

1

CS 351 – DATA ORGANIZATION AND MANAGEMENT

FALL 2010 - Programming Project #1

(Modified Version of November 4)

Intersection of Sequential Files

Due: November 12, 2010 at 11:59 PM

1. The Objective

In this programming assignment you are asked to implement a JAVA console application

which simulates finding the intersection of two piles (F1 and F2) and writing the common

records to an output text file (F12). The aim of the assignment is to make you understand

how to handle this intersection procedure efficiently. You will also increase your coding

skills regarding to how to manage r/w files in JAVA.

Please read the entire assignment before starting implementation.

2. File Structures

The format of a record in both input and output files are given in the above figure. The

first column of a record includes student's id number, and the following columns are

student's full name and his/her department code.

Consider the following remarks for file structures:

 There is no duplicate of a record in input files. A full record can be read into a String

(i.e you do not have to know the size of a record in this assignment).

 You have to read/write a file like in Section 5 of this assignment.

 Examples of F1, F2 and F12 can be found in:

http://cs.bilkent.edu.tr/~ctoraman/cs351fall10/project1/samples.rar

http://cs.bilkent.edu.tr/~ctoraman/cs351fall10/project1/samples.rar

2

3. What to do?

You have to complete 4 parts in this assignment:

 Part A: In this part, you follow these steps:

 Open the first input file F1 and the output file F12 for writing.

 Search records of F1 in F2:

◦ Read a record R1 from F1.

◦ Search R1 in F2:

▪ Open the second input file F2

▪ Search the second input file sequentially for R1.

▪ If R1 is found in F2, then write R1 to F12.

▪ Close F2.

◦ Repeat this procedure until you process all records of F1.

 Close F1 and F12.

Part B: In this part, you follow these steps:

 Open the first input file F1 and the output file F12 for writing.

 Suppose you have enough memory size to read a block of n records in one time:

◦ Read a block B1 of n records from F1.

▪ Open the second input file F2.

3

▪ Read a record R2 from F2.

▪ Search R2 in B1:

 Search B1 sequentially for R2.

 If R2 is found in B1, then write R2 to F12.

▪ Repeat this for all records in F2.

▪ Close F2.

◦ Repeat this procedure until you process all blocks of F1.

◦ Close F1 and F12.

Part C: This part is similar to Part B. Repeat the same procedure with Part B. However

consider the following conditions as well:

 F1 is given as sorted according to Student ID field of records.

 When you search R2 in B1, use Binary Search algorithm on Student ID field of

records.

Part D: After you successfully implement Part A, B and C; then you will execute your

implementations by following these steps:

 Execute Part A with the example files(big samples) given in Section 2 and record the

execution time (explained in Section 6). Then execute the same input files in Part B with

n = 100,000 and record execution times. Finally, execute the same inputs in Part C with n

= 100,000. You have 3 cases to compare in total.

 Prepare one-page report that answers the following questions:

4

▪ Write execution times for Part A, B and C in terms of ms (milliseconds).

Order the execution times.

▪ Which case did perform the best? Did you expect these results? Explain.

▪ Which case did perform the worst? Did you expect these results? Explain.

4. General Rules:

 Your applications for part A, B and C must be named FileIntersectionPartA,

FileIntersectionPartB, FileIntersectionPartC respectively.

 You are free how to test your implementation. We will use our own main method to

grade your projects. Therefore, do not put any essential code segments into your main

method(s). Also we will call only the constructors(of FileIntersectionPartA,

FileIntersectionPartB and FileIntersectionPartC) while testing. FileIntersectionA

gets no parameter whereas B and C need an integer variable representing n records to

read each time.

 The input files will always be stdlist1.txt and stdlist2.txt for Part A and B. Their

names will be stdlist1sorted.txt and stdlist2.txt for Part C. The output file will

always be outputA.txt, outputB.txt, outputC.txt for Part A, B and C respectively.

All the files must be placed in the same folder that your JAVA project folder exists.

 Your report must be named StudentID.doc (e.g 20504152.doc)

 Note that we will test your programs with another input files than the example files

given in Section 2. Also a supportive tool that is able to detect plagiarism will be used.

5. Tutorial: How to R/W File in JAVA

In JAVA, there are various ways to handle r/w a file; but you must use the following way.

Other implementations will not be accepted.

5

You have to use BufferedReader and BufferedWriter classes to read and write a file

respectively. Consider using the following methods of BufferedReader (You can also see

JAVA API for all methods):

 constructor: BufferedReader(Reader in): Opens the file to read. The argument is an

instance of Reader class. See JAVA API for more details.

 readLine(): Reads a line from the file.

 close(): Closes the file.

Also use the following methods of BufferedWriter:

 constructor: BufferedWriter(Writer out): Opens the file to write. The argument is an

instance of Writer class. See JAVA API for more details.

 write(String str): Writes a string to the file.

 close(): Closes the file.

6. How to Time Your Execution?

Finding your execution time is easy in JAVA. The following code segment displays a

sample execution of PartB. time variable calculates the execution time in ms. startTimer()

and endTimer() are just before the program execution and just after the program

execution.

The following code segment calculates execution time by finding the difference between

two different time points.

6

7. Submission

I. Put all your files (FileIntersectionPartA.java, FileIntersectionPartB.java,

FileIntersectionPartC.java, StudentID.doc) into a rar file. Do not put any other

file.

II. Name your rar file as StudentID_cs351p1.rar (e.g 20504152_cs351p1.rar). Files with

other formats will be ignored automatically.

III. Use the submission page (

http://cs.bilkent.edu.tr/~ctoraman/cs351fall10/project1/submission/) to upload your rar file.

Read the upload rules in the submission page as well. Late submissions will not be

accepted!

IV. You can resubmit until the due date and the previous file will be replaced.

V. For questions, contact with ctoraman@cs.bilkent.edu.tr and

hayrettin@cs.bilkent.edu.tr

http://cs.bilkent.edu.tr/~ctoraman/cs351fall10/project1/submission/
mailto:ctoraman@cs.bilkent.edu.tr

