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1. Introduction

1.1. Purpose of the System
BEAM is a web application that aims to automate and organize the application process of
the Erasmus Program. Currently, almost every operation about the application to the
Erasmus Program is done through emails, which slows down the process. Also, Bilkent
Coordinators have to deal with a lot of paperwork that could be easily done through a digital
system. BEAM offers to ease this process by allowing the actors to complete and track their
tasks in an organized manner through a single application. Moreover, outgoing students can
find relevant information about the universities they would like to apply to; courses they
would like to take during their Erasmus Program; the experienced students provide detailed
information and comment about both the universities and the courses.

1.2. Design Goals

1.2.1. Automation
As aforementioned, one of the top priority goals of BEAM is to automate the application
process of the Erasmus Program. Unnecessary back-and-forth mailing between the actors is
to be removed from the process to reduce the workload of both the Bilkent Coordinators and
the students. The system will complete tasks that can be done automatically, such as
generating pre-filled forms, including pre-approval forms and learning agreement forms. The
system will automatically track the approval state of these forms.

1.2.2.Usability
BEAM’s user interface (UI) is designed in such a way that the user can reach all of the
authorized functionalities of the system easily. As the application process is long and
complex, the user should be able to navigate through the system without being confused.
Considering these factors, any functionality will be accessible with a maximum of 3 clicks by
the user. To decrease the cluttering of functionalities, the main functionalities will be grouped
on the sidebar with only the actions specific to the user type displayed.
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2. High Level Software Architecture

2.1. Subsystem decomposition

Figure 1. Subsystem Decomposition Diagram

Our architecture has 6-layers: User Interface Layer, Authentication Layer, Web Server Layer,
Database Abstraction Layer, Firewall Layer, and Database Layer. These layers are created
by taking the separation of concerns into consideration. These layers will allow a more
scalable coding experience since each layer will be independent. The Authentication Layer
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and Firewall Layer will increase the security of the system. Whereas Database Abstraction
Layer is there as part of the Facade design pattern.

Higher resolution of this diagram can be found here:
http://elif.kervan.ug.bilkent.edu.tr/cs319_design_report/Subsystem_Decomposition.jpg

2.2. Hardware/Software Mapping
We will use React with TypeScript for Beamfrontend. TypeScript supports transpiling to older
versions of JavaScript, which provides backwards-compatibility. We also indirectly use
HTML5 and CSS3, which are supported by all modern browsers. Therefore, Beamdoes not
demand high specifications in terms of hardware, the only requirement is a stable version of
a modern browser.

Our backend will use Java, Spring Boot, and PostgreSQL. The backend and the database
will be deployed to AWS servers, and static files such as forms will be stored on Amazon S3.
The number of computer science students who applied for Erasmus in 2021 was around 50.
Taking this number as an estimate, we expect a maximum of 1000 Erasmus applicants. This
number decreases when we consider the number of concurrent users. Because of these
numbers, we think the free tier server offered by AWS’s EC2 service with the specifications
of 1 GB memory and a 3.1 GHz Intel Xeon processor will be enough [1]. The database will
be kept on a separate machine using the AWS RDS service [2]. These configurations could
be quickly upgraded in case these specifications are not enough.

As a side note, external libraries for both the backend and the frontend will be utilized.
Although highly unlikely, this might cause compatibility issues on certain but limited
client-side hardware.

In the above diagram, the WebBrowser component contains the User Interface Layer; the
WebServer component contains the Authentication Layer, Web Server Layer, Database
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Abstraction Layer, and Firewall Layer; and the DataBase component contains the Database
Layer.

Figure 2. Deployment Diagram

2.3. Persistent Data Management
BEAM is highly dependent on complex data such as courses from both Bilkent and other
universities, different types of users, host universities, and various files and images.
Therefore it is crucial to have a secure and efficient database system to manage these data.
We chose a relational database instead of NoSQL since it is more secure, reliable, and
familiar [3]. Afterwards, we agreed to use PostgreSQL because it supports objects and many
other data types that other relational database management systems do not support [3].
Furthermore, PostgreSQL deals with concurrency better than other systems, such as
MySQL, which can enhance system performance if the number of users simultaneously
using BEAM increases [3]. We will use PostgreSQL for the user, course, and
university-related data. Moreover, other data, such as images and documents, will be stored
in the remote file system and will be accessed via file paths stored in the database.

2.4. Access Control and Security
Our Erasmus Application Manager, Beam, prioritizes security and establishes an access
control system. The access control system is managed by attaining roles for users. Each of
the users has certain roles assigned to them. These roles are outgoing student, incoming
student, experienced student, coordinator, instructor, international students office (OISEP)
member, and faculty administration committee (FAC) member.

On the client side, we use protected routes to restrict the access of different user types to
certain user interfaces. This means that users can only see the user interface relevant to
them and nothing more. We handle the protected routes by using the user type information
sent from the backend once the user is logged in and restrict each user with predefined
routes specific to their user type. This ensures that nothing wrong or irrelevant is displayed
on the client side. For example, a student is not able to see the course transfer approval
page since that page is protected and is only visible to a FAC member,

On the server side, we implement a system that assigns a user’s role once they are
registered to the system. Later, when a user tries to log in, the user type information is
accessed from the database and sent to the client side. Moreover, each user can only make
specific requests to the server side. We ensure this by restricting certain functionality to
certain user types. For example, a student is not able to approve a pre-approval form. And a
coordinator is not able to create a pre-approval form.

In terms of security, we encrypt sensitive user information before storing them in the
database. Apart from this, we implement a six-layer architecture that applies restricted
access to our database and backend. The six-layer architecture enforces that only our
backend server can access or modify the backend. This is done via a firewall that validates
requests to the backend. This makes sure that the database remains secure.
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Access Control Matrix

Outgoing
Student

Incoming
Student

Coordinator Instructor FAC
Member

OISEP
Staff

Admin

Login X X X X X X X

Renew
password

X X X X X X X

Create
course
transfer form

X

See courses
in Bilkent

X X X

Access any
student
transcript

X X X

See student
course
wishlist

X

Approve/reje
ct student
course
wishlist

X

Give
feedback on
student
course
wishlist

X

See
universities
list

X X X X X X X

See
university
details

X X X X X X X

Create
course
wishlist

X

Make course
request

X
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See previous
course
requests

X

Download
pre-approval
form

X X

Upload
pre-approval
form

X

Generate
Pre-approval
form

X

See
pre-approval
form

X X

Approve/Rej
ect
pre-approval
form

X

Approve/Rej
ect course
transfer

X

View profile X X X X X X X

Edit profile X X X X X X X

Register user X

Register
users in bulk

X

Add/remove/
edit courses

X

Add/remove/
edit
universities

X

2.5. Global Control Flow
We use event-driven control for our global control flow. The actions of the users determine
the flow of the application. The users will interact with boundary objects, and those
interactions will dispatch certain events on the backend. Then, the user will get a response.
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We use a decentralized design in terms of the structure of our control mechanism. The
control on the backend side is distributed among multiple objects. Which makes it easier to
create a scalable backend.

