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Abstract. Building tools for accessing image data is hard because users
are typically interested in the semantics of the image content. For example,
a user searching for a tiger image will not be satisfied with images with
plausible histograms; tiger semantics are required. The requirement that im-
age features be linked to semantics means that real progress in image data
access is fundamentally bound to traditional problems in computer vision.
In this paper we outline recent work in learning such relationships from
large datasets of images with associated text (e.g. keywords, captions, meta
data, or descriptions). Fundamental to our approach is that images and asso-
ciated text are both compositional—images are composed of regions and
objects, and text is composed of words, or more abstractly, topics or con-
cepts. An important problem we consider is how to learn the correspondence
between the components across the modes. Training data with the corre-
spondences identified is rare and expensive to collect. By contrast, there i s
large amounts of data for training with weak correspondence information
(e.g., Corel—40,000 images; captioned news photographs on the
web—20,000 images per month; web images embedded in text; video with
captioning or speech recognition). The statistical models learned from such
data support browsing, searching by text, image features, or both, as well as
novel applications such as suggesting images for illustration of text pas-
sages (auto-illustrate), attaching words to images (auto-annotate), and at-
taching words to specific image regions (recognition).

1  Introduction

Building tools for accessing image data is hard because the user is typically inter-
ested in the semantics of the image content [1-6]. For example, a user searching for a
tiger image will not be satisfied with images with plausible histograms; tiger se -
mantics are required. Extracting such semantics from images is a difficult and long
standing problem and is the subject of much ongoing research. Here we survey a re-
cently developed approach for exploiting large databases of images with associated text



[7-11]. Our method assumes that image features are connected with components (e.g. a
region with orange and black stripes) which are linked to words representing semantics
(e.g. “tiger”). Thus learning the kind of semantics that will be useful appears to re-
quire data which is carefully labeled regarding how the image features map into seman-
tics. Unfortunately, such data is hugely difficult to acquire on a large scale. Instead, we
show that it is possible to learn such relationships with data that is more loosely
labeled and available in large quantities. Examples include the Corel dataset—40,000
images, captioned news photographs on the web—20,000 images per month, web
images embedded in text, and video with captioning or speech recognition. Two data
sets used for examples in this work are shown in Figure 1.

Our general approach is to learn models for the joint statistics of image compo-
nents and words from this kind of training data. This provides a nice framework for
image retrieval, providing probabilistic ranking of results, and soft-querying where
query words need not be part of a retrieved image’s annotation. For example, a query
including the word “river” may return images which were annotated with the word
“water”. In addition, querying on a combination of words and image components is
naturally supported.

Figure 1 . Examples from the two data sets used in
this work. The top row shows three example images
and their keywords from the Corel data set. The bot-
tom left is an image from the museum data set (cour-
tesy the Fine Arts Museum of San Francisco) and to
the right is the record for the image which provides
the words associated with this image.



Some of our models also support browsing by clustering images into groups
which are semantically and visually coherent. Our clustering approach is unique in
that clusters are identified with different probability distributions for the occurrences of
image components and words. Clustering supports browsing because such groups can
be visually represented by a single representative image.

Browsing and retrieval applications are based on characterizing the training data. We
can also exploit our statistical models to predict words for images not in the training
set. We denote this novel application as auto-annotation [7]. Being able to provide
image keywords automatically is very useful—most image datasets are accessed via
keywords [1-5]. Furthermore, the predicted words are indicative of scene semantics.
Due to the strong connection between the predicted words’ meanings and the scene
context, this process has clear ties to recognition.

Since our models are build on the assumption that image words and image compo-
nents arise from hidden factors, we can also attach words to image components. If the
image components are regions, then this process is the automatic labeling of image
regions which we will also refer to as recognition. We are particularly interested in
studying the auto-annotation and recognition tasks as this measures how well we have
captured the semantics of the data.

