaining bipartition P2 through calling SWAP-OUTCAST
function at line 5.

In P2, a vertex in left part VL is said to be outcast if it is
not connected by any left-anchored nets. Here, a net is said

Fig. 4. A balanced partition of the reduce-communication hypergraph
given in Fig. 2 with proposed vertex weights.
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to be left-/right-anchored if it connects a fixed vertex in the
left/right part. It is clear that an outcast vertex in VL
remains to be outcast in the further RB steps as well as in
the final K-way partition. A similar argument holds for an
outcast vertex in VR. SWAP-OUTCAST function refines P2

by swapping outcast vertices so that they are not outcast
anymore in P2.

The vertices of VL satisfying all three condititions given
below are defined as candidates for swap operations.

i) vri is not connected by a left-anchored net,
ii) vri is connected by a cut right-anchored net, and
iii) vri is not connected by an internal net in VL.

The candidate vertices of VR are identified in a dual manner.
Condition (i) identifies vri as an outcast vertex of VL.

Condition (ii) ensures that vri would not be outcast in P2 if it
were assigned toVR. Thus conditions (i) and (ii) together iden-
tify that moving vri to VR in a swap operation will make vri not
outcast anymore in P2. The swap of any two vertices in VL
and VR both of which satisfy conditions (i) and (ii) together
reduces the number of outcast vertices in P2 by two. The
swap operations are preferred over individualmoves in order
not to disturb the imbalance of the current bipartition.

In a swap operation, moving vri to VR increases the cut-
size by the number of internal nets that connect vri in VL.
Hence condition (iii) ensures that moving vri to VR does not
increase the cutsize and thus, the partitioning objective of
minimizing the cutsize is not disturbed.

Fig. 5 shows an RB step illustrating different states for verti-
ces in terms of the candidacy for being swapped. For simplic-
ity, we only show them in the left part. Consider vertices vrg, v

r
h

and vri in VL. Vertex vrg is connected by a left-anchored net (na),
so, it violates condition (i), which means that it is not outcast.
Vertex vrh is not connected by a left-anchored net and it is
connected by a right-anchored net (nb). So, it satisfies
conditions (i) and (ii), which means that vrh would not be out-
cast in VR. However, since it is connected by an internal net
(nt), moving it to VR increases the cutsize, hence, it violates
condition (iii). Vertex vri , on the other hand, satisfies all three
conditions, hence, it is a candidate for being swapped.

Algorithm 2 shows the basic steps of the SWAP-OUTCAST
algorithm. As seen in the algorithm, the for loop in lines 3–13
makes a single pass over all nets of the current hypergraphH.
Lines 4–8 identify the vertices that do not satisfy condition (i)
so that candidate flags of these vertices are set to false. Else-If
statement in lines 9–10 identifies the vertices that satisfy both
conditions (i) and (ii). Line 9 ensures that a vertex is never con-
sidered again if it was once found to violate condition (i). Else-
If statement in lines 11–13 identifies vertices that do not satisfy
condition (iii). Note that a vertex which was found to be

candidate earlier can turn out to be violating condition (iii)
later. After executing the for loop in lines 3–13, only the vertices
that satisfy all three conditions have their candidate flags set to
true.

The for loop in lines 15–20 performs a pass over all free
vertices to construct the set of swappable vertex sets SL and
SR by utilizing candidate vertex flags. Finally the while loop
in lines 21–26 performsminfjSLj; jSLjg swaps.

Algorithm 2. SWAP-OUTCAST

Require:H ¼ ðV;NÞ, P2 ¼ fVL;VRg
1: for each free vertex vri 2 V do
2: candðvri Þ  maybe
3: for each net n 2 N do
4: if n connects a fixed vertex then " n is an anchored net
5: vpk  the fixed vertex in PinsðnÞ
6: for each free vertex vri 2 PinsðnÞ do
7: if partðvpkÞ ¼ partðvpi Þ then
8: candðvri Þ  false
9: else if candðvri Þ 6¼ false then
10: candðvri Þ  true
11: else if n is internal then
12: for each vri 2 PinsðnÞ do
13: candðvri Þ  false
14: SL  ; and SR  ; " swappable Left/Right vertex sets
15: for each free vertex vri 2 V do
16: if candðvri Þ ¼ true then

17: if partðvri Þ ¼ L then

18: SL  SL [ fvrig
19: else
20: SR  SR [ fvrig
21: while SL 6¼ ; and SR 6¼ ; do " minfjSLj; jSLjg swaps
22: Let vri 2 SL and vrj 2 SR

23: partðvri Þ  R " swap vri and vrj
24: partðvrjÞ  L

25: SL  SL � fvrig
26: SR  SR � fvrjg
*Here cand refers to a three-state variable, where true denotes
swappable, false denotes not swappable and maybe denotes
not decided yet.