2.6. Boundary Conditions
Here is an overview of the boundary conditions of our system. Ideally, we are aiming to have
minimal failures. And for the system failures, we would like to have a recovery mechanism
that will bring us back to the stable state.

Figure 3. Boundary Conditions State Diagram

2.6.1. Initialization
Since BEAM is a web application, it is only necessary to log in to the website with an existing
account in order to initialize the application. Once the user logs in, the relevant data is
fetched from the database to initialize the system. Users who do not have accounts may
have access to the application; however, they will have limited access, such as only seeing
university information pages. When a user logs in to the application, the related page options
appear on the sidebar. When a page is clicked, the information that the page contains, such
as added course list, student list, or student pre-approval forms, is fetched from the
database. Moreover, in order to stand the server up, the maintainer needs to initialize the
server on AWS. Also, since one of the crucial parts of the application handling various
information and uploaded files of different users, AWS S3 credentials should be provided
and AWS S3 setup should be checked. Lastly, to ensure the initialization, the database
should be initialized and correct credentials should be passed to Beam. If necessary, the IP
of the server should be provided to the database so that the database will only respond to
our backend. In addition to those, when a user signs in an access and refresh token is
created for them internally. These tokens are later used for checking information integrity.

2.6.2. Termination
BEAM can be terminated in four possible ways. Firstly, if a user logs out of the application,
the application terminates with the last saved data of the user stored in the database.
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Secondly, an admin user may terminate the program for different purposes, such as
maintenance or if there is a security concern. In that case, the last submitted version of the
users' data is saved to the database, and the application terminates. Thirdly, a failure due to
an unhandled exception may occur in the system, forcing the application to terminate.
However, these types of situations are mostly handled in our backend, which either makes
the system exit gracefully or shows helpful errors to the user.

Moreover, when a user’s access token expires, a request is sent to the authentication
service of the application. The authentication service refreshes the access token of the user
if the refresh token has not expired yet. Otherwise, when the access token expires, the user
will be automatically signed off.

2.6.3. Failure
BEAM will run on AWS EC2 servers, and there is no spare web server to run BEAM on. So,
the application may fail if a problem occurs in AWS. In that case, the program is restarted
with the last saved data in the database. Moreover, since BEAM is a web application, the
internet connection loss of the user may also lead to failure. In that case, the user needs to
log in again, and the application starts with the last saved data for the user from the
database.

3. Low Level Design

3.1. Object Design Trade-offs
Functionality v. Usability: The application process is complex and long. Therefore, the
users should not be confused while trying to complete a task or they should not get lost
through the app while trying to get some information about their application. Therefore
BEAM should be as easy to use as possible.

Security v. Usability: Users of BEAM will enter the application by their email and password
and no 2 Factor Authentication will be used. This reduces the application's security, yet it
increases BEAM’s usability.

Rapid Development v. Automation: One of the primary goals of BEAM is to decrease the
users' workload and reduce the unnecessary back-and-forth mailing between the actors.
Therefore, we aim to have an automated system that will ease the application process.
Hence, we will make the application as automated as possible, which is a tradeoff for rapid
development as it increases the time that is needed to develop the application.
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3.2. Final Object Design

Figure 4. Final Object Design Diagram
Higher resolution of this diagram can be found here:
http://elif.kervan.ug.bilkent.edu.tr/cs319_design_report/FinalObject.jpg
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3.3. Layers

3.3.1. User Interface Management Layer

Figure 5. User Interface Management Layer

The user interface management layer resides between users and the application layer. This
diagram describes how users can interact with the application and what users are capable
of. In the diagram above, various user interfaces for different users are represented. In order
to distinguish user types from each other, pages that a user has access to are column-wise
aligned. For instance, at the leftmost side of the diagram, pages that outgoing students have
access to are shown. Related user types are stated at the top of every column.
Higher resolution of this diagram can be found here:
http://elif.kervan.ug.bilkent.edu.tr/BEAM/User_Interface_Management_Layout_v2.jpg
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3.3.2. Web Server Layer

Figure 6. Web Server Subsystem Diagram

Web Server Subsystem diagram shows the endpoint functions, relevant parameters, return
types, attributes and relations between the controllers and services (whose designs are
inspired from a semi-Microservices architecture). Higher resolution of this diagram can be
found here:
http://elif.kervan.ug.bilkent.edu.tr/BEAM/Web-Service-Layer-Iter-2.jpg
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3.3.3. Data Management Layer

Figure 7. Data Management Layer - Entity Diagram

16



Figure 8. Data Management Layer - Repository Diagram
Data Management Layer consists of two components, which are Repository and Entity
components. Repository layer communicates with the database by sending or retrieving data
using the related entities shown in the Entity diagram. Higher resolution of these diagrams
can be found here:
http://elif.kervan.ug.bilkent.edu.tr/cs319_design_report/Database_Models.png
http://elif.kervan.ug.bilkent.edu.tr/cs319_design_report/repostitory_diagram.png

3.4. Class Interfaces

3.4.1. User Interface Layer Class Interfaces

3.4.1.1. LoginPage
public loginRequest(String bilkentId, String password): On click, sends a request to
the webserver to verify user credentials.
public goToForgotPassword(): Goes to the forgot password page on click

3.4.1.2. RegisterPage
public registerInBulk(List<User> users): On click, registers the list of users provided by
the admin in a bulk
public register(User user): On click, registers the user provided by the admin
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3.4.1.3. ForgotPwPage
public forgotPasswordRequest(String email): On click, sends a verification email to the
user’s email
public goToLoginPage(): On click, goes to the login page

3.4.1.4. UniversitiesPage
public searchUni(criterion: String): University[] : When a user enters a search criterion
to the text input, the matching universities are searched and displayed
public getUniversities(): University[]: List of all available universities is fetched and
displayed.

