
Bilkent University

Erasmus Registration
Management System
Project short-name: ERSMS (Group Number: 1E)

Final Report

Kutay Tire - 22001787

Atak Talay Yücel - 21901636

Yiğit Yalın - 22002178

Borga Haktan Bilen - 22002733

Berk Çakar - 22003021

Instructor: Eray Tüzün
Teaching Assistant(s): Muhammad Umair Ahmed, İdil Hanhan, Emre Sülün, Mert Kara

December 18, 2022

This report is submitted to the Department of Computer Engineering of Bilkent University in partial fulfillment of
the requirements of the Object-Oriented Software Engineering course CS319

Contents
Erasmus Registration Management System 1

1 Introduction 3
1.1 State of the System 3

2 Lessons Learned 3

3 User’s Guide 4
3.1 Admin 4
3.2 Dean 5
3.3 Chair 5
3.4 Course Instructor 5
3.5 Exchange Coordinator 5
3.6 Student 6
3.7 OISEP 6

4 Build & Execution Instructions 6

5 Work Allocations 7

6 Appendix 12

1 Introduction

The final form of the ERSMS software offers different screens and functionalities for
students, exchange coordinators, course instructors, chairs, deans, employees of
office of international students and exchange programs (OISEP) and finally admins.
All of the key features and ideas were implemented in the app to ensure the
customers’ expectations are satisfied. For a student to register to the system, an
employee from OISEP has to upload the score table of the corresponding
department as an initial step. Then, the exchange coordinator needs to place the
students via the “Auto-Place” button on his/her “Placements” page. After that,
students can register through the “Sign Up” page by activating their accounts.

The primary method of interaction is through forms and requests that are present in
digitalized forms in the system. Students can create and upload pre-approval forms
and course equivalence requests whereas exchange coordinators can upload CTE
forms from the official transcript provided them by the host schools. These forms will
be evaluated by corresponding administrative staff and their statues can also be
tracked through the system. There are also many bonus features like To-Do lists,
announcement panels, profile pages for students ,loggings of previous forms, charts
for displaying overall forms and request data, etc.

1.1 State of the System

● Although the back-end and the front-end of the messaging functionality are
implemented, they are not connected.

● There is a page for “Appointments” for students and exchange coordinators,
but its backend is not implemented.

● There are some small delays in the system especially when fetching large
data from the database.

● The functionality for manually placing students has not been implemented.

2 Lessons Learned

First of all, we learnt how to manage a team by coordinating meetings and doing the
proper work allocation. This was crucial because we were able to report back to each
other and monitor each other’s processes. Furthermore, giving enough time for
designing the structure of the backend pays off really well. Although we spent a lot of
time thinking about the relations between classes and how they are going to be
implemented, we were able to act on changes and modify our code much more
easily later on.

3

Another crucial lesson we were able to pick up was the significance of requirement
analysis. Developing an Erasmus management software requires a lot of
brainstorming. There were lots of attributes that could be added ,but there was simply
not enough time. As a result, we had to filter some qualities and add the ones that
are the most important for the client. We also understood the significance of design
patterns. Writing the code in a rigid way made our jobs really difficult in the first place.
To overcome this, we adapted some design patterns so that we could improve and
extend our code.

For languages, many of us did not have prior knowledge about .NET or Angular. We
also needed a strategy to learn these languages as quickly as possible and learn the
appropriate parts. This was a valuable lesson because trying to be expert on every
aspect of a language would cost us precious time. We adapted ourselves to learn
and use the relatively important parts for our project. Finally, we experienced many
conveniences when we applied commonly used software engineering principles and
practices such as AutoMapper library for DTOs, REST API architecture for endpoints
and N-layered architecture for the general structure of the project.

3 User’s Guide

3.1 Admin

The information of the admin account is hard-coded into the database. Therefore,
there isn’t any way to create an admin account throughout the app. Admin is
responsible for creating the accounts of the administrative staff and students.
However, creating a student account is optional for the admin as student accounts
are automatically created when the exchange coordinators place the students.

There is only an admin panel in the admin page. Through this panel, the admin
chooses the user type such as a chair or a dean and enters the necessary
information of the user. This information includes the name, last name, email, Bilkent
id number, password and confirmation password. Admins can also delete a user or
modify the information of a user through the admin panel.