Learning recognition from large, loosely annotated, datasets is a novel approach to
computer vision. In this approach we do not specify in advance what is to be recog-
nized nor apply object specific strategies. Instead, models for entities that can be rec-
ognized given the data and the features emerge from the training process. Word which
are not effectively predicted can be identified which provides a strategy to propose
different features or requesting additional data (either by consulting a search engine, or
human input).

The approach can be extended to composite models for objects. For example, pen-
guins are typically broken into two parts, a white region and a black region. With our
approach both these regions will have similar word posteriors, suggesting that they
can be merged [12]. Once the two regions have been grouped, composite features such
as more distinctive color distributions and more predictive shape models can be com-
puted. Such groupings can be learned by accepting those which lead to better word
prediction. In the penguin example, the white region may partially predict “cloud” as
white regions are often associated with cloud, but the combined regions will predict
“cloud” with less probability because this combination occurs infrequently with
“cloud”. This leaves more probability for “penguin” which does co-occur frequently
with this combination.

We mention a few other approaches to inferring semantics from image features.
The literature on object recognition based on specific, object dependent, signatures
learned from labeled training data is vast—see [13] for an overview. More generally,
Campbell et al [14, 15] learn to classify regions based on labeled region data. Wang et
al [16, 17] learn features for a small number of pre-specified categories which are then
applied to find images likely to also be of that category. Maron [18, 19] uses multiple
instance learning to learn connections between image features and concepts from sets
of positive and negative examples and Andrews et al combine multiple instance learn-
ing with support vector machines [20] to learn multiple classifiers on data similar to



ours. Fergus et al [21] learn models for object categories from loosely labeled training
data. Finally, a number of researchers have adopted some elements of our approach
into their work [22-31].

2 Image Representation and Preprocessing

Since we assume that image semantics are linked to image components we need
representations for entities likely to be relevant. A wide range of possibilities exist.
For the results shown here, we segment each image using normalized cuts [32]. We
represent the 8 largest regions in each image by computing, for each region, a set of
40 features. The features represent, rather roughly, major visual properties: Size is
represented by the portion of the image covered by the region. Position is represented
using the coordinates of the region center of mass normalized by the image dimen-
sions. Color is (redundantly) represented using the average and standard deviation of
(R,G,B), (L,a,b) and (r=R/(R+G+B), g=G/(R+G+B)) over the region. Texture is repre-
sented using the average and variance of 16 filter responses. We use 4 difference of
Gaussian filters with different sigmas, and 12 oriented filters, aligned in 30 degree
increments. See [32] for additional details and references on this approach to texture.
Shape is represented by the ratio of the area to the perimeter squared, the moment of
inertia (about the center of mass), and the ratio of the region area to that of its convex
hull. We will refer to a region, together with the features, as a blob.

We make no claim that the image features adopted are in any sense optimal. They
are chosen to be computable for any image region, and be independent of any recogni-
tion hypothesis. We expect that better or worse behavior would be available using
different sets of image features. In fact, using regions is not integral to the
method—localized detector responses or any other image entities that could be rea-
sonably linked to semantics could also be used as a basis for this kind of approach. It
remains an interesting open question to construct representations that (a) offer good
performance for a particular vision task and (b) can support an emerging object hy-
pothesis in an interesting and efficient way.

Depending on the application and the data, it may be advantageous to pre-process
the annotations as well. We generally forgo doing so in the case of the Corel database
keywords, as they are already quite suitable, although common redundancies such as
“tiger” and “cat” could easily be removed using WordNet [33] or other language tools.
On the other hand, the text associated with the museum data (see the example in Fig-
ure 1) needs pre-processing. We use Brill’s parts of speech tagger [34] to limit our
attention to nouns, and then apply a simple method to disambiguate word senses so
that our vocabulary is over senses, not words. For example, “bank” in river bank is
distinguished from “bank” in “bank machine”.  We determine word sense by looking
at shared senses of hypernyms of adjacent words as provided by WordNet [33]. Further
details are available in [8].



