
A Privacy-Preserving Solution for the Bipartite
Ranking Problem

Noushin Salek Faramarzi, Erman Ayday, H. Altay Güvenir
Computer Engineering Department, Bilkent University

Email: noushin.salek@bilkent.edu.tr, erman@cs.bilkent.edu.tr, guvenir@bilkent.edu.tr

Abstract—In this paper, we propose an efficient solution for the
privacy-preserving of a bipartite ranking algorithm. The bipartite
ranking problem can be considered as finding a function that
ranks positive instances (in a dataset) higher than the negative
ones. However, one common concern for all the existing schemes
is the privacy of individuals in the dataset. That is, one (e.g., a
researcher) needs to access the records of all individuals in the
dataset in order to run the algorithm. This privacy concern puts
limitations on the use of sensitive personal data for such analysis.
The RIMARC (Ranking Instances by Maximizing Area under the
ROC Curve) algorithm solves the bipartite ranking problem by
learning a model to rank instances. As part of the model, it learns
weights for each feature by analyzing the area under receiver
operating characteristic (ROC) curve. RIMARC algorithm is
shown to be more accurate and efficient than its counterparts.
Thus, we use this algorithm as a building-block and provide
a privacy-preserving version of the RIMARC algorithm using
homomorphic encryption and secure multi-party computation.
Our proposed algorithm lets a data owner outsource the storage
and processing of its encrypted dataset to a semi-trusted cloud.
Then, a researcher can get the results of his/her queries (to learn
the ranking function) on the dataset by interacting with the cloud.
During this process, neither the researcher nor the cloud learns
any information about the raw dataset. We prove the security of
the proposed algorithm and show its efficiency via experiments
on real data.

I. INTRODUCTION

The goal of privacy-preserving algorithms in data mining is

to lower the risk of misuse of individuals’ sensitive data and

at the same time produce high quality results (i.e., similar to

the ones that would be produced in the absence of privacy

preserving techniques [1]. In this work, we focus on the

bipartite ranking problem and we propose an algorithm that

efficiently solves the problem in a privacy-preserving way.

Bipartite ranking problem is about learning a ranking func-

tion from a training set of positively and negatively labelled

examples. Once the resulting ranking function is applied to a

new (unlabelled) instance, the function is expected to establish

a total order in which positive instances precede negative

ones [2]. The most commonly used criterion for measuring

the quality of the resulting bipartite ranking function is the

area under the receiver operating characteristic (ROC) curve

(referred as AUC).

One common drawback of the algorithms that solve the

bipartite ranking problem is their applicability in real-life

settings. This drawback arises due to privacy-sensitivity of

personal data that is collected by the data owner. In most

cases, the data owner (that collects and labels the data) does

not have sufficient resources (i.e., storage and computation

power) to answer the queries (to learn a ranking function on

the dataset) of the researchers about the dataset. For instance,

most researchers request sensitive medical information from

hospitals to work on, but privacy concerns make the hospitals

unwilling to provide such information.

On the one hand, getting the result of such queries (and

learning the ranking function) is very valuable for the re-

searchers in most cases. On the other hand, the data owner

does not directly share its own dataset with the researcher due

to the aforementioned privacy and legal concerns. Therefore,

usually, the data owner has two options: (i) the data owner may

anonymize the dataset before sharing it with the researchers,

which reduces the utility (or accuracy) of the dataset, and

hence the query result, or (ii) it can outsource the storage and

processing of the dataset to a trusted party, however existence

of such a trusted party is not practical in most real-life settings.

In this work, we focus on the latter option, but rather than

assuming the existence of a fully trusted party, we resort to

using cryptographic techniques.

As discussed, there are many algorithms in the literature

that solves the bipartite ranking problem [2], [3]. A recent

algorithm, named RIMARC (Ranking Instances by Maxi-

mizing Area under the ROC Curve) achieves high AUC

values compared to other works, while providing a low time

complexity [4]. In this work, we use the RIMARC algorithm

as a building-block and propose a privacy-preserving version

of the RIMARC algorithm. To achieve our goal, we use

homomorphic encryption and secure multi-party computation.

The proposed algorithm ensures that no party other than

the data owner can access to the content of the database.