4

3.2 Dean

Dean can enter the system after his/her account has been created by the admin. The
dean account contains three pages which are “Logging”, “Dashboard” and “Forms
and Requests”. The “Logging” page includes the previously sent CTE forms as the
signature of the dean is required only for the CTE forms. However, they can only see
the forms of their corresponding faculty. They can also filter the loggings by entering
the filtering value and can sort the data of a corresponding column if they require.

For the “Forms and Requests” part, they can either approve or decline a CTE form.
Naturally, they are able to see the previous decisions of the other administrative staff
such as the chair or the exchange coordinator. They can provide additional notes
regarding their decision which will be displayed to the student. Before making any
decision, they can monitor the courses and the corresponding grades in the CTE
form and the general information of the student such as his/her CGPA, host school or
email address. Finally, they can see the announcements through their dashboard.

3.3 Chair

The account of the chair is almost identical to the account of the dean. The only
difference for the chair is a chair can only see the CTE forms of his/her
corresponding department rather than the faculty which was the case for the dean.

3.4 Course Instructor

Course Instructors can enter the system after their accounts have been created by
the admin. The course coordinators have two main pages in their view, namely
“Forms and Requests” and “Logging.” In the “Forms and Requests” page, they can
view and respond to the course equivalence requests related to their courses. In the
“Logging” page, they can view all the course equivalence requests related to their
courses, including the canceled and archived ones.

3.5 Exchange Coordinator

Exchange coordinators can enter the system after their accounts have been created
by the admin. The exchange coordinators can manage the ERASMUS process of
their departments. They have 6 main pages in the exchange coordinators’ view,
namely “Dashboard,” “Forms and Requests,” “Appointments,” “Logging,”
“Placements,” “Messages.” In the dashboard, they can see the overview of the forms
and requests via charts. They also have a todo list which is updated automatically if
there are any updates on form submissions. They also can see the announcements
made by deans, department chairs, course coordinators, instructors and exchange
coordinators in the dashboard. In the “Forms and Requests” page, the exchange

5

coordinators can create CTE forms. They also can view and respond to all the active
forms and requests in the system. In the “Logging” page, the coordinators can see all
the forms and requests regardless of them being in process, i. e., archived and
canceled forms are also included in this page. In the “Placements” page, the
coordinates can see the students that are placed and that are in the waiting list. They
also can see a preview of the students. If a score table for their department is
uploaded by an OISEP official, they can perform auto-placement with one click on
this page. They also can download the current score table for their department. From
the navigation bar, they can see the notifications and make announcements.

3.6 Student

The students are allowed to enter the system if they are placed in a school. For the
activation of their accounts, they need to sign up as an initial step. The students can
view and manage their ERASMUS process. They have two main pages in the
students’ view, namely “Dashboard” and “Forms and Requests”. In the dashboard,
they can see the todo list where they can follow the tasks they should do. This todo
list is updated automatically if there are any updates on their application process,
such as approval of a form. They can also see the announcements made by deans,
department chairs, course coordinators, instructors and exchange coordinators in the
dashboard. In the forms and requests page. They can upload the pre-approval and
CTE forms and view the status of their forms. They can also cancel the forms they
sent.

3.7 OISEP

OISEP officials can enter the system after their accounts have been created by the
admin. The OISEP accounts have one functionality, which is managing the score
tables for every department. The only page that the OISEP officials encounter is the
dashboard in which they can upload the score tables. This page also allows the
OISEP officials to delete and download the score tables.

4 Build & Execution Instructions

In order to ease the deployment process, ERSMS uses Docker, which is a
containerization platform that is used to deliver software and its all dependencies
together in the form of containers. Thanks to Docker, ERSMS is
platform-independent, which means one can run the ERSMS on GNU/Linux. MacOS,
and Windows by using the same build and execution instructions.

For building and executing ERSMS:

1. You need to install the Docker software, if you do not have it installed on your
system. For that, official documentation here can be useful.