3 Multi-media translation

Recall that large datasets of images and text have correspondence ambiguities. For
example, an image with the keyword “tiger” is likely to contain a tiger, but in general
we will not know which part of the image goes with the tiger. Interestingly, such
correspondence ambiguity is not an extreme impediment to learning relationships
between components. To provide some intuition as to why this is the case, we draw
an analogy with statistical machine translation. As an example, consider learning to
translate from French to English from pairs of sentences which are translations of each
other (aligned bitexts). Even more simply suppose that we are given the phrase “soleil
rouge” and its translation “red sun”. Without further information it is not possible to
say which English word corresponds to the French word “rouge”. However, given
additional phrases for “red car”, “red sky”, and so on, the correspondence ambiguity can
easily be resolved as “red” then appears in difference contexts, and the only two tokens
which are constant across contexts are deducible as translations of one another.

More generally, in the machine translation task [35-38], the correspondence be-
tween the words in the sentences is not known, nor is the table of translation prob-
abilities for the French words (dictionary). However, if one of these was known, the
other could easily be computed. Thus we can determine them by alternating between
the two computations, as an application of expectation-maximization (EM) [39], with
the correspondences being missing values. We initialize the EM algorithm with the
empirical co-occurrence frequencies. In our example, we would initialize the transla-
tion of “rouge” to “red” in proportion to how many times they co-occur in the bitexts.

“the red sun”

“le soleil rouge”

“the red sun”

“le soleil rouge”

sun sea sky “sun   sea   sky”

Figure 2 . The analogy of statistical machine translation and computer vision. The
top left box shows a simple English phrase and its French translation. The correspon-
dences are not known a priori. The top right box shows the correspondences which
can be obtained given additional sentences with words which overlap these ones, such
as “the red car”. The bottom row shows the same process applied to image pieces. In
this case, more than one image piece maps to the same word. This occurs in language
also, as does the case of some regions (English words) which do not map to any words
(French words).



In [9] we apply the same process to image data as illustrated in Figure 2. This
specific approach requires mapping image regions into a set of discrete tokens which
can be done by clustering them based on their features (vector quantization). More
effective translation processes fall out of more general and sophisticated models dis-
cussed next.

4 Statistical models to jointly explain image regions and text

We have developed a number of models for the joint statistics of image components
and words [7-11]. Here we will focus on the general design choices, and specify a few
of the models as examples. A critical feature of these approaches is that some hidden
factor or concept is jointly responsible for generating words and image components.
This binding of the generation of components of different modalities leads to the ca-
pacity for them to be linked. A second critical feature is that the observations (image
and associated text) are assumed to be generated from multiple draws of the hidden
factors or nodes. Models must embody this compositionality otherwise they would
need to model all possible combinations of entities. Modeling only the combinations
in the training data would lead to poor generalization on novel combinations in new
images. In general we expect that entities are stable, but that they can occur in differ-
ent combinations. If we model the entities themselves, then we can handle new data
(inference) much more effectively.

Image regions and words are generated conditionally independent of the relevant
hidden factor. Thus the joint probability of an image region and a word given the
nodes can be expressed as

† 

P(w,b) = P(w | l)P(b | l)P(l)
l

Â (1)

where w denotes a word, b denotes a blob, l indexes hidden factors, 

† 

P(w | l) is a prob-
ability table over the words, and for the blob model, 

† 

P(b | l) , we use a Gaussian dis-
tribution over features, with the somewhat naive assumption of diagonal covariance
matrices being required to keep the number of parameters reasonable.

We can use (1) to relate a particular blob to a posterior of word probabilities, and
thus do region labeling (recognition). This is distinctive from proposing words for the
entire image (auto-annotation). To understand the differences among the various mod-
els, it is important to realize that the nature of the training data means that only per-
formance on the auto-annotation task can be computed automatically. This means that
objective functions used in training do not directly optimize recognition. It is an as-
sumption that image words (annotations) are derived from regions, and it is part of the
model design to specify how. Further, it should be clear that these models are quite
general, and can be applied to a wide variety of data, not just regions and words. In
doing so, it is important to realize that specifying how components yield observations
may require further domain dependent modeling.