3.4.1.5. University Details Page
public UniversityDetail getUniversityDetails(universityId: String): Details of the
university with the given id is fetched
public seeQuickInformation(): On click, quick information like university name, dormitory
info, student grants, city, country is provided.
public seeGeneralnformation(): Upon click, general information about the university is
provided.
public seeAcceptanceConditions(): On click, acceptance conditions like language
criteria, semester limitations, department limitations are displayed.

3.4.1.6. CourseWishlistPage
public Course[] getAddedCourses():
public Course[] getCoursesThatCanBeAdded():
public boolean addCourse(hostCourse: HostCourse, bilkentCourse: Course):
public boolean removeCourse(courseId: String):

3.4.1.7. CourseRequestPage
public boolean uploadSyllabus(syllabus: File): When clicked, uploads the given
syllabus to the system.
public boolean  requestCourse(preApproval: File):On click, sends the course request to
the instructor of that course.
public Course[] getPreviouslyRequestedCourses(): Returns the courses that are
previously requested by the students.

3.4.1.8. CoursePreAppPage
public boolean uploadPreApproval(preApp: File): Uploads the pre approval form
public boolean submitPreApproval(preApp: File): Submits the pre approval form for the
inspection of the coordinator
public File generateAndDownload(): Generates a pre-approval form based on the course
wishlist user provided and downloads the generated pre-approval form
public File generateAndSend(): Generates a pre-approval form based on the course
wishlist user provided and sends the generated pre-approval form for the inspection of the
coordinator
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3.4.1.9. LearningAgPage
public boolean uploadLearningAgreement(): Uploads the learning agreement form
public File submitLearningAgreemen(): Submits the uploaded learning agreement form
for the inspection of the coordinator
public File generateAndDownload(): Generates a partially filled learning agreement form
based on the pre-approval form and downloads the generated learning agreement form.

3.4.1.10. ContactPage
public ExperiencedStudents[] getExperiencedStudents(): On page load, fetches the
experienced students
public goToEvaluation(): On click goes to the evaluations made by the experienced
student
public goToProfilePage(): On click goes to the profile of the experienced student

3.4.1.11. CourseListPage
public Course[] getCourseList(): On click, gets the available courses in Bilkent

3.4.1.12. ChooseCoursesPage
public addCourse(): On click, adds the chosen course
public removeCourse(): On click, removes the chosen course
public submitCourses(): On click, submits the course list for the approval of the
coordinator
public Course [] getCoursesThatCanBeAdded(): On page load, fetches courses that
can be added
public Course[] getAddedCourses(): On page load, gets already added courses

3.4.1.13. UniEvalPage
public saveEvaluation(): On click, saves the evaluation for later inspection
public submitEvaluation(): On click submits the university evaluation

3.4.1.14. CourseEvalPage
public selectCourse(): On selection, selects the course which the evaluation will be
written for
public Course[] getCoursesTaken(): On page load, fetches all the courses the
experienced student has taken in the host university
public saveEvaluation(): On click, saves the evaluation for later inspection
public submitEvaluation(): On click submits the course evaluation

3.4.1.15. ApproveStudentsWishlistPage
public viewAStudentsWishlist(): On click, views the specific wishlist
public approveWishlist(): On click, approves the wishlist
public rejectWishlist(): On click rejects the wishlist
public Wishlist[] getAllWishlists(): On page load gets all of the wishlists
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public Course[] getCourses: On page load, gets all the

3.4.1.16. CourseTransferFormPage
public editCourseTransfer(): On change, edits the course transfer form details
public submitTransferForm(): On click, submits the transfer form

3.4.1.17. ApproveLearningAgreementPage
public viewStudentLearningAgreement(): On page load, displays all of the student
learning agreements
public approveLearningAgreement(): On click, approves the learning agreement
public rejectLearningAgreement(): On click, rejects the learning agreement

3.4.1.18. ApprovePreApprovalsPage
public chooseStudent(): Chooses the student whom PreApprovalForm will be displayed.
public Student [] getAllStudents(): Fetches all the students related with the co
public approvePreApproval(): On click, approves the pre approval
public rejectPreApproval(): On click, rejects the pre approval
public PreApproval getPreApproval(studentId: long): Upon student selection, fetches
the pre approval of the student with the given studentId.

3.4.1.19. ApproveCourseRequestsPage
public approveCourse(courseRequestId: string): Approves the specific course request
and any other identical requests for the same university. The approval is logged.
public rejectCourse(instructorId: string): Rejects the specific course request and any
other identical requests for the same university. Optionally, provides textual feedback.
public CourseRequest[] getCourseRequests(instructorId: string): Gets all the course
requests available for the given instructor

3.4.1.20. TranscriptUploadPage
public selectCoordinator(): Selects the coordinator and fetches relevant student data on
click.
public selectStudent(): Selects the student associated with the coordinator.
public sendTranscript(): Sends the transcript to the system, the transcript becomes
visible to the coordinator

3.4.1.21. AdminEditPage
public boolean editUniversityInfo(info: String): On click submits the changes made for
that university.
public removeAUser(userID: int): Removes the user with the specific id from the system.
public uploadAnyFile(aFile: File, userID: int): Uploads the given file to the user with the
given ID.
public removeEvaluation(userID: int): Removes the evaluations of the given user.
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3.4.1.22. SideBar
public goToUniversities(): On click, navigates to Universities Page
public goToCourseWishlist(): On click, navigates to Course Wishlist Page
public goToPreApproval(): On click, navigates to PreApproval Page
public goToLearningAgreement(): On click, navigates to Learning Agreement Page
public goToCourseList(): On click, navigates to Course List Page
public goToUniEval(): On click, navigates to University Evaluation Page
public goToCoursesEval(): On click, navigates to Course Evaluation Page
public goToViewUploadedFiles(): On click, navigates to View Uploaded Files Page
public goToStudentWishlists: On click, navigates to Approve Student Wishlists Page
public goToApproveCourses: On click, navigates to Approve Course Request Page
public goToApprovePreApproval: On click, navigates to Approve Pre Approva l Page
public goToApproveLearningAgreement: On click, navigates to Approve Learning
Agreement Page
public goToCourseTransferForm(): On click, navigates to Course Transfer Form Page
public logout(): On click, logs the user out of the system.