Furthermore, the researchers can only obtain the results of

their queries, and the cloud does not learn anything about the

dataset. We prove the security of the proposed algorithm and

show its efficiency via experiments on real data.

The rest of the paper is organized as follows. In the

next section, we provide background information about the

RIMARC algorithm and the cryptographic tools we use in our

algorithm. In Section III, we describe our proposed privacy-

preserving algorithm in detail and we also provide a brief

security analysis. In Section IV, we provide the experimental

results. Finally, in Section V, we conclude the paper and

discuss potential future works.

2016 15th IEEE International Conference on Machine Learning and Applications

978-1-5090-6167-9/16 $31.00 © 2016 IEEE

DOI 10.1109/ICMLA.2016.27

375

II. BACKGROUND

Here, we provide brief backgrounds on the technical con-

cepts and algorithms we use in this paper.

A. Receiver Operating Characteristic Curve

Receiver operating characteristic (ROC) curve is a well-

known tool for evaluating the performance of binary classi-

fiers. It is a powerful metric compared to traditional accuracy

metrics. The ROC curve is generated by plotting the ratio of

the true positive rate (TPR) to the false positive rate (FPR) at

different threshold values. Each (FPR, TPR) pair corresponds

to a specific point on the ROC curve. A perfect classifier yields

a point on the upper left corner (or coordinate (0, 1)) of the

ROC space. On the other hand, a completely random guess

would give a point along a diagonal line from the left bottom

to the top right corners towards (0.5, 0.5).

B. Area Under the ROC Curve

The area under the ROC curve (AUC) is a measure of

the probability that a classifier will rank a randomly chosen

positive instance higher than a randomly chosen negative in-

stance. The highest possible AUC value is 1.0 which represents

a perfect classification, and a value of 0.5 corresponds to

a random decision [5]. Therefore, the values below 0.5 can

be easily neglected. A feature with a higher AUC value can

determine the class label with a higher relevance. AUC is an

indicator for quality of ranking and the higher AUC implies

better ranking.

C. RIMARC Algorithm

Ranking Instances by Maximizing Area under the ROC

Curve (RIMARC) algorithm learns a model that ranks in-

stances based on how they are likely to have a positive label; an

attempt for maximizing the AUC [4]. Each ranking function

is learned for each feature in order to maximize the AUC.

The AUC value, obtained for a single feature shows the effect

of that feature in ranking. An important property of such a

ranking function is that it is in a human readable form that

can be easily assessed by domain experts.

In order to construct the ranking function for a given feature

fi, all continuous features are first discretized into categorical

ones in a way that optimizes the AUC. This discretization can

be done by a method called “MAD2C” [6]. The score value

(S) for a given category j of a specific feature fi, including

discretized continuous features, can be computed as below:

S(cji) =
P (cji)

P (cji) +N(cji)
(1)

Here, cji represents the jth category of feature fi. Also, P (cji)
and N(cji) represent the total number of positive and negative

instances of cji , respectively.

All the categories (of a given feature) are sorted according

to their score values computed in the previous step. Since

the ranking function used by RIMARC always results in a

convex ROC curve, the AUC is always greater than or equal

to 0.5. The ROC curve points, (FPR, TPR), corresponding to

each score value is calculated at this step. Using these points,

the AUC value is determined. The weight of a feature, fi is

computed as, wi = 2(AUC(i) − 0.5), where AUC(i) is the

AUC obtained for feature fi.

Label Color
N R
P G
N B
N W
P Y
N W
N R
N B
N Y
P G
N W
P G
P G
N R
N Y

Category Representation
R 1 0 0 0 0
G 0 1 0 0 0
Y 0 0 1 0 0
B 0 0 0 1 0
W 0 0 0 0 1

(a) (b)

Fig. 1. Toy example of the RIMARC algorithm. (a) training dataset including
a single feature (color) with 5 categories. Labels “N” and “P” represent
the negative and positive labels, respectively. (b) bit representations of the
categories (this representation will be discussed in Section III).

A toy example. To understand how RIMARC works, con-

sider a toy training dataset with a single feature as shown

in Fig. 1(a). The feature we consider in this example has

a total of 5 categories (R,B,W, Y,G). The score values

of these categories are obtained, using Eq. 1, as follows:

S(R) = S(B) = S(W) = 0, S(Y) = 0.33, S(G) = 1.0.