We have explored a number of assumptions for how image entities (concepts) pro-
duce observations, and briefly review three categories introduced in [11] which differ in



how tightly blob and word emission is coupled denoted by “independent”,  “depend-
ent”, and “correspondence”. In each of these cases, region labeling is based on (1). The
models differ in how they compute annotations, which means that training is different
since training is based on annotation.

Independent. In the models designated as “independent”, all observations are pro-
duced independent of one another by:

† 

P(W » B,d) = P(b | l)P(l,d)
l

Â
Ê 

Ë 
Á 

ˆ 

¯ 
˜ 

Nb
Nb ,d

bŒB
’ P(w | l)P(l,d)

l
Â

Ê 

Ë 
Á 

ˆ 

¯ 
˜ 

Nw
Nw ,d

wŒW
’  (2)

where W is the set of observed words, B is the set of observed blobs, d indexes a par-
ticular document, and 

† 

Nb
Nb ,d

and 

† 

Nw
Nw ,d

 are used to normalize for differing numbers of
blobs and words.

Although (2) tells us how to evaluate a proposed annotation, evaluating all possi-
ble annotations is not practical. Hence we settle for the posterior over words given the
observed blobs, B, which, because  P(B) can be identified with the first group of fac-
tors in (2), takes on a very simple form:

† 

P(w,d | B) = P(w | l)P(l,d)
l

Â (3)

The distribution over factors, P(l) in (1), is key. Unless clustering is used (§4.1),
the distribution must be document dependent: P(l)=P(l,d) (as in (2)). In this case, the
models are essentially variants of the aspect model [40-43]. The aspect model is not a
truly generative model and inference on a new image is problematic because P(l,d) is
not known for a non-training image and must be estimated. In the case that the obser-

vations are restricted to image blobs, and we use the overall prior, 

† 

P(l) =
1
n

P(l,d)
d =1

n

Â ,

in place of P(l,d) , then this becomes the dependent case discussed next (only ap-
proximately when clustering—discussed in §4.1—is used).

Dependent. In the models designated as “dependent”, words are assumed to be
emitted conditioned on the observed blobs. This simply makes more explicit the proc-
ess of estimating P(l,d) for a new image in the independent model above. The process
for generating an image is now to generate concepts or hidden factor for each blob
from P(l). Words are then generated independently from the union of these concepts. If
a new image is to be annotated, then the set of observed blobs, B, implies a distribu-
tion P(l|B) which can be used to generate words for the image. The probability of an
observation 

† 

W » B is given by

† 

P(W » B) = P(b | l)P(l)
l

Â
Ê 

Ë 
Á 

ˆ 

¯ 
˜ 

Nb
Nb,d

bŒB
’ P(w | l)P(l | B)

l
Â

Ê 

Ë 
Á 

ˆ 

¯ 
˜ 

Nw
Nw,d

wŒW
’  (4)

where the main modeling assumption is that

† 

p(l | B)µ P(l | b)
bŒB
Â = P(b | l)P(l)

bŒB
Â /P(b) (5)



Again, for practical annotation, we compute the word posterior given the observed
blobs instead of evaluating the probability for each possible annotation. Noting that
with this model the first factor in (4) is P(B), we get

† 

P(w | B) = P(w | l)P(l | B)
l

Â (6)

and substituting (5) we get

† 

P(w | B) µ P(w | l)
l

Â P(b | l)P(l)
bŒB
Â /P(b)

            = P(w | l)P(b | l)P(l)
l

Â
Ê 

Ë 
Á 

ˆ 

¯ 
˜ P(b)

bŒB
Â

            = p(w,b) P(b)
bŒB
Â

            = p(w | b)
bŒB
Â

(7)

Thus this approach is equivalent to assuming that labeling becomes annotation sim-
ply by summing up the distributions for each region. If we assume that each blob is
mapped in advance to a particular factor, then this model becomes the discrete transla-
tion model discussed above (§3). There are two key advantages to using this version
instead the discrete model. First, the representations for blobs are learned in the con-
text of translation, and second, blobs can be associated with more than one factor (soft
clustering).