6

https://docs.docker.com/get-docker/

2. Similarly, you need to clone the project’s repository from GitHub to your
system using “git clone”.

3. Then, using your operating system’s shell (i.e., Bash on GNU/Linux, zsh on
MacOS, or Powershell on Windows) navigate to the directory where you
cloned the repository, for example, “cd ~/Downloads/ERSMS” on GNU/Linux
or MacOS.

4. Then, once again, if you have done the previous two steps correctly, you need
to see the “docker-compose.yml” and “Dockerfile” files in the root folder of the
ERSMS repository.

5. Now, for running the project:
a. If you are running the project for the first time, execute the following

commands respectively in your operating system’s shell again.
i. docker compose -f docker-compose.yml build
ii. After the first command is completed,

docker compose -f docker-compose.yml up
b. If you are running the project again after the first time, you need to

execute only
i. docker compose -f docker-compose.yml up

6. Once your terminal indicates that containers are up and functional, you can
use the ERSMS application from http://localhost:8000 or
https://localhost:8001 (You can always use the HTTPS one, but since the
HTTPS certificates are self-signed, your browser might complain about it.)

7. You can close the application by either terminating it from the terminal via
CTRL+C Windows and GNU/Linux, or CMD+C on MacOS; or you can open
up a separate terminal in the project repository’s root directory and run the
“docker compose down” command.

As can be seen, it is possible to deploy the ERSMS application mostly automated in
at most six main steps. Without Docker, it would be required to install .NET SDK,
Postgresql Database Server, Angular Framework, and Nginx Reverse Proxy by hand
and then deploy the project, which is tedious.

5 Work Allocations

Kutay Tire - 22001787

Analysis Report:
● Wrote the introduction part of the analysis report
● Drew and explained the use-cases in “Placement” package
● Drew and explained state machine diagrams of the forms
● Wrote the improvement summary for the second iteration
● Modified the class and state diagrams for the second iteration
● Wrote some parts of the non-functional requirements

Design Report:
● Modified the introduction part and the design goals of the project

7

http://localhost:5000
https://localhost:5001

● Drew the using entity objects and explained the relation between them
● Drew the “Controller Layer” by creating the class diagrams for controllers and

their methods
● Explained the present methods and functionalities of the “Controller Layer”
● Wrote the improvement summary for the second iteration

Implementation:
● Worked on the front-end of the project
● Created the initial version of the charts at the dashboard page of the

exchange coordinator
● Designed the initial version of the routing of the app
● Designed the “Placements” and “Logging” pages of the exchange coordinator

specifically by placing the tables and implementing the logic behind.
● Used form and to-do list services to connect the backend of the chart and

to-do list components
● Added the announcement panel for the dean, chair, student and instructor
● Made bug fixes for the front-end.

Final Report:
● Wrote the introduction part and the current status of the system
● Wrote the “Lessons Learned” part of the report
● Wrote the User’s Guide of the report
● Wrote work allocation for himself

Atak Talay Yücel - 21901636

Analysis Report:
● Wrote some parts in functional requirements
● Drew and explained the use-cases in “Management” package
● Drew the class diagram
● Wrote some parts in non-functional Requirements

Design Report:
● Drew the “User Interface Layer” using entity objects and explained the

relation between them
● Made improvements on “Data Access Layer”
● Explained the relations between the entity objects

Implementation:
● Worked on the front-end of the project.
● Designed the Dashboard, Appointments, Placements, Messages, Login,

SignUp, Profile Pages.
● Created the panels for viewing and creating Forms & Requests in the

application and connected them to the backend using the services. Therefore,
connected “Forms and Requests” and “Logging” pages to the backend using
the services.

8

● Created the ToDo List and connected it to the backend using the services.
● Designed navigation bars, notifications, announcement.
● Designed the Admin Panel.
● Tested the application by trying various cases to find edge cases and bugs of

the application.

