Evaluating evaluation measure stability by Chris Buckley, Ellen M. Voorhees

(Tunc Gultekin, Eren Golge, Havva Gulay Gurbuz, Ahmet Iscen)

- Comparison of IRSs
 - A is better than B
 - In what sense?
 - What is the measure?
 - Is the difference significant?
- Convincing Measure of Performance
 - Having enough sized test data?
 - Picky evaluation measures?
 - Definition of "fuzziness"* value?
 - * a threshold value that defines if the difference of measures are discriminative enough
- Good Dataset
 - Enough data \rightarrow stability of the results
 - Query set \rightarrow well defined vs poor defined
 - Trec 8 Query Track
 - 21 different query sets with 50 different queries
 - Different data comes with different results!
- Measurement Methods
 - Precision CUT_OFF Prec(c)
 - Precision on 0.5 Recall Prec 0.5
 - Precision after R Prec(R)
 - Average Precision for each Relevant Doc. Retrieved avg.Prec
- Experiment Cycle
 - Pick a query set
 - Pick a fuzziness value
 - Pick measure (etc. Prec-R, avg.Prec ...)
 - Run systems
 - Update comparison matrix
 - Re-pick new query set
 - Do it again
 - Find the error of the matrix
- Structure of Matrix
 - Error* = min(A>B,B>A)/ (A>B + B>A + A==B)
 - * if Error of the comparison matrix >~ 25% than discrimination converges to randomness
- Which measures work?
 - avg.Prec and Prec 0.5 gives less error compared to others (~15-17% vs ~23-25%)
- Error Rate
 - Decreases with ...
 - increasing number of topics
 - Increasing fuzziness value (descriptiveness ?)
- Drawbacks !
 - Different result with different test sets
 - Need to have large dataset for stability
- Conclusion
 - Good approach for comparison of IR systems.
 - Need some pre-defined parameters.