3.4.1.23. NavBar
public goToProfile(): On click, navigates to Profile Page.
public goToNotifications(): On click, navigates to Notifications Page

3.4.1.24. ViewUploadedFilesPage
public goToLearningAgreement(): On click, goes to Learning Agreement Page
public goToPreApproval(): On click, navigates to Pre Approval Page
public File[] getAllFiles(): Gets all the files of the user

3.4.1.25. YourProfPage
public editProfile(): Allows the user to edit their profile
public String[] retrieveInfo(): Gets the information of the current user

3.4.1.26. OthersProfPage
public String[] retrieveInfo(): Gets the information of the selected user

3.4.1.27. EditProfPage
public uploadResume(resume:File): The user uploads their resume to their profile.
public saveChanges(): Saves the changes made by the user
public boolean changePassword(): Changes the user’s password
public boolean showResume(): Adjusts wheter the resume of the user is publicly visible.

3.4.1.28. UniPageByStudent
public String[] retrieveInfo: Gets the information of the university from the system
public File[] retrievePhotos: Gets the photo of the university and displays them
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3.4.2. Web Server Layer Class Interfaces

3.4.2.1. ProfileManagementController
Attributes:
private final ProfileManagementSerice profileManagementSerice: This is the Profile
Management service for all users

Operations:
public ResponseEntity editMail(UUID id, String newEmail): This operation edits users
email information.
public ResponseEntity editLinkedIn(UUID id, String newLinkedIn): This operation edits
users LinkedIn information.
public ResponseEntity editBio(UUID id, String newBio): This operation edits users
biography.
public ResponseEntity editThemeColorOne(UUID id, Color newColor): This operation
edits users color choice one.
public ResponseEntity editThemeColorTwo(UUID id, Color newColor): This operation
edits users color choice two.
public ResponseEntity editThemeColorThree(UUID id, Color newColor): This operation
edits users color choice three.
public ResponseEntity toggleContact(UUID id, boolean currentContact): This operation
changes contact status of a user for the logged user.
public ResponseEntity toggleLinkedIn(UUID id, boolean currentLinkedInVisibility):
This operation changes linkedIn visibility status of the logged user.
public ResponseEntity toggleResume(UUID id, boolean currentResumeVisibility): This
operation changes resume visibility status of the logged user.
public ResponseEntity editResume(UUID id, File newResume): This operation uploads a
new resume file instead of the existing one or uploads for the first time.
public ResponseEntity uploadProfilePicture(UUID id, File newPicture): This operation
uploads a new profile picture instead of the existing one or uploads for the first time.

3.4.2.2. ProfileMangementService
Attributes:
private final ProfileRepository profileRepository: This is database repository for profiles

Operations:
public boolean editMail(UUID id, String newEmail): This operation edits users email
information.
public boolean editLinkedIn(UUID id, String newLinkedIn): This operation edits users
LinkedIn information.
public boolean editBio(UUID id, String newBio): This operation edits users biography.
public boolean editThemeColorOne(UUID id, Color newColor): This operation edits
users color choice one.
public boolean editThemeColorTwo(UUID id, Color newColor): This operation edits
users color choice two.
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public boolean editThemeColorThree(UUID id, Color newColor): This operation edits
users color choice three.
public boolean toggleContact(UUID id, boolean currentContact): This operation
changes contact status of a user for the logged user.
public boolean toggleLinkedIn(UUID id, boolean currentLinkedInVisibility): This
operation changes linkedIn visibility status of the logged user.
public boolean toggleResume(UUID id, boolean currentResumeVisibility): This
operation changes resume visibility status of the logged user.
public boolean editResume(UUID id, File newResume): This operation uploads a new
resume file instead of the existing one or uploads for the first time.
public boolean uploadProfilePicture(UUID id, File newPicture): This operation uploads a
new profile picture instead of the existing one or uploads for the first time.

3.4.2.3. ProfileAccessController
Attributes:
private final ProfileAccessService profileAccessService: This is a service for a user to
access other users’ profiles.

Operations:
public ResponseEntity<ProfilePage> getProfile(UUID id): This operation retrieves
selected profile page based on the id.
public ResponseEntity<ProfilePicture> getProfile(UUID id): This operation retrieves
selected profile’s profile picture based on the id.

3.4.2.4. ProfileAccessService
Attributes: private final ProfileRepository profileRepository: This is database repository
for profiles.

Operations:
public ProfilePage getProfile(UUID id): This operation retrieves selected profile page
based on the id.
public ProfilePicture getProfile(UUID id): This operation retrieves selected profile’s profile
picture based on the id.

3.4.2.5. UniversityAccessController
Attributes:
private final UniversityAccessService universityAccessService: This is a service for
users to access universities’ pages.

Operations:
public ResponseEntity<UniversityPage> getUniversityPage(UUID id): This operation
gets corresponding university page based on its id.
public ResponseEntity<ArrayList<UniversityPage>> getUniversityPhotos(UUID id):
This operation gets corresponding university’s photos based on its id.
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3.4.2.6. UniversityAccessService
Attributes:
private final UniversityRepository universityRepository: This is a database repository for
universities.

Operations:
public UniversityPage getUniversityPage(UUID id): This operation gets corresponding
university page based on its id.
public UniversityPage getUniversityPhotos(UUID id): This operation gets corresponding
university’s photos based on its id.

3.4.2.7. UniversityManagementController
Attributes:
private final UniversityManagementService universityManagementService: This is a
service for universities to manages/edits their profiles.