As shown in Fig. 2, the score values are sorted and mapped

on an axis. Then, TPR and FPR values calculated for each

score value. AUC value is determined using the area under

the ROC curve.

D. Homomorphic Encryption

In this work, we use the Paillier cryptosystem [7] that

provides additive homomorphism. Let p and q be two large

prime numbers, n = p · q be the security parameter, g be

a random integer (such that g ∈ Z
∗
n2), and λ be the least

common multiple of (p − 1) and (q − 1). Let also the mod-

ular multiplicative inverse μ = (L(gλ mod n2))−1, where

L(u) = (u− 1)/n. Then, the public key pk is represented by

the pair (n, g) and the private key sk is represented by the

pair (λ, μ).
Encryption of a message m (m ∈ Zn) is done by selecting

a random number r (r ∈ Z
∗
n) and computing the ciphertext

E(m) = gm · rn mod n2. Decryption of an encrypted

message c (c ∈ Z
∗
n2) is done by computing D(c, sk) = L(cλ

mod n2) · μ mod n.

The Paillier cryptosystem is an additively homomorphic

cryptosystem and, as such, it supports some computations in

the ciphertext domain. In particular, let m1 and m2 be two

messages encrypted with the same public key pk. Then, the

encryption of the sum of m1 and m2 can be computed as

E(m1 +m2) = E(m1) ·E(m2). Furthermore, any ciphertext

E(m) raised to a constant number c is equal to the encryption

of the product of the corresponding plaintext and the constant

as E(m · c) = E(m)c.

376

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False Positive Rate

Tr
ue

Po
si

tiv
e

R
at

e

AUC = 0.98AUUUCCC 99888

P1P2

P3

P4

Fig. 2. Calculation of the TPR and FPR values for the toy example (in Fig. 1(a)). Score values of the categories are determined using Eq. 1. Thus,
S(R) = S(B) = S(W) = 0, S(Y) = 0.33, and S(G) = 1.0. TPR and FPR values are computed for each score value as shown in the figure. Then, the
AUC value is computed in the graph based on the computed (FPR,TPR) points as (P1,P2,P3,P4).

III. PROPOSED SOLUTION

In this section, our solution for privacy preserving RIMARC

algorithm is explained in detail.

A. System and Threat Models

We have three main parties in the system: (i) data owner,

which collects and provides the dataset that consists of sen-

sitive data, (ii) cloud, which is responsible for the storage

and processing of the dataset, and (iii) researcher, which

is interested in analyzing the dataset and obtaining ranking

functions out of it.

Dataset is stored at the cloud in encrypted form (details

are provided in the next subsections). Our goal is to make

sure that no party other than the data owner can access the

plaintext (non-encrypted) format of the whole dataset. We

also want to make sure that (i) the cloud does not learn

any information about the dataset (including the result that

is provided to the researcher), and (ii) the researcher only

learns the results of his (authorized) query, and nothing else. In

order to achieve these goals, we propose a privacy-preserving

algorithm between the cloud and the researcher in order to

compute that AUC values. Our proposed protocol involves

cryptographic primitives such as homomorphic encryption and

secure two-party computation.

We assume the data owner to have public/private key

pair (pko, sko) for the Paillier cryptosystem (as discussed in

Section II-D). Public key of the data owner is known by all

parties in the system and the secret key is only shared with

the researcher (so that the researcher can decrypt and obtain

the results of his queries). Note that, rather than providing the

private key of of the data owner to the researcher, it is also

possible to use a threshold cryptography scheme, in which

the private key is divided into two parts and these parts are

distributed to the researcher and the cloud [8]. This threshold

cryptography feature can be easily integrated into the proposed

algorithm depending on the use case scenario. Our proposed

system model is also illustrated in Fig. 3.

CLOUD

(pko,sko)

DATA OWNER RESEARCHER

(pko,sko)

(pko) and
encrypted dataset

Privacy-preserving
algorithm to compute
the ranking function

Fig. 3. Proposed system model.

