
1

K.Dincer Programming
Languages - Chapter 8

1

Chapter 8 - Subprograms
Fundamental Characteristics of

Subprograms
1. A subprogram has a single entry point
2. The caller is suspended during execution

of the called subprogram
3. Control always returns to the caller when

the called subprogram’s execution
terminates

Basic Definitions:
• A subprogram definition is a description

of the actions of the subprogram
abstraction

• A subprogram call is an explicit request
that the subprogram be executed

• A subprogram header is the first line of
the definition, including the name, the
kind of subprogram, and the formal
parameters

• The parameter profile of a subprogram
is the number, order, and types of its
parameters

• The protocol of a subprogram is its
parameter profile plus, if it is a function,
its return type.

• A subprogram declaration provides the
protocol, but not the body, of the
subprogram. Importance of declarations?

K.Dincer Programming
Languages - Chapter 8

2

Prototypes & Forward/External declarations?

Parameters
A subprogram can gain access to the data it is

to process:
• through direct access to nonlocal variables

– reduced reliability
• through parameter passing (parameterized

computation)
– more flexible
– transmitting computations (functions)

raher than data as parameters is possible.

A formal parameter is a dummy variable listed
in the subprogram header and used in the
subprogram. Why dummy?

An actual parameter represents a value or
address used in the subprogram call
statement.

Actual/Formal Parameter Correspondence:
1. Positional: C, C++, Java
2. Keyword: ADA

e.g. SORT(LIST => A, LENGTH => N);
Advantage: order is irrelevant

Disadvantage: user must know the formal
parameter’s names

K.Dincer Programming
Languages - Chapter 8

3

Default Values: C++, F90, ADA
e.g., float exponent(float a, int exp=1)

Variable Number of Parameters
e.g., printf(...) in C.

Procedures and Functions
Procedures
• provide user-defined statements: e.g.sort.
• produce results in calling program unit by

– by changing nonlocal but visible
variables of caller

– by changing parameters supplied by
caller

Functions
• provide user-defined operators

e.g., exponentiation operator: power(...)
• the value produced by a function’s

execution is returned to the calling code,
effectively replacing the call itself.

• in C++: overloaded operators can be
defined

• C and C++ have only functions. However,
they can behave like procedures. How?

K.Dincer Programming
Languages - Chapter 8

4

Design Issues for Subprograms
1. What parameter passing methods are

provided?

2. Are parameter types checked?

3. Are parameter types in passed
subprograms checked?

4. Are local variables static or dynamic?

5. Whether subprogram names be passed as
parameters? If so what is the referencing
environment of a passed subprogram?

6. Can subprogram definitions be nested?

7. Can subprograms be overloaded?

8. Are subprograms allowed to be generic?

9. Is separate or independent compilation
supported?

K.Dincer Programming
Languages - Chapter 8

5

Local Referencing Environments
Local variables: variables that are declared

inside subprograms.
• If local variables are stack-dynamic:

Advantages:
a. Support for recursion
b. Storage for locals is shared among

some subprograms
Disadvantages:

a. Allocation/deallocation time
b. Indirect addressing
c. Subprograms cannot be history

sensitive
• Static locals are the opposite

e.g., A pseudo-random number generator.

Language Examples:
1. FORTRAN 77 and 90 - most are static

(therefore no recursion), but can have either
(SAVE forces static.)

2. C - both (variables declared to be static are)
(default is stack dynamic.)

3. Pascal, Modula-2, and Ada - dynamic only.

K.Dincer Programming
Languages - Chapter 8

6

Parameters and Parameter
Passing

Parameter passing methods are the ways in
which parameters are transmitted to and/or
from called subprograms.

Semantic Models of Parameter Passing:
in mode, out mode, inout mode

Conceptual Models of Transfer:
1. Physically move a value (callee ↔ caller)
2. Move an access path (an address)

Implementation Models of Parameter Passing:
1. Pass-by-value (in mode)

Either by physical move or access path.

Disadvantages of access path method:
– Must write-protect in the called subprogram

C++ can do this. How?
– Accesses cost more (indirect addressing)

Disadvantages of physical move:
– Requires more storage
– Cost of the moves, especially if parameter is

a long array.

2

K.Dincer Programming
Languages - Chapter 8

7

2. Pass-by-result (out mode)
Local’s value is passed back to the caller.
Physical move is usually used.
Disadvantages:

a. If value is passed, time and space.
b. In both cases, order dependence may

be a parameter collision problem:
e.g.

procedure sub1(y: int, z: int);
...

sub1(x, x);
Value of x in the caller depends on order of
assignments at the return-not portable !

c. Time of evaluation of actual parameter
addresses is implementation dependent:

- at the time of the call
- at the time of the return

e.g., list[index] where index changes
within the subprogram.

3. Pass-by-value-result (inout mode)
Physical move, both ways
Also called pass-by-copy
Disadvantages:
- Those of pass-by-result
- Those of pass-by-value

K.Dincer Programming
Languages - Chapter 8

8

4. Pass-by-reference (inout mode)
Pass an access path (an address)

Also called pass-by-sharing

Advantage: passing process is efficient, no
extra space or time required.

Disadvantages:
a. Slower accesses, i.e., indirect.
b. Can allow aliasing:

i. Actual parameter collisions:
e.g. void fun(int *a, int *b);

...
sub1(&x, &x);

ii. Array element collisions:
e.g. sub1(a[i], a[j]); /* if i = j */

Also, sub2(a, &a[i]);
iii. Collision between formals and

globals

The root cause of the aliasing problem is:
The called subprogram is provided wider
access to nonlocals than is necessary,
such as with static scoping.

