Bilkent University Department of Computer Engineering CS351 DATA ORGANIZATION AND MANAGEMENT

Midterm Exam Date: November 7, 2009 Time: 13:15 – 15:15

Student Name/ ID No.	
Section	SULUTURS

GOOD LUCK!

Notes: 1. There are 100 points, 6 questions on 6 pages.

- 2. Please READ the questions. It is a closed book/notes exam.
- 3. Show your work.
- 4. You are not allowed to use your cell phone or PDA for any purpose.
- 5. You cannot leave the exam room in the first 30 minutes.
- 6. Please do not write anything inside the following table.

Q. No.	Q1	°Q2	Q3	Q4	Q5	Q6	Overall
Points Possible	18	12	12	18	20	20	100
Your Grade						i han la sh	

1. (18%) Consider a file of 120 Mbytes with record size 100 bytes stored on a disk drive with the disk parameters given below:

s=20 msec, r=10 msec. btt=1.00 msec, ebt=1.10 msec. and block size 2400 bytes.

- a) Compute Tx (Exhaustive reading of the entire file.)
- b) Compute T_F (Average time to Fetch or Access a single record)
- c) How many records can be read randomly in time Tx?

$$B = \frac{120000000}{100 \times 2000} = 50000$$
a) $T_{X} = b \ ebt = 50000 \times 1.1 = 55000 \text{ msec} = 55 \ sec$
b) $T_{F} = \frac{T_{X}}{2} = 27.500 \ \text{msec} = 27.5 \ sec$
c) 2

2. (12%) Consider a sequential magnetic medium (tape) with the following parameters:

- 1600 bytes/inch recording density
- 0.5 inches Inter Block Gap

2500 feet tape length of a reel (30000 inches)

- 10 msec. of start/stop time
- 200 inches/sec read/write speed
- a) Does a file with 60 000 records of 400 bytes each fit on a single reel if the blocking is 1?
- b) What is the minimum Blocking Factor for which this file fits on a single reel of tape?

a) Record = 20.000-000 = 15000 that iBG = 60000×0.5= 30.000 length 1600 Total = 45,000 her > 30.000 her = NO b) 15000 + 60000 ×05 = 20200 B= 2

- 3. (12%) Disk drive questions.
- a) Compute the average rotational delay in milliseconds for a disk drive rotating at the speed of 6000 revolutions per minute.
- b) If the block size is 2400 bytes and there are 100 blocks per track what is the data transfer rate in Mbytes per second in a sequential reading? Ignore the time for passing over the Inter Block Gaps.

2) 6000 rev 60 000 $\frac{1}{r = 60000 = 10 \text{ msec}} = \frac{12}{2} = 5 \text{ msec}$ 2000 × 100 back = 240,000 byte 6 260.000 tyte in 10 msec d the no of byte = 210000 = 24.000 byte sec 10 -sec in 1 sec - 24000×1000 = 24000000 byte= 24 mB I fill revolution de betien blocklar akar.

4. (18%) Consider a file of 120 Mbytes with record size 100 bytes stored on a disk drive with the disk parameters given below:

s=20 msec, r=10 msec. btt=1.00 msec, ebt=1.10 msec. and block size 2400 bytes.

- a) In the first phase of a Sort-Merge, the 120 Mbyte file is sorted using Replacement Selection with a 2 Mbyte RAM and two independent disk drives to produce 40 initial strings approximately 3 Mbytes each. What is the best time in which this phase can be completed?
- b) If two-way merges are used in the merge phase, how many passes are needed to merge the 40 strings?
- c) Compute the time to merge two initial strings (each of size 3 Mbytes) using 2 Mbytes of RAM and a single disk drive.

(a)
$$b = \frac{120 \times 10^6}{2400} = 50,000$$

Using replacement selection sort we can overlap I/0
Using replacement selection sort we can overlap I/0
 $\therefore 005$ find the input time.
 $b \times ebt = 50,000 \times 1.10 = 55,000$ mme = 55 see.

- 5. (20%) In Linear Hashing the boundary value b_v indicates the address of the disk bucket which will be split next, following the net addition of Bkfr * Lf records to the file in order to maintain a constant load factor (Lf). Bkfr denotes the bucket factor, the number of records that fit in a disk bucket.
 - If $b_v = 41$, specify:
 - a) The minimum number of bits, k, (or minimum Hashing Level h) needed to address the buckets that are already split.
 - b) The number of buckets of the primary area that are yet to split until the next Hashing Level is reached.
 - c) The total number of buckets in the primary area of the file (excluding the overflow buckets, if any).
 - d) If the Load Factor is 2/3 and the bucket capacity is 6 records:
 - 1) What is the possible minimum number of records in the file for $b_v = 41$?
 - 2) What is the possible maximum number of records in the file for $b_v = 41$?

37= 5= 00101 42= 10=01010 35 = 3 = 00041 36 = 4 = 00100 22= 22= 10110 21=21=10121 17= 17=10001 51=19= 10011 12=12=01100 6. (20%) Consider the following key values: 12 / 35 a) Using a hash function H(x)=x MOD 32 and 5 – bit pseudokeys, create the directory and the disk pages for Extendible Hashing by successively inserting the keys in the order given. Use the (eftmost bits) from the pseudokeys in addressing Assume page capacity is 3 records. Show all the page splits and the doubling of the directory. Label the disk pages as A, B, C, in that order. Start with a depth 0 directory (with a single entry). b) What is the load factor in the final configuration? 37-1 c) What is the depth of final directory? dele D 5 200101 00 100 4 42 010101 12 01100 -b-He 17/10001 56 11002 24 10:3 b) <u>10</u> = 5.3 0)3