We assume all parties in the system to be honest-but-

curious. That means both the cloud and the researcher can try

to learn the sensitive data of the data owner (i.e., the content of

the database), but they honestly follow the protocol steps. We

also assume that the researcher and the cloud does not collude

during the protocol. Of course, not every researcher can send

queries to the dataset; the researcher should be authorized in

order to do so. This can be managed via an access control

mechanism, which is out of the scope of this work. Finally, we

assume all communications between the parties to be secured

via end-to-end encryption.

B. Dataset Format and Encryption

Initially, the data owner collects data from record owners

and constructs the dataset. For instance, this can be considered

as a hospital collecting data from patients. We assume that

the dataset consists of the records of N individuals (e.g., N
patients)1. Set of features in the dataset is illustrated as F =
{f1, f2, . . . , fn} (we assume there are n features). Also, set

of categories for a given feature fi is represented as Ci =

1We also assume that continuous features are first discretized into categor-
ical ones.

377

{c1i , c2i , . . . , cki }. Here, we assume there are k categories per

feature for simplicity, but each feature may also have different

number of categories as well. Each category also has a label

�ji , where �ji ∈ {0, 1}2, i ∈ F, and j ∈ Ci.

We represent a category cji as below:

cji = bj,1i ||bj,2i || . . . ||bj,ji || . . . ||bj,ki ,

where bj,mi = 0 when m �= j and bj,mi = 1 when m = j.

For example, the categories of color feature in our toy ex-

ample (discussed in Section II-C) and their corresponding bit

representations are illustrated in Fig. 1(b). In this example,

we have 5 categories (i.e., colors) for the color feature, and

hence we use 5 bits in the representation, each assigned for

a particular color. We use Paillier cryptosystem to encrypt

the whole dataset. In a nutshell, the data owner encrypts

all categories and corresponding labels using its public key

(pko). To encrypt a category cji , the owner encrypts all its

bits individually. Thus, we represent the encryption of cji as

[bj,1i]||[bj,2i]|| . . . ||[bj,,ki].3 The owner also encrypts all labels �ji
to obtain the corresponding [�ji] values. After encryption, the

data owner sends the encrypted data to the cloud for storage.

C. Privacy-Preserving RIMARC Algorithm

In the following, for the simplicity of the presentation, we

describe the proposed algorithm for a single feature fi with k
categories. Note that the algorithm can be easily generalized

to handle multiple features (as we also show in our evaluations

in Section IV). The main steps of the proposed solution are

also illustrated in Fig. 4.

Initially, the cloud counts the number of instances of each

category in the dataset. To compute the sum of instances for

the category cji , the cloud computes [T (cji)] =
∑N

m=1[b
m,j
i].

This summation can be easily carried out by using the homo-

morphic properties of the Paillier cryptosystem (as discussed

in Section II-D).

Then, the cloud counts the number of positive labelled

instances for each category. To do so, for each category cji ,

the cloud needs to compute [P (cji)] =
∑N

m=1[b
m,j
i][�mi]. This

computation, however cannot be carried out by using the

homomorphic properties of the Paillier cryptosystem (as the

homomorphic properties does not support multiplication of

two encrypted messages). Therefore, we propose using the “se-

cure multiplication algorithm” (in Algorithm 1) between the

cloud and the researcher in order to handle this multiplication

in a privacy-preserving way.

We note that step 7 of Algorithm 1 is to remove the noise

from the product and it can be easily done at the cloud using

the homomorphic properties of the Paillier cryptosystem. We

discuss the security of the secure multiplication algorithm in

Section III-D. Similarly, the cloud also computes the counts

for number of negative labelled instances for each category.

2�ji = 0 represents a negative instance and �ji = 1 represents a positive
instance.

3In the rest of the paper, we use angled brackets to represent the encryption
of a message via Paillier encryption under the public key of the data owner.

Algorithm 1 Secure Multiplication Algorithm

Input: @Cloud: encrypted messages [a] and [b]. @Researcher:
(pko, sko).

Output: @Cloud: [a× b]. @Reseacher: ⊥.
1: The cloud generates two random numbers r1 and r2 from the set
{1,. . . ,K}.

2: The cloud masks [a] and [b]:
[â]← [a]× [−r1] = [a− r1],
[b̂]← [b]× [−r2] = [b− r2].

3: The cloud sends [â] and [b̂] to the researcher.