The running time of the proposed SWAP-OUTCAST
algorithm is QðP þ jVjÞ, where P denotes the total number
of pins in H. Note that proposed SWAP-OUTCAST

Fig. 5. Among vertices vrg, v
r
h; v

r
i , only vri is candidate although both vrh

and vri are outcast vertices.

Algorithm 1. RBWith Swap

Require:H ¼ ðV;NÞ,K
1: H0

0 ¼ H
2: for ‘ 0 to log 2K � 1 do
3: for k 0 to 2‘ � 1 do
4: P2  BIPARTITION(H‘

k) " P2 ¼ fVL;VRg
5: P2  SWAP-OUTCAST(H‘

k;P2) " updates P2

6: FormHL ¼ H‘þ1
2k ¼ ðVL;N LÞ induced by VL

7: FormHR ¼ H‘þ1
2kþ1 ¼ ðVR;N RÞ induced by VR
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algorithm is quite efficient since it performs a single pass
over pins and free vertices ofH.

4 EXPERIMENTS

4.1 Test Application: Column-Parallel SpMV

SpMV is denoted by y Ax, where A ¼ ðaijÞ is an n�m
sparse matrix and x ¼ ðxiÞ and y ¼ ðyjÞ are dense vectors. In
column-parallel SpMV, the columns of matrix A are distrib-
uted among processors as well as the entries of vectors x
and y. The partitions of columns of A and entries of x and y
are obtained by a two-phase partitioning approach.

In the first phase, the row-net hypergraph partitioning
model [1] is utilized to obtain a partition of columns of A in
such away that the total communication volume isminimized
while maintaining balance on the computational loads of pro-
cessors. This column partition induces a conformable parti-
tion on the input vector x, that is, xi is assigned to the
processor to which column i is assigned. Note that assigning
all nonzeros of column i together with xi to a single processor
eliminates the need for the pre-communication phase, which
is performed for broadcasting x-vector entries. However,
since multiple processors may produce partial results for the
same y-vector entries, the post-communication phase needs
to be performed to reduce those partial results for obtaining
final values of y-vector entries.

In the second phase, a partition of output vector y is
obtained via the proposed reduce-communication hyper-
graph model as follows. The set of reduce tasks, R, corre-
sponds to the subset of y-vector entries for which multiple
processors compute a partial result. That is,

R ¼ fri :9 columns j1 and j2 assigned to different

processors and ai;j1 6¼ 0 and ai;j2 6¼ 0g:
Here, ri represents the reduce-task associated with yi, as
well as row i. Then, resultsðpkÞ can be formulated as

resultsðpkÞ ¼ fri : aij 6¼ 0 and column j is assigned to pkg:
Note that a row whose nonzeros are all assigned to a single
processor does not incur a reduce task.

4.2 Setup

The performance of the proposed models are compared
against the existing reduce-communication hypergraph
model [7] (Section 2.2.2) which is referred to as the baseline
model RCb. The reduce-communication hypergraph model
that utilizes the proposed novel vertex (re)weighting scheme
(Section 3.1) is referred to asRCvw, whereas themodel that uti-
lizes both the proposed vertex weighting scheme and the pro-
posed outcast vertex elimination scheme (Section 3.2) is
referred to as RCs

vw. We used K ¼ 512 processors for perfor-
mance comparison of thesemodels.

We use PaToH [1] for partitioning both row-net hyper-
graphs and reduce-communication hypergraphs, in the first
and second phases, respectively. For the row-net, RCb, and
RCvw models, PaToH is called for K-way partitioning for a
K-processors system, whereas for theRCs

vw model, PaToH is
used for 2-way partitioning (line 4 of Algorithm 1). PaToH is
usedwith default parameters for partitioning row-net hyper-
graph, whereas refinement algorithm is set to boundary

FM for partitioning communication hypergraphs. Maximum
allowed imbalance is set to 10 percent, i.e., � ¼ 0:10, for
all models. Since PaToH utilizes randomized algorithms
we partitioned each hypergraph three times and report
average results.