Operations:
public ResponseEntity editWebsite( UUID id, String newWebsite): This operation edits
saved URL information of the corresponding university.
public ResponseEntity editAcceptedDepartments( UUID id,ArrayList<Department>
changedDepartments): This operation edits saved accepted departments information of the
corresponding university.
public ResponseEntity editInfo( UUID id, String newInfo): This operation edits saved
general information of the corresponding university.
public ResponseEntity editThemeColorOne(UUID id, Color newColor): This operation
edits universities’ color choice one.
public ResponseEntity editThemeColorTwo(UUID id, Color newColor): This operation
edits universities’ color choice two.
public ResponseEntity editThemeColorThree(UUID id, Color newColor): This operation
edits universities’ color choice three.
public ResponseEntity uploadCampusPicture(UUID id, File newPhoto): This operation
uploads campus photos to universities’ pages.
public ResponseEntity uploadLogo(UUID id, File newLogo): This operation uploads a
new logo to universities’ pages.
public ResponseEntity editStudentGrants(UUID id, String newInfo): This operation
uploads student grant information of the corresponding university.
public ResponseEntity editDormitoryStatus(UUID id, String newInfo): This operation
uploads dormitory information of the corresponding university.
public ResponseEntity editRentPrices(UUID id, String newInfo): This operation uploads
rent prices information of the corresponding university.
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3.4.2.8. UniversityManagementService
Attributes:
private final UniversityRepository universityRepository: This is a database repository for
universities.

Operations:
public boolean editWebsite( UUID id, String newWebsite): This operation edits saved
URL information of the corresponding university.
public boolean editAcceptedDepartments( UUID id,ArrayList<Department>
changedDepartments): This operation edits saved accepted departments information of the
corresponding university.
public boolean editInfo( UUID id, String newInfo): This operation edits saved general
information of the corresponding university.
public boolean editThemeColorOne(UUID id, Color newColor): This operation edits
universities’ color choice one.
public boolean editThemeColorTwo(UUID id, Color newColor): This operation edits
universities’ color choice two.
public boolean editThemeColorThree(UUID id, Color newColor): This operation edits
universities’ color choice three.
public boolean uploadCampusPicture(UUID id, File newPhoto): This operation uploads
campus photos to universities’ pages.
public boolean uploadLogo(UUID id, File newLogo): This operation uploads a new logo
to universities’ pages.
public boolean editStudentGrants(UUID id, String newInfo): This operation uploads
student grant information of the corresponding university.
public boolean editDormitoryStatus(UUID id, String newInfo): This operation uploads
dormitory information of the corresponding university.
public boolean editRentPrices(UUID id, String newInfo): This operation uploads rent
prices information of the corresponding university.

3.4.2.9. StudentCourseRequestController
Attributes:
private final StudentCourseRequestService studentCourseRequestService: This
service gives the controller class the ability to access business-related functions and CRUD
operations on the related database(s) for students’ course request functionality.

Operations:
public ResponseEntity requestCourse(UUID studentID, String code, String name,
Course bilkentCourse, String webpage): This operation gathers related data from a
RequestBody and makes a course request for a student via the aforementioned service.
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public ResponseEntity requestCourse(UUID studentID, String code, String name,
Course bilkentCourse, String webpage, File additionalInfo): This operation gathers
related data from a RequestBody and makes a course request for a student via the
aforementioned service.
public ResponseEntity<ArrayList<CourseRequest>>
getPreviouslyRequestedCourses(UUID studentId): This operation gives the previously
requested courses of the student.

3.4.2.10. StudentCourseRequestService
Attributes:
private final CourseRepository courseRepository: This repository holds information
about courses.
private final CourseRequestRepository courseRequestRepository: This repository
holds information about course requests.
private final StudentRepository studentRepository: This repository holds information
about students.

Operations:
public boolean requestCourse(UUID studentID, String code, String name, Course
bilkentCourse, String webpage): This operation makes a course request for a student by
gathering data from the databases given above and saves the request to the
courseRequestRepository repository.
public boolean requestCourse(UUID studentID, String code, String name, Course
bilkentCourse, String webpage, File additionalInfo): This operation makes a course
request for a student by gathering data from the databases given above and saves the
request to the courseRequestRepository repository.
public ArrayList<CourseRequest> getPreviouslyRequestedCourses(UUID studentId):
This operation gives the previously requested courses of the student by accessing the
courseRequestRepository repository.

3.4.2.11. EvaluationController
Attributes:
-evaluationService : final EvaluationService: This service gives the controller class the
ability to access business-related functions and CRUD operations on the related database(s)
for course/university evaluation related functionalities.

Operations:
+evaluateUniversity(rate : int, eval : String) : ResponseEntity: This operation rates a
University and stores the evaluation input.
+evaluateCourse(rate : int, eval : String) : ResponseEntity: This operation rates a
Course in a University and stores the evaluation input.
+getEvaluatableCourses(id : UUID) : ResponseEntity<ArrayList<Course>>: This
operation returns all available courses to be evaluated by the student.

3.4.2.12. EvaluationService
Attributes:
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-evaluationRepository : final EvaluationRepository: This repository holds information
about past evaluations.

Operations:
+evaluateUniversity(rate : int, eval : String) : boolean: This operation rates a University
and stores the evaluation input.
+evaluateCourse(rate : int, eval : String) : boolean: This operation rates a Course in a
University and stores the evaluation input.
+getEvaluatableCourses(id : UUID) : ArrayList<Course>: This operation returns all
available courses to be evaluated by the student.

3.4.2.13. PreApprovalController
Attributes:
-preApprovalService : final PreApprovalService: This service gives the controller class
the ability to access business-related functions and CRUD operations on the related
database(s) for PreApproval related functionalities like generation and downloading.

Operations:
+checkPreApprovalStatus(studentId : UUID) : ResponseEntity<String>: This operation
checks the PreApproval “approval” status of a student and gives relevant information like
accepted/rejected.
+generateAndDownload(studentId : UUID) : ResponseEntity: This operation generates a
PreApproval form from BEAM’s systems and returns relevant information for a downloadable
PDF of the PreApproval form.
+generateAndSend(studentId : UUID) : ResponseEntity: This operation generates a
PreApproval form from BEAM’s systems and sends the PreApproval form for approval to the
relevant authority.

3.4.2.14. PreApprovalService
Attributes:
-courseRepository : final CourseRepository: This repository holds information about
courses.
-studentRepository : final StudentRepository: This repository holds information about
students.
-fileRepository : final FileRepository: This repository holds information about files
uploaded to the system of BEAM.
-courseWishlistRepository : final CourseWishlistRepository: This repository holds
information about Courses in a student’s CourseWishlist.