4: The researcher decrypts [â] and [b̂] with sko:
â← D([â], sko),
b̂← D([b̂], sko).

5: The researcher computes â× b̂
6: The researcher encrypts the results with pko to get [â × b̂] and

sends it to the cloud.
7: The cloud computes [a×b]← [â× b̂]+[a]r2 +[b]r1 +[−r1×r2].

To do so, for each category cji , the cloud needs to compute

[N(cji)] = [T (cji)]−[P (cji)]. Note that, this computation can be

easily handled at the cloud using the homomorphic properties

of the Paillier cryptosystem.

Next, the cloud computes the score value for each category.

As discussed, the encrypted score value for a category cji
is computed as [S(cji)] = [P (cji)]/[T (c

j
i)]. Since Paillier

cryptosystem does not support division of two encrypted

numbers, we propose normalizing the score value of each

category. For this normalization, we compute the following

normalization constant for each category cji :

[Zj
i] =

k∏

m=1
m �=j

[T (cmi)]. (2)

Since this computation requires multiplication of encrypted

messages, we use the secure multiplication protocol in Algo-

rithm 1 (i.e., we iteratively multiply pairwise values). Then, the

cloud computes the normalized score value for each category

cji as [Ŝ(cji)] = [P (cji)] × [Zj
i]. We emphasize that we

only need the order relationship between the score values

of categories to compute the AUC values. Therefore, this

normalization does not decrease the accuracy of the algorithm.

The computed normalized score values ([Ŝ(cji)]) need to

be sorted in order to compute the AUC values. This sort-

ing operation can be securely carried on between the cloud

and the researcher by using a “pairwise secure compari-

son algorithm” [9]. This interactive algorithm compares two

encrypted numbers and returns an encrypted value (to the

cloud) indicating which value is greater. However, in our

scenario, a feature may include tens of categories. Thus,

such a pairwise comparison algorithm requires hundreds of

pairwise comparisons, significantly reducing the efficiency

of the algorithm. Therefore, for this step, we propose a

more lightweight algorithm which only leaks the order of

the normalized score values to the cloud. We describe this

lightweight sorting algorithm in the following.

The cloud initially selects a random number r from the

set {1, . . . ,K} and encrypts it via pko to get [r]. Then, for

378

1. Ask cloud to compute the ranking function for a
given feature that has k categories

2. Compute the total number of instances of each
category using the homomorphic properties of the

Paillier cryptosystem

5. Compute the score value for each category using
the secure multiplication algorithm (Algorithm 1)

4. Compute the total number of negative labelled
instances using the homomorphic properties of the

Paillier cryptosystem

3. Compute the total number of positive labelled
instances using the secure multiplication

algorithm (Algorithm 1)

6. Sort the computed score values using the secure
sorting algorithm

7. Compute the k+1 (FPR,TPR) points using the
homomorphic properties of the Paillier cryptosystem

and send them to the researcher
8. Decrypt the received points and compute the AUC

CLOUD RESEARCHER

Fig. 4. Overview of the proposed solution. Steps 3, 5, and 6 are interactive steps between the cloud and the researcher.

each normalized score value [Ŝ(cji)], the cloud computes the

masked score value [S̃(cji)] = [Ŝ(cji)] + [r]. Let g(.) be a

random shuffling function. The cloud shuffles the order of

the masked score values as g([S̃(c1i)], [S̃(c
2
i)], . . . , [S̃(c

k
i)])

and sends the masked (and encrypted) score values to the

researcher in the shuffled order. The researcher decrypts the

received score values, decrypts them using sko, and sorts them.

Since all normalized score values are masked with the

same random number, their masked order is the same as the

unmasked one. Therefore, the researcher can compute the

correct sorting of these values. After the values are sorted

at the researcher, he/she only sends the sorted order of the

masked score values back to the cloud. Using this information

and the shuffling order of the score values (which is known

by the cloud), the cloud obtains the sorted order of the score

values of all categories. We briefly discuss the security of this

sorting algorithm in Section III-D.