We utilize the column-parallel SpMV implementa-
tion [20], which is implemented in C using MPI for interpro-
cess communication. Parallel SpMV times are obtained on a
cluster with 19 nodes where each node contains 28 cores
(two Intel Xeon E5-2680 v4 CPUs) running at 2.40 GHz clock
frequency and 128 GB memory. The nodes are connected by
an InfiniBand FDR 56 Gbps network.

4.3 Dataset

We conduct experiments on a very large set of sparse matri-
ces obtained from the SuiteSparse Matrix Collection (for-
merly known as the University of Florida Sparse Matrix
Collection) [21]. We select square (both symmetric and
unsymmetric) matrices that have more than 100K and less
than 51M rows/columns. The number of nonzeros of these
matrices is in the range from 207K to 1.1B. The collection
contains 358 such matrices. We exclude those matrices that
does not satisfy one of the following two conditions:

i) the row-net hypergraph partitioning in the first
phase does not incur empty parts,

ii) the communication hypergraph in the second phase
contains more than 100 vertices per part on average.

Condition (i) prevents unrealistic results, whereas
condition (ii) ensures partitioning quality in the second
phase. The resulting dataset contains 313 matrices for
K ¼ 512 processors.

As described in Section 2.3.1, the deficiency of the existing
reduce-communication hypergraph model increases with
increasing irregularity on the net degrees. Therefore, in order
to better show the validity of the proposed vertex (re)weight-
ing scheme, we group test matrices according to the coeffi-
cient of variation (CV) values on the net degrees of their
communication hypergraphs. Here, CV refers to the ratio of
the standard deviation to the mean of the net degrees. Recall
that the net degree in a communication hypergraph also refers
to the number of partial results produced by the respective
processor. We use six matrix groups, denoted by CV> 0:50,
CV> 0:30, CV> 0:20, CV> 0:15, CV> 0:10, and CV> 0:00 (all matrices).
CV a consists of matrices whose corresponding CV value is
greater than a. Note that the set of matrices in a group associ-
ated with a smaller value is a superset of matrices in a group
associatedwith a larger value.

Table 1 displays properties of the test matrices as well as
properties of their reduce-communication hypergraphs. In
the table, the first column shows the lower bound of the CV
value of the matrices in each group. The second column
shows the number ofmatrices in the correspondingCV group.
In the table, the rest of the columns show the values averaged
over the matrices of each CV group. The third and fourth col-
umns show the number of rows/columns and nonzeros,
whereas the fifth column shows the number of nonzeros per
row/column. The following two columns show maximum
number of nonzeros per row and column, respectively.

In Table 1, the last six columns show properties of
reduce-communication hypergraphs. The first of those six
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columns shows the average number of reduce-tasks obtained
from column-wise partitioning (using row-net hypergraph
model) of the matrices in the respective CV group, i.e., num-
ber of free vertices in the communication hypergraph. The
second and third columns show average andmaximum free-
vertex degree of those hypergraphs, respectively. Note that
all fixed-vertices have a unit degree. The last three columns
show the minimum, average, and maximum net degree of
those hypergraphs, respectively.

4.4 Results

Performance results are displayed in three tables and two
figures. In all tables, the first row shows actual values aver-
aged over each CV group, whereas the second row shows
the normalized values with respect to respective baseline
for each CV group.

Table 2 is introduced to show the performance of the pro-
posed SWAP-OUTCAST algorithm in eliminating outcast
vertices. The table compares RCs

vw against RCvw in terms of
the ratio of the number of outcast vertices to the total num-
ber of free vertices. As seen in the table, the proposed
SWAP-OUTCAST algorithm achieves approximately 13
percent less outcast vertices on average. Furthermore, this
performance improvement does not change much accord-
ing to the CV group.

Table 3 compares the relative performance of the three
different RC models in terms of multiple communication
cost metrics as well as parallel runtime on 512 processors.

The communication cost metrics include maximum send
volume, average volume, maximum send message, and
average message. In the table, after the CV column, each
one of the 3-column groups of the 12 columns compares the
three RC models in terms of one of the above-mentioned
communication cost metrics averaged over the respective
CV group. Here, average volume and average message val-
ues refer to the total communication volume and total num-
ber of messages divided by the number of processors. We
prefer to report average values instead of total values,
because average values give a better feeling on how much
the maximum values deviate from the average values.