Correspondence. In the models designated as “correspondence “, observations are
assumed to be generated by a very simple process. If we assume that an image has N
blobs and N words, then N factors are drawn from P(l). Each factor then generates
exactly one blob and one word. While this is arguably the most elegant approach,
there are some problems. First, differing numbers of blobs and words must be dealt
with, either by some normalization or pre-processing strategy (one is developed in
[11]), or the model itself must be extended to handle non-emissions and multiple
emissions (preferable but more difficult). Second, training the model is more difficult
because specifying that each word must be paired with a blob means that computing
expectations requires marginalizing over all pairings. Since this is impractical, we use
graph matching [44] to choose a maximally likely pairing inside the expectation step
of the EM fitting [11]. Results using this method (also indicative of the “dependent”
method) are shown in Figure 3.



4.1 Clustering models

The above models are based on the independent generation of hidden factors. Thus they
do not exploit the fact that images can be grouped into different scene types which
have different likely compositions. In the terms of the above models, this means that
they should have differing prior probabilities, P(l), for the hidden factors. For exam-
ple, a jungle scene will have a relatively high probability of generating concepts cor-
responding to tigers, grass, and water, and a low probability of generating a building
concept and the corresponding blobs and words. Thus for some applications, it is

Figure 3 . Examples of region based annotation using the “correspondence” model on
held out data. The first two rows are good results. The next image has several correct
words for the image, but the tires are labeled “tracks”, which belongs elsewhere. The last
example is complete failure.



useful to introduce a cluster variable, c, and replace P(l) in the above models with
P(l,c).

An additional design criteria is the extent to which 

† 

P(w,b | l)  is a function of c.
We have most experience with the strategy of tying the parameters of 

† 

P(w,b | l,c)  so
that the concepts form a hierarchy (Figure 4). The motivation is that some concepts
such as “sky” may be relevant to all clusters, some such as “building” may be relevant
to a substantial subset of clusters, and others, such as “tiger”, may be relevant to only
one cluster. In the hierarchical model, each cluster thus has a fixed number of nodes
(concepts) from which its images are made, and further, the parameters for these nodes
are tied to the parameters for nodes for other clusters to varying degrees. A clustering
version of the dependent model from (4) is:

† 

P(W » B) = P(c)
c

Â P(b | l,c)P(l | c)
l

Â
Ê 

Ë 
Á 

ˆ 

¯ 
˜ 

Nb
Nb ,d

bŒB
’ P(w | l,c)P(l | B,c)

l
Â

Ê 

Ë 
Á 

ˆ 

¯ 
˜ 

Nw
Nw ,d

wŒW
’

(8)

with the clustering version of the main modeling assumption (3) being:

† 

p(l | B,c) µ P(l | b,c)
bŒB
Â = P(b | l,c)P(l | c)

bŒB
Â /P(b | c) (9)

and where it is understood that the topology ties some of the distributions

† 

P(b | l,c)
and 

† 

P(w | l,c) .
Using the clustering versions of the models for region labeling is relatively

straight forward. Given a cluster hypothesis, the word posterior is computed as before.
All regions contribute to a posterior distribution over clusters for the image which is
used to weight the word posteriors:

† 

P(w,b | B) = P(c | B)
c

Â P(w | l,c)P(b | l,c)P(l,c)
l

Â (10)

Imposing the hierarchical structure has proven useful to provide coherent image
clusters for browsing applications (§6.1) where the main goal of the modeling is to

Sun
Sky
Sea
Waves

Higher level nodes emit
more general words and
blobs (e.g. sky)

Lower level nodes emit
more specific words and
blobs (e.g. waves)

Moderately general
words and blobs
(e.g. sun, sea)

Figure 4 . Illustration of one
way that clustering can be
combined into the statistical
models developed in §4. Each
document has some probability
of being in each cluster. To the
extent that it is in a given
cluster, its words and segments
are modeled as being generated
from a distribution over the
nodes on the path to the root
corresponding to that cluster.
The probability distribution
over those nodes is dependent
on the cluster.



characterize the training data. This kind of clustering is unique because the clusters are
associated with probability distributions over image components. More traditionally,
images have been clustered based on distances in feature space, where the features
pertain to the image as a whole. Clustering results using this approach are shown in
Figure 5.