The researcher only needs the k + 1 (FPR, TPR) points

to generate the AUC curve4. Knowing the order of [Ŝ(cji)]
values, the cloud can easily compute the k + 1 encrypted

([FPR],[TPR]) points by using the number of positive and

negative labelled instances for each category (i.e., [P (cji)]
and [N(cji)] values) and by using the homomorphic properties

of the Paillier cryptosystem (computation of the (FPR, TPR)

points are discussed in Section II-C). Finally, the cloud sends

the k + 1 encrypted points to the researcher, the researcher

decrypts the received values by using sko, and constructs the

AUC curve. Note that TPR is the fraction of the true positives

to the total positive labelled instances, and FPR is the fraction

4Since we assume there are k categories, the AUC curve has totally k+1
points.

of the false positives to the total negative labelled instances.

Since, this division cannot be carried out at the cloud, the

cloud sends the numerator and denominator of each point to

the researcher and the division is done at the researcher after

the decryption.

D. Security Evaluation

Throughout the proposed algorithm, the cloud does not learn

anything about the dataset of the data owner, and the researcher

only learns the (FPR, TPR) points to generate the AUC curve.

The proposed algorithm preserves the privacy of data

owner’s data relying on the security strength of the Paillier

cryptosystem. The extensive security evaluation of the Paillier

cryptosystem can be found in [7]. In particular, it is proved

that the cryptosystem provides one-wayness (based on the

composite residuosity class problem) and semantic security5

(based on the decisional composite residuosity assumption).

We also use two interactive algorithms between the cloud

and the researcher: (i) secure multiplication, and (ii) sorting.

We briefly comment on their security in the following. During

the secure multiplication algorithm, the cloud only gets the

encrypted multiplication value, and hence computes [P (cji)].
On the other hand, the researcher (due to the masking with

random numbers r1 and r2) cannot observe any information

about the labels or the categories.

During the sorting algorithm, since the values are masked

and the researcher does not know the random number selected

by the cloud, the researcher cannot learn the actual normalized

score values. Furthermore, since the score values are shuffled

5The adversary cannot distinguish between two different encryptions of the
same message.

379

Security Parameter n=512-bits Security Parameter n=1024-bits

16 Features 31 Features 16 Features 31 Features

N=285
Individuals 9 minutes 17 minutes 56 minutes 106 minutes

N=569
Individuals 19 minutes 26 minutes 97 minutes 187 minutes

TABLE I
TIME COMPLEXITY OF THE PROPOSED ALGORITHM FOR DIFFERENT SIZES

OF THE SECURITY PARAMETER (n), DIFFERENT NUMBER OF FEATURES IN

THE DATASET, AND DIFFERENT DATABASE SIZES.

at the cloud, the researcher cannot also learn which category

has the highest score value. The cloud only learns the order

of the normalized score values of the categories. Note that

the data owner may prefer to keep the link between the bit

encoding of a category and the name of the category hidden

from the cloud (as the cloud does not need this information

to do its operations). In such a scenario, learning the order

relationship between the normalized score values does not

mean anything to the cloud. Also, the selected random number

r (from the set {1, . . . ,K}) may be 0 with some probability.

In this case, the researcher may learn the actual values of

the normalized score values. However, this probability is

negligibly small, especially for larger values of K.

IV. EVALUATION

In this section, we implement and evaluate the proposed

algorithm on a real dataset. We used Wisconsin Diagnostic

Breast Cancer (WDBC) dataset from UCI repository [10].

Dataset contains 569 individuals, each consisting of 31 fea-

tures and labeled as either“M” for malignant (i.e., positive) and

“B” for benign (i.e., negative). Also, each feature has different

number of categories ranging from 8 to 19. As discussed in

section II-C, we used MAD2C algorithm for this step.

To evaluate the practicality of the proposed algorithm,

we implemented it and assessed its storage requirement and

computational complexity on Intel Core i5-2430M CPU with

2.40 GHz processor under Windows 7. Our implementation is

in Java and it relies on the MySQL 5.5 database. We set the

size of the security parameter n for the Paillier cryptosystem

to 512 and 1024 bits in different experiments. In Table I, we

summarize the time complexity of the proposed algorithm.