Operations:
+generatePreApproval(studentId : UUID) : PreApprovalForm: This operation generates a
PreApproval form from BEAM’s systems.
+sendPreApproval(studentId : UUID) : boolean: This operation sends the PreApproval
form for approval to the relevant authority.
+downloadPreApproval(studentId : UUID) : File: This operation returns relevant
information for a downloadable PDF of the PreApproval form.
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+checkPreApprovalStatus(studentId : UUID) : boolean: This operation checks the
PreApproval “approval” status of a student and gives relevant information like
accepted/rejected.
+convertPreApprovalToPDF(form : PreApprovalForm) : File: This operation converts the
internal representation of a PreApproval form to a PreApproval form in the PDF format.

3.4.2.15. CourseTransferController
Attributes:
-courseTransferService : final CourseTransferService: This service gives the controller
class the ability to access business-related functions and CRUD operations on the related
database(s) for course transfer functionality.

Operations:
+submitTransferForm(studentID : UUID, hostCourses : ArrayList<String>, hostCredits
: ArrayList<Double>, bilkentCourses : ArrayList<String>, bilkentCredits :
ArrayList<Double>) : ResponseEntity: This operation submits a transfer form for the
mobility period of a student by using the relevant data in its parameters.
+getPendingTransferStudents() : ResponseEntity<ArrayList<Student>>: This operation
returns the remaining transfer students, who still need transfer forms to be submitted.

3.4.2.16. CourseTransferService
Attributes:
-courseRepository : final CourseRepository: This repository holds information about
courses.
-studentRepository : final StudentRepository: This repository holds information about
students.

Operations:
+submitTransferForm(studentID : UUID, hostCourses : ArrayList<String>, hostCredits
: ArrayList<Double>, bilkentCourses : ArrayList<String>, bilkentCredits :
ArrayList<Double>) : boolean: This operation submits a transfer form for the mobility
period of a student by using the relevant data in its parameters.
+getPendingTransferStudents() : ArrayList<Student>: This operation returns the
remaining transfer students, who still need transfer forms to be submitted.

3.4.2.17. UniversityListController
Attributes:
-universityListService : final UniversityListService: This service gives the controller class
the ability to access business-related functions and CRUD operations on the related
database(s) for listing all universities in BEAM’s system to users.

Operations:
+getUniversities() : ResponseEntity<ArrayList<University>>: This operation returns all
universities in BEAM’s system to users and allows access to each university’s university
page.
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3.4.2.18. UniversityListService
Attributes:
-universityRepository : final UniversityRepository: This repository holds information
about universities.

Operations:
+getUniversities() : ArrayList<University>: This operation returns all universities in
BEAM’s system to users and allows access to each university’s university page.

3.4.2.19. InstructorCourseRequestController
Attributes:
-instructorCourseRequestService : final InstructorCourseRequestService: This service
gives the controller class the ability to access business-related functions and CRUD
operations on the related database(s) for the functionalities related to instructors and their
reviews of course requests.

Operations:
+getRequestedCourses(instructorID : UUID) :
ResponseEntity<ArrayList<CourseRequest>>: This operation returns all course requests
for the related instructor’s Bilkent courses).
+determineRequestStatus(requestID : UUID, isApproved : boolean) : ResponseEntity:
This operation approves or rejects a specific course request.
+viewHostCourseSyllabus(requestID : UUID) : ResponseEntity<File>: This operation
returns the corresponding host course’s syllabus (in a course request) for the instructor to
see.

3.4.2.20. InstructorCourseRequestService
Attributes:
-courseRepository : final CourseRepository: This repository holds information about
courses.
-courseRequestRepository : final CourseRequestRepository: This repository holds
information about course requests of students.

Operations:
+getRequestedCourses(instructorID : UUID) : ArrayList<CourseRequest>: This
operation returns all course requests for the related instructor’s Bilkent courses).
+determineRequestStatus(requestID : UUID, isApproved : boolean) : boolean: This
operation approves or rejects a specific course request.
+viewHostCourseSyllabus(requestID : UUID) : File: This operation returns the
corresponding host course’s syllabus (in a course request) for the instructor to see.

3.4.2.21. ExperiencedStudentController
Attributes:

29



-experiencedStudentService : final ExperiencedStudentService: This service gives the
controller class the ability to access business-related functions and CRUD operations on the
related database(s) for toggling ExperiencedStudents’ communication preference(s).

Operations:
+toggleAccessible(studentID : UUID) : ResponseEntity: This operation toggles (if true,
sets to false and vice-versa) the accessibility (in terms of communication) settings of
experienced students.

3.4.2.22. ExperiencedStudentService
Attributes:
-experiencedStudentRepository : final ExperiencedStudendRepository: This repository
holds information about experienced students who had Erasmus experience at some point in
the past.

Operations:
+toggleAccessible(studentID : UUID) : boolean: This operation toggles (if true, sets to
false and vice-versa) the accessibility (in terms of communication) settings of experienced
students.

3.4.2.23. AccountController
Attributes:
-accountService : final AccountService: This service gives the controller class the ability
to access business-related functions and CRUD operations on the related database(s) for
functionalities related to JWT, authentication and account information.

Operations:
+login(username : String, password : String) : ResponseEntity: This operation is used
for a user to login.
+register(userType : Enum<UserType>, username : String, password : String,
passwordAgain : String, bilkentID : int, email : String) : ResponseEntity: This operation
is used for a user to register to BEAM.
+changePassword(username : String, oldPassword : String, newPassword : String,
newPasswordAgain : String) : ResponseEntity: This operation is used for a user to
change their previous password to a new password.
+refreshToken(auth : String) : ResponseEntity<Object>: This operation is used to give a
refreshed JWT token to the user based on their authentication information.

3.4.2.24. AccountService
Attributes:
-accountRepository : final AccountRepository: This repository holds information about
accounts like password hashes and usernames.

Operations:
+login(username : String, password : String) : boolean: This operation is used for a user
to login.
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+register(userType : Enum<UserType>, username : String, password : String,
bilkentID : int, email : String) : boolean: This operation is used for a user to register to
BEAM.
+changePassword(username : String, oldPassword : String, newPassword : String,
newPasswordAgain : String) : boolean: This operation is used for a user to change their
previous password to a new password.
+refreshToken(auth : String) : RRefreshToken: This operation is used to give a refreshed
JWT token to the user based on their authentication information.

3.4.2.25. ViewFilesController
Attributes:
-viewFilesService : final ViewFilesService: This service gives the controller class the
ability to access business-related functions and CRUD operations on the related database(s)
for functionalities related to checking uploaded files to BEAM’s systems.