Imposing the hierarchical structure has proven less useful for annotating images
which are distinctly different from those in the training set [11]. To some extent the
hierarchical model is at odds with the design criterion of allowing for a wide variety of
compositions. Nonetheless, without some restriction on composition, models are
permitted to predict words for images that never occur together in training such as
“tiger” and “building”. Additional experimentation is required to better establish how

Figure 5(a) . An ocean theme cluster
found by clustering on text only. The
red corals are mixed in with  more gen-
erally blue ocean pictures.

Figure 5(b)  An example of a cluster
found using image features alone. Here
the coral images are found among visu-
ally similar flower images.

Figure 5(c). Two clusters sharing the same parent node computed using both text
and image region features. The words clearly help ensure consistency in overall
ocean/underwater themes. Using image region features in the clustering promotes
visual similarly among the images in the clusters, and here ensures that the red coral
is separated from the other ocean scenes which are generally quite blue.



best to mediate between the need to model a wide range of compositions and the need
to model the fact that image blobs are not independent. Two recent research directions
related to this quest deserve mention. First, the latent dirichlet allocation model (LDA)
[45, 46] provides a more principled way to generate distributions over the hidden fac-
tors. Second, Carbonetto and de Freitas have proposed a model which takes spatial
relations among adjacent image sub-blocks into account [31].

5 Evaluation

We measure performance on both annotation and recognition. For annotation it is
sufficient to predict words that are relevant to an entire image, whereas recognition
requires that words are associated with relevant regions. A priori, it is possible to have
good annotation performance without any underlying model of which image regions
go with which words. It is also possible to have good annotation even with poor
correspondence (Figure 6). This will occur if two kinds of regions usually co-occur
both in training (so that it is hard to learn the difference), and in testing (so the system
is not punished based on annotation performance).

Despite the imprecise relation between correct correspondence and annotation per-
formance, measuring annotation is very important because it can be done on a large
scale and thus yield statistically viable results. The key point here is that, although
the available image annotations are typically incomplete (many relevant words are
missing), if the objective is simply to compare two annotation processes, then both
will suffer the same handicap. Thus the held out sets can usefully contain tens of
thousands of images, and provide statistically valid results whose error can be charac-
terized. Because good annotation does not guarantee good correspondence, we also
measure recognition performance directly. Doing so is necessarily more costly because
segmented images with correctly labeled regions are not available in large quantities.

Several ways to quantify word prediction performance have been proposed [11].
The simplest measure is to allow the model to predict M words, where M is the num-
ber of words available for the given test image. In our data M varies from 1 to 5. The
number correct divided by M is the score.

We compute performance relative to word prediction based on the frequency of the

Figure 6 . An example of
region labeling that gives
relatively good annotation
results despite several obvious
incorrect correspondences.
Both “horses” and “mares” are
good words for the image, but
neither are correctly placed.



words in the training set. Matching the performance using this empirical density is
required to demonstrate non-trivial learning. Doing substantially better than this on
the Corel data is difficult. The annotators typically provide several common words
(e.g. “sky”, “water”, “people”), and fewer less common words (e.g. “tiger”). This
means that annotating all images with, say, “sky”, “water”, and “people” is quite a
successful strategy.