Based on the results, we can say that the time complexity of

the algorithm increases linearly with the number of individuals

and features. Total time to run the privacy-preserving algo-

rithm is on the order of minutes. Furthermore, the proposed

algorithm is highly parallelizable as computations on each

feature can be carried out independently. We will work on

the parallelization of the algorithm in future work and we

expect an improvement of at least one order of magnitude

in this way. In terms of storage, the original (non-encrypted)

dataset requires 120KB of storage space, while the encrypted

version (thought the proposed algorithm) requires a disk space

of 30MB when n = 512-bits and 60MB when n = 1024-bits.

This increase in the storage requirement is due to the ciphertext

expansion of the Paillier encryption. There exists techniques

to reduce this ciphertext expansion (such as packing [11]),

and we will utilize these techniques to optimize the storage

requirement in future work.

Note that non-private version of the algorithm runs on the

order of seconds and requires less storage space. However, we

believe that this increase in time and storage complexity is a

reasonable compromise in order to obtain a privacy-preserving

algorithm, which is a crucial requirement to process personal

data without privacy and legal concerns. We emphasize that

the accuracy of the results (i.e., obtained ranking function) for

the private algorithm is exactly the same as the non-private

version. To summarize, the performance numbers we obtained

show the practicality of our privacy-preserving algorithm.

V. CONCLUSION AND FUTURE WORK

In this work, we have developed a privacy-preserving so-

lution for the bipartite ranking problem. We have developed

an efficient and privacy-preserving version of the RIMARC

algorithm. We have used cryptographic tools such as homo-

morphic encryption and secure multi-party computation to

achieve our goals. Then, any researcher can mine the sensitive

data by interacting with the cloud. The proposed algorithm

guarantees that the cloud does not learn any information about

the sensitive data, while the researcher only learns the result of

his query. We have also showed the efficiency of the proposed

algorithm via implementation using a real-life dataset. For

future work, we will optimize the storage requirements of

the proposed algorithm by using the packing technique. We

will also further reduce the time complexity of the proposed

algorithm by parallelizing our implementation for each feature.

REFERENCES

[1] Y. Lindell and B. Pinkas, “Privacy preserving data mining,” in Annual
International Cryptology Conference. Springer, 2000, pp. 36–54.

[2] W. Kotlowski, K. J. Dembczynski, and E. Huellermeier, “Bipartite
ranking through minimization of univariate loss,” in Proceedings of
ICML, 2011, pp. 1113–1120.

[3] M. R. Amini, T. V. Truong, and C. Goutte, “A boosting algorithm
for learning bipartite ranking functions with partially labeled data,” in
Proceedings of ACM SIGIR, 2008, pp. 99–106.

[4] H. A. Güvenir and M. Kurtcephe, “Ranking instances by maximizing
the area under roc curve,” IEEE Transactions on Knowledge and Data
Engineering, vol. 25, no. 10, pp. 2356–2366, 2013.

[5] T. Fawcett, “An introduction to roc analysis,” Pattern recognition letters,
vol. 27, no. 8, pp. 861–874, 2006.

[6] M. Kurtcephe and H. A. Güvenir, “A discretization method based
on maximizing the area under receiver operating characteristic curve,”
International Journal of Pattern Recognition and Artificial Intelligence,
vol. 27, no. 01, p. 1350002, 2013.

[7] P. Paillier, “Public-key cryptosystems based on composite degree resid-
uosity classes,” in International Conference on the Theory and Applica-
tions of Cryptographic Techniques. Springer, 1999, pp. 223–238.

[8] G. Ateniese, K. Fu, M. Green, and S. Hohenberger, “Improved proxy
re-encryption schemes with applications to secure distributed storage,”
ACM Transactions on Information and System Security (TISSEC), vol. 9,
no. 1, pp. 1–30, 2006.

[9] Z. Erkin, M. Franz, J. Guajardo, S. Katzenbeisser, I. Lagendijk, and
T. Toft, “Privacy-preserving face recognition,” in International Sympo-
sium on Privacy Enhancing Technologies Symposium. Springer, 2009,
pp. 235–253.

[10] M. Lichman, “UCI machine learning repository,” 2013.
[11] Z. Erkin, T. Veugen, T. Toft, and R. L. Lagendijk, “Generating private

recommendations efficiently using homomorphic encryption and data
packing,” IEEE Transactions on Information Forensics and Security,
vol. 7, no. 3, pp. 1053–1066, 2012.

380