Final Report:
● Wrote work allocation for himself
● Took screenshots of Swagger

Borga Haktan Bilen - 22002733

Analysis Report:
● Drew the auxiliary package for use case diagram
● Drew a part of authentication package for use case diagram
● Wrote explanations for authentication package and auxiliary package for use

case diagram
● Drew and wrote explanations for activity diagrams
● Drew a part of class diagram and proof-read the diagram
● Modified the activity diagrams for the second iteration according to the

feedback received
● Renamed the auxiliary package components of the use case diagram for the

second iteration
Design Report:

● Drew subsystem decomposition and wrote explanation for the diagram
● Co-drew access control matrix for the section 2.5
● Drew final object diagram and wrote explanation for it
● Wrote external packages used in the application and packages created for the

(within the) application.
● Drew repository layer diagram
● Wrote explanations for service and controller layer

Implementation:
● Created entity model structure for the backend
● Wrote repository classes for the entities
● Created service layer structure and wrote services
● Wrote REST API endpoints by creating controller layer
● Tested endpoints using Postman and Swagger, fixed bugs according to the

tests
● Wrote service layer for frontend in order to connect backend to frontend
● Created models layer (representing DTOs) for frontend
● Bug fixing for the frontend

Final Report:
● Wrote work allocation for himself
● Took screenshots of different views of the application

9

Berk Çakar

Analysis Report:
● Wrote the current system section of the analysis report
● Wrote the proposed system section of the analysis report
● Wrote the functional requirement’s views subsection in the analysis report
● Wrote the non-functional requirements section of the analysis report
● Drew the Logging package for the use case diagram
● Wrote explanations for the Logging package (i.e., flow of events)
● Drew user interface mock-ups for the analysis report
● Improved the non-functional requirements section and the use case diagram

based on the given feedback in the second iteration of the analysis report.

Design Report:
● Wrote the top two design goals subsection of the design report
● Drew the deployment diagram of the application, and explained the

deployment procedure for the design report.
● Wrote the hardware/software software mapping subsection for the design

report with performing a market research for picking a right cloud solution.
● Wrote the persistent data management subsection of the design report.
● Co-drew the access control matrix
● Wrote the boundary conditions subsection of the design report
● Wrote the design patterns subsection of the design report
● Wrote the glossary part of the design report

Implementation:
● Initialized the project structure (.NET backend + Angular frontend), and

determined the required dependencies (i.e., external packages) for the
implementation.

● Implemented the authentication system in the backend (including
AuthenticationController, AuthenticationService, UserService, UserRepository,
and TokenService classes).

● Initialized the actor related classes (including DomainUser, Admin, OISEP,
CourseCoordinatorInstructor, DeanDepartmentChair, Student, and
ExchangeCoordinator classes).

● Implemented the automated student placement based on the placement table
uploaded by the OISEP staff (including AutoPlacer, PlacementController,
PlacementService, PlacementRepository classes)

● Documented the backend source code using XMLDoc comments and
generated a static documentation website via DocFX

● Overall refactoring and bug fixing of the backend code
● Implemented the routing and access guard mechanisms in the frontend
● Implemented the login and sign up screens with corresponding REST API

calls

10

● Implemented Admin and OISEP dashboards by revising the previous design
from the team members with corresponding REST API calls

● Fixed a critical bug in Student’s forms and requests panel
● Implemented a “toaster” service, so that success and error messages can be

delivered to the end user graphically
● Containerized the project using Docker for automating the deployment

process

Final Report:
● Wrote the build and execution instructions for the final report
● Wrote work allocation for himself
● Took screenshots of different views of the application

Yiğit Yalın
Analysis Report:

● Drew the Profile & Social part of the diagram and wrote their explanations.
● Drew the sequence diagrams and wrote their explanations.
● Wrote the non-functional requirements part.

Design Report:
● Wrote the object design trade-offs part.
● Modified the User Interface layer.

Implementation:
● Worked on the front-end of the project
● Implemented the appointments view.
● Implemented several dialogs for forms, file uploads and confirmations.
● Implemented the placements page for exchange coordinators and its

connection to the backend.
● Implemented the models which are the frontend counterparts of the backend

DTOs.
● Implemented some components of the dashboard, forms and requests and

logging views.
● Implemented the student profiles.

Final Report:
● Wrote the User’s Guide part of the report.
● Wrote work allocation for himself
● Took screenshots of different views of the application

11

6 Appendix

A. Admin View

12

B. Login/Signup View

13

C. OISEP View

D. Exchange Coordinator View

15

16

E. Form Views

17

18

19

F. Student View

20

21

G. Dean View

H. Chair View

I. Swagger Web View

22

23