Directly evaluating recognition performance is also important, but necessarily less
comprehensive due to the human input required. We have reported results using two
approaches for such evaluation [9-11]. In the first approach [10] we count the number
of times the maximally probable region word was actually relevant to the region, and
had a plausible visual connection to it. Thus the word “ocean” for “coral” would be
judged incorrectly because the ocean is transparent. When regions cross natural
boundaries we judge the word correct if it applies to more than half the region. Other
difficulties include words like “landscape” and “valley” which normally apply to larger
areas than our regions, and “pattern” which can arguably be designated as correct when
it appears, but we scored it as incorrect because it is not suggestive of recognition. In
the second approach [9, 11] we evaluate region labeling using roughly 500 manually
labeled Corel images. This has the advantage that many algorithms can be evaluated
using the same data provided that we are willing to use the original segmentation. The
results from both these approaches suggest that there is good correlation between the
performance on the annotation and recognition tasks. However, substantially more
evaluation of recognition is required to characterize the degree to which annotation
performance can be used as a proxy for recognition performance.

5 . 1 Exploiting annotation evaluation

Correctly predicting words for images means that visual features have been linked to
semantics. This activity is directly related to the goals of computer vision, and imme-
diately relevant to image access, as semantics is crucial in this endeavor [1-6]. Thus it
is significant that we can evaluate annotation on a large scale. We can exploit this to
choose model parameters (such as the number of concepts), evaluate feature sets [12],
and benchmark segmentation algorithms [10, 12]. Typically segmentation comparison
is based on subjective evaluation of on a few images (but see [47] for an approach
based on comparing with segmentations provided by humans). By contrast, we have a
very operational, task oriented method for choosing between segmentation algorithms.
Specifically, we prefer algorithms which support better word prediction. And since we
can evaluate word prediction performance on a large scale, we can characterize the error
of performance measurements, and identify when differences are significant.

6 Applications to Image Data Access

Supporting data access typically involves characterizing the given data set, rather than
using it as training data to support inference on different data. Nonetheless, building



systems which can predict words on held out data is important because this quantifies
the degree to which the model has captured semantics in preference to fitting noise.
Thus our approaches should be well suited for applications enabling image data access.
In fact, recent work [48] suggests that the Corel image data keywords are strongly tied
to what human subjects designate as good matches between images in a content based
image retrieval (CBIR) setting. Thus attempting to capture the essence of those words
is a sensible strategy for building CBIR systems.

6 . 1 Browsing

Browsing is an important part of interacting with an image collection, because it
helps a user form an internal model of (a) what is available in the collection (b) im-
portant structural relations between items within the collection and (c) what the user
really wants. Most image retrieval systems do not support browsing (but see [49,
50]), likely because automatic methods of organizing a collection of images in useful
ways are difficult to build, again due to the interplay of appearance and semantics. The
clustering versions of our models (§4.1) can expose useful structure in image collec-
tions. Recall that clusters are soft (every image is in every cluster to some degree), and
that clusters are associated with probability distributions over image components
(regions and words).

Semantically and visually coherent clusters are useful for browsing because a sin-
gle representative image can represent the entire cluster (see Figure 7). The user can
include or exclude a large number of images from consideration based on the represen-
tative. Thus the scope of a large number of images can be quickly exposed to the user.

A second issue in designing an image browser is how to organize the representa-
tives. One method [8] is to use the KL-divergence on the probability distributions

Figure 7. Screen shots showing the image browser. Semantically and visually similar
images form clusters which are represented in the left view by a single image. Represen-
tatives are arranged using multi-dimensional scaling based on cluster probability distri-
butions. Clicking on a representative gives a new window showing the cluster. Click-
ing on a particular image in the cluster leads to its page from the Fine Arts Museum.



defining clusters as a distance measure, and use multi-dimensional scaling to then
organize the images on the screen. A browser based on these ideas is illustrated in
Figure 7 and a on-line demonstration is available [51].

6 . 2 Search

A second important facility for image databases is retrieval based on user queries. We
have implemented search for arbitrary combinations of words and image features. Our
queries are soft in the sense that the combinations of items is taken into consideration,
but documents which do not have a given item should still be considered. In addition,
our queries can be easily specified without reference to images already in the user’s
possession. This is in contrast with the common query-by-example paradigm [52],
which is based on finding images similar to ones already found, possibly in conjunc-
tion with feed back from the user [53, 54].