Operations:
+viewLearningAgreement(id : UUID) : ResponseEntity<File>: This operation returns
relevant information for a downloadable PDF of the Learning Agreement for students to see.
+viewPreApprovalForm(id : UUID) : ResponseEntity<File>: This operation returns
relevant information for a downloadable PDF of the PreApproval form for students to see.

3.4.2.26. ViewFilesService
Attributes:
-fileRepository : final FileRepository: This repository holds information about files
uploaded to the system of BEAM.

Operations:
+viewLearningAgreement(id : UUID) : File: This operation returns relevant information for
a downloadable PDF of the Learning Agreement for students to see.
+viewPreApprovalForm(id : UUID) : File: This operation returns relevant information for a
downloadable PDF of the PreApproval form for students to see.

3.4.2.27. CourseWishlistController
Attributes:
-courseWishlistService : final CourseWishlistService: This service gives the controller
class the ability to access business-related functions and CRUD operations on the related
database(s) for functionalities related to coordinators approving/rejecting student course
wishlists.

Operations:
+getAvailableCourses(studentID : UUID) : ResponseEntity<ArrayList<Course>>: This
operation returns all available courses for a specific student to add their course wishlist.
+addCourseToWishlist(studentID : UUID, courseID : UUID) : ResponseEntity: This
operation adds a specific course to a specific student’s course wishlist.
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3.4.2.28. CourseWishlistService
Attributes:
-approvedCoursesRepository : final ApprovedCoursesRepository: This repository holds
information about previously approved courses.
-courseWishlistRepository : final CourseWishlistRepository: This repository holds
information about Courses in a student’s CourseWishlist.

Operations:
+getAvailableCourses(studentID : UUID) : ArrayList<Course>: This operation returns all
available courses for a specific student to add their course wishlist.
+addCourseToWishlist(studentID : UUID, courseID : UUID) : boolean: This operation
adds a specific course to a specific student’s course wishlist.

3.4.2.29. ISOTranscriptController
Attributes:
-isoTranscriptService : final ISOTranscriptService: This service gives the controller class
the ability to access business-related functions and CRUD operations on the related
database(s) for the functionalities related to student transcript.

Operations:
+getListOfStudents(): This operation returns all of the students that has a transcript.
viewStudentTranscript(UUID studentId): This operation returns the transcript of the
student with the given student id.
+confirmTranscriptOfStudent(UUID studentId): This operation confirms the transcript of
the selected student.

3.4.2.30. ISOTranscriptService
Attributes:
-studentRepository : final StudentRepository: This repository holds information about
students.
-fileRepository : final FileRepository: This repository holds information about files
uploaded to the system of BEAM.

Operations:
+getListOfStudents(): This operation returns all of the students that has transcript.
viewStudentTranscript(UUID studentId): This operation returns the transcript of the
student with the given student id.
+confirmTranscriptOfStudent(UUID studentId): This operation confirms the transcript of
the selected student.

3.4.2.31. FACPreApprovalController
Attributes:
-facPreApprovalService : final FACPreApprovalService: This service gives the controller
class the ability to access business-related functions and CRUD operations on the related
database(s) for the functionalities related to Pre-Approval Form.
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Operations:
+getListOfStudents(): This operation returns all of the students that submitted
Pre-Approval Form.
+viewPreApproval(UUID studentId): This operation returns the Pre-Approval Form of the
selected student.
+determinePreApprovalItemStatus(boolean isApproved, UUID studentId, UUID
hostCourseId): This operation is used to approve or reject a pre approval item of the
selected student.

3.4.2.32. FACPreApprovalService
Attributes:
-courseRepository : final CourseRepository: This repository holds information about
courses.
-studentRepository : final StudentRepository: This repository holds information about
students.
-fileRepository : final FileRepository: This repository holds information about files
uploaded to the system of BEAM.

Operations:
+getListOfStudents(): This operation returns all of the students that submitted
Pre-Approval Form.
+viewPreApproval(UUID studentId): This operation returns the Pre-Approval Form of the
selected student.
+determinePreApprovalItemStatus(boolean isApproved, UUID studentId, UUID
hostCourseId): This operation is used to approve or reject a pre approval item of the
selected student.

3.4.2.33. CoordinatorWishlistController
Attributes:
-coordinatorWishlistService : final CoordinatorWishlistService: This service gives the
controller class the ability to access business-related functions and CRUD operations on the
related database(s) for the functionalities related to student wishlist.

Operations:
+getWaitingWishlists() : ResponseEntity<ArrayList<CourseWishlist>>: This operation
returns all pending wishlists to be approved/rejected.
+viewWishlist(studentID : UUID) : ResponseEntity<ArrayList<Course>>: This operation
returns the course wishlist information of a specific student.
+determineWishlistStatus(studentID : UUID, isApproved : boolean) : ResponseEntity:
This operation approves or rejects a student’s course wishlist.
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+viewCourseSyllabus(syllabusURL : String) : ResponseEntity<File>: This operation
returns the course’s syllabus (for a course which is in a student’s course wishlist) for a
coordinator to see.

3.4.2.34. CoordinatorWishlistService
Attributes:
-courseWishlistRepository : final CourseWishlistRepository: This repository holds
information about Courses in a student’s CourseWishlist.

Operations:
+getWaitingWishlists() : <CourseWishlist>: This operation returns all pending wishlists to
be approved/rejected.
+viewWishlist(studentID : UUID) : ArrayList<Course>: This operation returns the course
wishlist information of a specific student.
+determineWishlistStatus(studentID : UUID, isApproved : boolean) : boolean: This
operation approves or rejects a student’s course wishlist.
+viewCourseSyllabus(syllabusURL : String) : File: This operation returns the course’s
syllabus (for a course which is in a student’s course wishlist) for a coordinator to see.

3.4.3. Data Management Layer Class Interfaces

3.4.3.1. ProfileRepository
Operations:
findEmailById(id:UUID): Finds user email from their uuid.
findLinkedInById(id:UUID): Finds user LinkedIn profile link from their uuid.
findBioById(id:UUID): Finds user biography from their uuid.
findLinkedInById(id:UUID): Finds user LinkedIn profile link from their uuid.
findColorById(id:UUID, colorNo: int): Finds the color theme of a user's profile page using
the theme color number and user uuid.
findContactById(id:UUID): Finds user contact from their uuid.
findResumeById(id:UUID): Finds user resume from their uuid.
findProfilePictureById(id:UUID): Finds user profile picture from their uuid.