As seen in Table 3, in terms of the maximum send
volume metric, both RCvw and RCs

vw perform significantly
better than RCb, where RCs

vw is the clear winner. The
performance gap between the proposed RC schemes (RCvw

and RCs
vw) and the baseline RCb scheme increases with

increasing CV values. For example, RCs
vw achieves a 6 per-

cent improvement over RCb for the matrices in CV> 0:10

group and this improvement increases to 8, 9, 15, and 19
percent for the matrices in CV> 0:15, CV> 0:20, CV> 0:30, and
CV> 0:50 groups, respectively. This is expected since the
irregularity on the net degrees increases with the increasing
CV value.

In terms of the average/total communication volume
metric, RCvw performs slightly worse than RCb, whereas
RCs

vw performs slightly better than RCb and considerably
better than RCvw. This is also expected since neither RCb

nor RCvw has explicit effort towards decreasing total com-
munication volume due to the outcast vertex assignments,
whereas RCs

vw tries to decrease the number of such assign-
ments by utilizing the SWAP-OUTCAST algorithm.

As seen in Table 3, the amount of performance improve-
ment of RCs

vw over RCvw is similar in the maximum send
volume and the average volume metrics for all matrices on
average. However, for the matrices in the groups with high
CV values, this performance improvement is much more
pronounced in the maximum send volume metric than the
average volume metric. For example, for the matrices in the
CV> 0:50 group, the performance gap between RCs

vw and
RCvw is 9 percent in the maximum send volume metric,
whereas this improvement is only 3 percent in the average
volume metric. This is because, the SWAP-OUTCAST algo-
rithm eliminates much larger number of outcast vertices
from the processor/part which produces the largest number
of partial results compared to average. For example, for
barrier2-9 matrix with CV¼0:67, the performance gap
between RCs

vw and RCvw is 30 percent in the maximum send

TABLE 1
Properties of Test Matrices and Their Reduce-Communication Hypergraphs

CV

sparse matrices reduce communication hypergraph

number of avg nnz
per row/col

max nnz per # of reduce
tasks

vtx degree net degree

matrices rows/cols nonzeros row col avg max min avg max

> 0:50 32 615,123 9,335,833 15.18 971 3,219 156,698 3.56 44 105 1,082 7,153
> 0:30 70 651,939 8,855,071 13.58 684 1,453 136,263 3.67 39 115 968 4,445
> 0:20 148 445,686 4,982,116 11.18 280 387 86,634 3.06 19 105 512 1,426
> 0:15 206 499,288 6,641,398 13.30 186 235 109,187 2.97 15 160 627 1,479
> 0:10 302 575,028 7,892,009 13.72 98 114 119,804 2.69 11 202 625 1,248
ALL 313 555,892 7,616,780 13.70 94 109 121,017 2.71 11 212 635 1,248

TABLE 2
Outcast Vertex Elimination forK ¼ 512

CV outcast vertex ratio

RCvw RCs
vw

> 0:50 84% 76%
1.00 0.91

> 0:30 82% 74%
1.00 0.91

> 0:20 75% 67%
1.00 0.89

> 0:15 75% 66%
1.00 0.88

> 0:10 73% 64%
1.00 0.87

ALL 74% 64%
1.00 0.87
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volume metric, whereas this improvement is only 4 percent
in the average volume metric. The SWAP-OUTCAST
algorithm decreases the number of outcast vertices in the
processor that has the maximum send volume by 1,693,
whereas it decreases the total number of outcast vertices
by 8,784 which refers to an average decrease of 17.16 per
processor.

In terms of the maximum and average/total send-
message metrics, both RCvw and RCs

vw perform drastically
better than RCb, where RCs

vw is the clear winner. The perfor-
mance gap between the proposed RC schemes (RCvw and
RCs

vw) and the baseline RCb scheme increases with increas-
ing CV values. For example, in terms of maximum send
message metric RCs

vw achieves a 39 percent improvement
overRCb for thematrices inCV> 0:10 group and this improve-
ment increases to 45, 48, 61, and 68 percent for thematrices in
CV> 0:15, CV> 0:20, CV> 0:30, and CV> 0:50 groups, respectively.
For example, in terms of average/total message metric RCs

vw

achieves a 36 percent improvement overRCb for thematrices
in CV> 0:10 group and this improvement increases to 41, 43,
55, and 59 percent for the matrices in CV> 0:15, CV> 0:20,
CV> 0:30, andCV> 0:50 groups, respectively.