Our approach to searching is to compute the probability of each candidate image of
emitting the query items, given the model. There are a number of approximations that
can be made, and caching and pruning strategies that can be taken, in order to keep the
computations implied by a query reasonable. For explanatory purposes, we will as-
sume that we evaluate the probability of a query being associated with each document.
We consider a query, Q, to be the union of query words and query blobs. In the case of
models based on the aspect model, we compute P(Q|d) where d is an index into the
documents. Recall that these models fit a document dependent distribution over the
concepts, but note that the ensuing difficulties for inference are not relevant for the
retrieval application. In the case of the other models, which do not use d as a parame-
ter, we instead compute P(D|Q) where 

† 

D = W » B  is the document words and blobs.
Defining search by the computation of probabilities very naturally yields an ap-

pealing soft query system. For example, if we query the Corel images with “tiger” and
“river”, we get a reasonable result despite the fact that both words do not appear to-
gether with any single image. However, “river” clusters with “water”, possibly helped
by image segment features, and therefore a relevant number of images have high prob-
ability with the query. Figure 8 shows the top results of the “river” and “tiger” query.

Figure 8. The results of the
“river” and “tiger” query. The
words “tiger” and “river”
never appear together.
Among tiger pictures, ones
with the word  “water” tend to
get selected because “river”
and “water” appear together
in the training set. The same
applies to segments are
similar to ones which co-
occur with the word “river” in
training.



6 . 3 Pictures From Words

Given the above search strategy, one can build an application which takes text selected
from a document, and suggest images to go with the text. The selected text is used to
query the system. This works because the model has learnt an approximation of the
joint probability distribution of text and features. We can therefore find images where
the posterior probability of the image features given the text is high. We denote this
application which links pictures to words “auto-illustrate” (Figure 9).

7 Conclusion and Future Work

We exploit word and image feature co-occurrence statistics in two domains. First,
we learn to translate visual representations (image regions and their features) into
semantic ones (words) which is a novel approach to computer vision. Second, we
learn models of image data with both visual and semantic content which support ac-
cess to such data by being excellent platforms for building browsing and search tools.
Both endeavors are served by a principled evaluation procedure based on predicting
words for images not used for training (auto-annotate).

“The large importance attached to the harpooneer's vocation is evinced by the fact, that
originally in the old Dutch Fishery, two centuries and more ago, the command of a
whale-ship!…“

large importance attached fact old dutch century more command whale ship was per son
was divided officer word means fat cutter time made days was general vessel whale hunt-
ing concern british title old dutch official present rank such more good american officer
boat night watch ground command ship deck grand political sea men mast

Figure 9 . Example of “auto-illustrate”. On top is the beginning of a text passage
from Moby Dick. Below that are words from the vocabulary of the museum data ex-
tracted from the passage using natural language processing tools. The top ranked
images retrieved  using all the extracted words are shown immediately above.



Our main tenet throughout is that improvements in the translation from visual to
semantic representations lead immediately to improvements in image access. Further-
more, the translation paradigm is a useful approach to computer vision. Thus the
main thrust of future work is to improve that process. In particular, the current model
is limited to translating regions with coherent color and texture to simple visual
nouns. However, many entities of interest consist of parts, and we are currently work-
ing on learning parts-based models in the same context. This is a natural continuation
of the region merging work mentioned in the introduction. On the language side,
visual adjectives (like “red”), and spatial prepositions (like “above”) can both be ex-
ploited to make associated text more informative during the learning process, or par-
tially learned in conjunction with language tools to help initiate the process.

The fact that we were able to learn some labels despite some ambiguity in the
training data points to the application of the methodology to many other domains, as
similarly unstructured data is common. We are currently working on modeling data
from broadcast news video, psychophysiology experiments, and bioinformatics.
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