3.4.3.2. CourseRepository
Operations:
findCourseById(id:UUID): Finds the course with the given uuid.
findAll(): Finds all of the courses in the database.
findCourseByUniId(id:UUID): Finds the courses in a university using the given university
uuid.
findCourseByUniAndDepartment(uniId:UUID, departmentId): Finds the courses in the
selected university’s selected department using university and department uuid.
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3.4.3.3. UniversityRepository
Operations:
findAll(): Finds all of the universities in the database.
findUniversityByCountry(country:String): Finds the universities in the selected country
using the country name.
findWebsiteById(id:UUID): Finds the website link of the university with the given uuid.
findAcceptedDepartmentById(id:UUID): Finds the accepted departments in the selected
university with the given uuid.
findThemeColorByIdAndNumber(id:UUID, colorNo: int): Finds the theme color of the
selected university with the given uuid and color theme number.
findLogoById(id:UUID): Finds the logo of the university with the given university uuid.

3.4.3.4. AccountRepository
Operations:
findAccountById(id:UUID): Finds the user account with the given uuid.
findAccountByEmail(email:String): Finds the account with the given email.
findCourseByBilkentId(bilkentId:long): Finds the user account with the given Bilkent Id.

3.4.3.5. StudentRepository
Operations:
findPreApprovalStatusById(id:UUID): Finds the current status (approved, pending, or
rejected) of the Pre Approval File with the given student uuid.
findPreApprovalById(id:UUID): Finds the Pre Approval File of the given student using
student uuid.
findLearningAgreementById(id:UUID): Finds the Learning Agreement of the given
student.

3.4.3.6. FileRepository
Operations:
findProfilePhotoById(id:UUID): Finds the profile photo with the given user uuid.
findUniPhotoById(id:UUID): Finds the university photos with the given university uuid.

3.4.3.7. EvaluationRepository
Operations:
findEvaluationByUniversity(id:UUID): Finds the university evaluations with the given
university uuid.
findEvaluationByUniversityAndCourse(courseId:UUID, uniId: UUID): Finds the course
evaluation of the given university using their uuid.

35



3.4.3.8. ExperiencedStudentRepository
Operations:
findStudentByIsAccessible(isAccessible:boolean): Finds the experienced students who
are willing to help other students.
findStudentById(id:UUID): Finds the experienced student with the given user uuid.

3.4.3.9. ApprovedCoursesRepository
Operations:
findApprovedCourseByUniversity(uniID: uuid): Finds the approved courses of the given
university.
findApprovedCourseById(id: UUID): Finds the approved course with the given course
uuid.

3.4.3.10. CourseWishlistRepository
Operations:
findWishlistByStudentId(studentId:UUID): Finds the wishlist of the given student.

3.4.3.11. CourseRequestRepository
Operations:
findAll(): Finds all of the requested courses.
findRequestedCourseById(id:uuid): Finds the requested course using the given uuid.
findRequestedCourseByStudentId(studentId:UUID): Finds the requested courses of the
given student.

3.5. Design Patterns

3.5.1. Decorator Pattern
Beam handles a lot of file upload and fetching operations. Various application users will
need to upload files, access their files when they want to, or override the existing uploaded
files. The names of these files should be unique, and the name must point to the user who
uploaded the file. To ensure these requirements are met, we decided that using the
decorator pattern for the namings of the files that we upload to AWS S3 is essential.

Users may upload the files with whatever naming they want. However, as mentioned
before, we need to name the files uniquely while we are storing them in AWS S3. The
decorator pattern will provide the following functionalities while we are renaming the files:
add user-specific information like student id; add the type of the form as a prefix; add the
date of uploading as a postfix. For example, a user might upload the file as
“erasmus_preapproval.” Using the decorator pattern, we will manipulate the name, which
will become “Pre-Approval_<studentId>_2022-12-11 12:00:00”.
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The name of the decorator classes will be Timestamped, FileTyped, UserSpecified. Due to
the nature of the decorator pattern, these will be used with any combination possible, and
any additional decorations will be made with ease.

3.5.2. Strategy Pattern
Erasmus application process highly depends on the approval/rejection of the authorities for
different files and requests such as course requests, Pre-Approval Forms, and Learning
Agreements. Furthermore, some of the approvals are completed with a signature, whereas
some do not need any other data. In order to provide a maintainable approach for
approving or rejecting files/requests with different methods, we will use Strategy Design
Pattern. Therefore, we will have 2 strategies; one will be approving with a signature, and
the other will be plain approve. Since many types of staff including instructor and
coordinator approve some sort of file/request, using the Strategy Pattern will help us
maintain the approval process easily. At the same time, it will enable us to add more
approval methods in the feature if we need any.

Also, we will be using this pattern during the file upload process. BEAM provides automatic
file generation for the documents mentioned above. When students generate a file there
are two choices: the first one is downloading the generated document and then submitting
it whenever they want, and the second one is submitting the file right after the generation.
Since we have two different strategies, we will use Strategy Pattern to implement file
uploading process. Thanks to this pattern, we can add more strategies to the file upload
system in the future easily.

3.5.3. Façade Pattern
We implement the Facade pattern at two specific locations. One on the web-server layer,
and one on the database abstraction layer. On the web-server layer, we have separate
structures called services. Services abstract the implementation of the requests on each
endpoint. This way, controllers will still work with, at most, a minimal change if the
implementation changes.

On the other hand, we have abstracted the database layer using repositories. Repositories
handle the communication with the database. Therefore, services do not implement any
logic related to the database. This way, changes in the repositories do not affect the
services layer.

4. Glossary
Incoming student: Student visiting Bilkent University as part of Erasmus program

Outgoing student: Student visiting an abroad university as part of Erasmus program

Experienced student: Student who completed their Erasmus/Exchange program

Pre-Approval form: Official form that documents the course selections by the student
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Learning Agreement: Document required by Erasmus aiming to prepare an efficient exchange
process. [3]

Transfer form: Form that documents the transferable courses the student have taken in the host
university

Host university: University that the outgoing student will study as a part of Erasmus program

Mobility period: Period that starts at the host university

Pre-mobility period: Period before the student goes to the host university
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