The drastic performance improvement of the proposed
RC schemes over RCb scheme may seem to be unexpected
since neither RCvw nor RCs

vw directly aims at improving the
maximum or average number messages. In the original RCb

scheme, enforcing the balancing constraint of assigning
approximately equal number of free vertices among the
parts may prevent the HP tool from clustering the pins of
especially dense nets to small number of parts. This leads to
an unnecessary increase in the connectivity cutsize defined
in (6). On the other hand, enforcing the balancing constraint
according to the proposed vertex weighting scheme paves
the way for the HP tool to cluster the pins of especially
dense nets to smaller number of parts. For example, con-
sider a dense net nk of degree D. In the proposed vertex
weighting scheme, nk connects D free vertices with
weight �1, and a fixed vertex vkp with weight D. Then the
HP tool will have the flexibility of assigning large number

of pins of nk to part Vk without disturbing the partitioning
constraint (7) thus reducing the connectivity of nk.

It is important to see whether the improvements
obtained by the proposed methods in the given communica-
tion cost metrics hold in practice. For this purpose, the last
three columns of Table 3 show the parallel SpMV times for
the three RC models in milliseconds. As seen in the table,
both RCvw and RCs

vw achieve significantly better parallel
SpMV times than RCb, where RCs

vw is the fastest. The per-
formance gap between the proposed RC schemes (RCvw

and RCs
vw) and the baseline RCb scheme in general increases

with increasing CV values. For example, RCs
vw achieves a

20 percent improvement overRCb for the matrices in CV> 0:10

group and this improvement increases to 23, 24, 30, and28per-
cent for the matrices in CV> 0:15, CV> 0:20, CV> 0:30, and CV> 0:50

groups, respectively.
Fig. 6 compares performance of the proposed RCs

vw

scheme against the baseline RCb scheme in terms of
speedup curves on six different matrices in the dataset. As
seen in the figure, RCs

vw achieves much better scalability
then RCb until 512 processors.

We introduce Fig. 7 to show the variation of the perfor-
mance of the proposed RCs

vw method against the baseline
RCb method for varying number of processors from K ¼ 64
to K ¼ 1024. The figure shows the performance variation in
terms of all four communication cost metrics for CV> 0:50 and
CV> 0:10. As seen in the figure,RCs

vw performs better thanRCb

in all metrics for all processor counts. For irregular instances
(CV> 0:50), in volume-based-metrics, the performance gap
between RCs

vw and RCb decreases with increasing number of
processors until 256, whereas it remains to be same for 512
and 1024 processors. For CV> 0:50, in latency-based-metrics,
the performance gap betweenRCs

vw andRCb does not change
considerably with varying number of processors. For rela-
tively regular instances (CV> 0:10), in all metrics, the perfor-
mance gap between RCs

vw and RCb does not change
considerably. Comparison of CV> 0:50 and CV> 0:10 curves
show that the performance gap between RCs

vw and RCb

increaseswith increasing irregularity of SpMV instances.

TABLE 3
Comparison of Communication Metrics and Parallel Runtimes forK ¼ 512

CV

volume of communication number of messages

maximum average maximum average parallel runtime

RCb RCvw RCs
vw RCb RCvw RCs

vw RCb RCvw RCs
vw RCb RCvw RCs

vw RCb RCvw RCs
vw

> 0:50 7,029 6,266 5,718 1,013 1,019 994 145 56 47 35 16 14 2.28 2.03 1.64
1.00 0.89 0.81 1.00 1.01 0.98 1.00 0.38 0.32 1.00 0.47 0.41 1.00 0.89 0.72

> 0:30 4,328 3,971 3,697 889 902 880 106 48 41 32 17 15 1.95 1.62 1.36
1.00 0.92 0.85 1.00 1.01 0.99 1.00 0.46 0.39 1.00 0.51 0.45 1.00 0.83 0.70

> 0:20 1,369 1,301 1,240 446 458 444 48 29 25 17 11 10 0.78 0.69 0.59
1.00 0.95 0.91 1.00 1.03 0.99 1.00 0.61 0.52 1.00 0.65 0.57 1.00 0.88 0.76

> 0:15 1,419 1,365 1,308 545 561 540 42 27 23 16 11 9 0.71 0.64 0.55
1.00 0.96 0.92 1.00 1.03 0.99 1.00 0.66 0.55 1.00 0.69 0.59 1.00 0.91 0.77

> 0:10 1,192 1,164 1,123 533 552 528 31 22 19 13 10 8 0.55 0.51 0.44
1.00 0.98 0.94 1.00 1.04 0.99 1.00 0.73 0.61 1.00 0.76 0.64 1.00 0.93 0.80

ALL 1,192 1,166 1,125 544 563 538 32 23 20 13 10 9 0.58 0.54 0.46
1.00 0.98 0.94 1.00 1.03 0.99 1.00 0.73 0.62 1.00 0.76 0.65 1.00 0.93 0.80

Volume of communication values are given in terms of the number of the double precision floating point words sent by processors as well as normalized w.r.t.
those of RCb. Parallel runtimes are given in milliseconds.
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Table 4 displays sequential partitioning times of the three
RC schemes. The table also shows the sequential partitioning
times of the row-net hypergraph model. The latter partition-
ing times are given in order to show additional overhead
incurred by the use of the three communication hypergraph
models. The proposed RC schemes achieve a significant

performance improvement over RCb as displayed in the pre-
vious tables at the expense of increasing the partitioning over-
head of RCb by only 2 percent on average. Furthermore, the
partitioning time of proposed RC schemes remain below 21
percent of the partitioning time of the row-net hypergraph
model on average. In otherwords, the use of the proposedRC
schemes incurs negligible additional overhead compared to
the preprocessing overhead introduced by the first phase.

The amortization analysis for the proposed RCs
vw method

is as follows for CV> 0:50 onK ¼ 512 processors. The average
parallel SpMV runtime decreases by 0.64 milliseconds as
seen in Table 3. This improvement in parallel runtime is
achieved at the expense of the additional partitioning time
incurred by RCs

vw. Under 20 percent efficiency assumption
(102.4� speedup), the parallel partitioning time will be 57.9
milliseconds as seen in Table 4. So the use of RCs

vw in the

TABLE 4
Sequential 512-Way Partitioning Times (Seconds)

CV row-net RCb RCvw RCs
vw

> 0:50 27.63 5.56 5.41 5.93
1.00 0.20 0.20 0.21

> 0:30 32.94 4.93 4.95 5.40
1.00 0.15 0.15 0.16

> 0:20 14.53 2.20 2.30 2.51
1.00 0.15 0.16 0.17

> 0:15 17.73 3.12 3.23 3.28
1.00 0.18 0.18 0.19

> 0:10 17.93 3.59 3.77 3.66
1.00 0.20 0.21 0.20

ALL 17.46 3.64 3.83 3.73
1.00 0.21 0.22 0.21

Fig. 6. Strong scaling curves for column-parallel SpMVobtained by RCb and RCs
vw.

Fig. 7. Variation of communication cost metrics for RCs
vw with respect to

RCb for CV> 0:50 (top) and CV> 0:10 (bottom).
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second phase amortizes in about 90 repeated parallel SpMV
operations with the same coefficient matrix (or coefficient
matrices having same sparsity pattern).

5 CONCLUSION

We focused on the following two deficiencies of the reduce-
communication hypergraph model: failing to correctly encap-
sulate send-volume balancing and increasing the total commu-
nication volume due to assigning reduce-tasks to the
processors that do not produce partial results for them. For
addressing the first deficiency, we proposed a novel vertex
weighting scheme so that part weights correctly encode send-
volume loads of processors. For addressing the second
deficiency, we proposed a swap-based bipartition-refinement
method within RB framework for reducing the above-
mentioned increase in the communication volume.

We tested the performance of the proposed models on
reduce-communication hypergraphs arising in column-
parallel SpMV for a wide range of large sparse matrices.
Compared to the baseline reduce-communication hyper-
graph model, the proposed model obtains much better com-
munication-task-to-processor assignments that lead to
significantly faster parallel SpMV. The performance gap
between the proposed model and the existing model
increaseswith increasing irregularity in the net degrees of the
reduce-communication hypergraphs.

As a future work, a two-constraint formulation can be
utilized to encode reducing both send and receive volumes
separately. For the second constraint, the following vertex
weighting scheme will encode reducing maximum receive
volume: fixed vertices are assigned unit weights, whereas
free vertices are assigned weights equal to their degree.
Here, the degree of a vertex refers to the number of nets that
connect the respective vertex.
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