Pass-by-value-result does not allow these
aliases (but has other problems!)

K.Dincer Programming
Languages - Chapter 8

9

5. Pass-by-name (multiple mode)
By textual substitution

Formals are bound to an access method at
the time of the call, but actual binding to a
value or address takes place at the time of a
reference or assignment.

Purpose: flexibility of late binding

Resulting semantics:
– If actual is a scalar variable,

it is pass-by-reference
– If actual is a constant expression,

it is pass-by-value
– If actual is an array element :

it is like nothing else
– If actual contains a reference to a

variable that is also accessible in the
program:

it is also like nothing else

Disadvantages of pass by name:
– Very inefficient references (slow)
– Too tricky; hard to read and understand

K.Dincer Programming
Languages - Chapter 8

10

e.g.
procedure sub1(x: int; y: int);
begin

x := 1;
y := 2;
x := 2;
y := 3;

end;
. . .
sub1(i, a[i]);

e.g. (assume k is a global variable)
procedure sub1(x: int; y: int; z: int);
begin

k := 1;
y := x;
k := 5;
z := x;

end;
. . .
sub1(k+1, j, i);

K.Dincer Programming
Languages - Chapter 8

11

Language Examples:
1. FORTRAN (always inout mode semantics)

– Before F77, pass-by-reference
– In F77 - scalar variables are often

passed by value-result
2. ALGOL 60

– Pass-by-name is default; pass-by-value
is optional

3. ALGOL W - Pass-by-value-result
4. C - Pass-by-value
5. Pascal and Modula-2

– Default is pass-by-value; pass-by-
reference is optional

6. C++
– Like C, but also allows reference type

actual parameters;
– the corresponding formal parameters

can be pointers to constants, which
provide the efficiency of pass-by-
reference with in-mode semantics

7. Ada
– All three semantic modes are available
– If out, it cannot be referenced
– If in, it cannot be assigned

8. Java
– Like C, except references instead of

pointers.

K.Dincer Programming
Languages - Chapter 8

12

Type Checking Parameters
Now considered very important for reliability

e.g.
function sub1(float v) { . . . }
. . .
sub1(1) may provide unexpected results.

Language Examples:
• FORTRAN 77 and original C: none

• Pascal, Modula-2, FORTRAN 90, Java, and
Ada: it is always required

• ANSI C and C++: choice is made by the user
e.g.

double sin (x)
double x;

{ . . . } value=sin(count) is legal!
avoids type checking!

double sin (double x)
{ . . . } value=sin(count) is legal!
is type-checked!

3

K.Dincer Programming
Languages - Chapter 8

13

Implementing Parameter Passing Methods

ALGOL 60 and most of its descendants use
the run-time stack
It is initialized and maintained by the run-
time system which is a system program
that manages the execution of programs.

• Value - copy it to the stack; references are
indirect to the stack

• Result - same
• Reference - regardless of form, put the

address in the stack
• Name - run-time resident code segments

or subprograms called thunks evaluate
the address of the parameter; called for
each reference to the formal.
– Very expensive, compared to reference

or value-result

See Figure 8.2 in 3rd Ed.

K.Dincer Programming
Languages - Chapter 8

14

Examples
C & pass-by-value:
void swap1(int a, int b) {

int temp = a;
a = b;
b = temp;

}
... swap(c, d);

Pascal and pass-by-value:
procedure swap1 (a, b: integer)

temp : integer;
begin

temp := a; a:=b; b:=temp
end;
C and simulated pass-by-reference:
void swap2(int* a, int* b) {

int temp = *a;
*a = *b;
*b = temp;

}
...swap2(&c, &d)
...swap2(&i, &list[i]);

K.Dincer Programming
Languages - Chapter 8

15

ADA and pass-by-value-result:
procedure swap3 (a : integer, b: integer)

temp : integer;
begin

temp := a;
a:=b;
b:=temp

end;
...swap3(c, d)
...swap3(i, list[i]);

C with aliasing: (i and a are aliases)
int i = 3; /* global variable */
void fun (int a, int b) {

i = b;
}
void main() {

int list[10];
list[i] = 5;
fun(i, list[i]);

}
What happens if pass-by-value-result?

. . .pass-by-reference?

K.Dincer Programming
Languages - Chapter 8

16

Multidimensional Arrays as
Parameters

If a multidimensional array is passed to a
subprogram and the subprogram is
separately compiled, the compiler needs to
know the declared size of that array to
build the storage mapping function.

• C and C++
– Programmer is required to include the

declared sizes of all but the first
subscript in the actual parameter

– This disallows writing flexible
subprograms
Solution: pass a pointer to the array
and the sizes of the dimensions as
other parameters;

– the user must include the storage
mapping function, which is in terms of
the size parameters (See example, p.
351, 4th Ed., p.344, 3rd Ed.)

• Pascal
– Not a problem (declared size is part of

the array’s type)
• Pre-90 FORTRAN

– Formal parameter declarations for
arrays must include passed
parameters.

K.Dincer Programming
Languages - Chapter 8

17

Design Considerations for Parameter
Passing

1. Efficiency
2. One-way or two-way data transfer is

desired.

These two are in conflict with one
another!

Good programming => limited access to
nonlocal variables, which means one-
way whenever possible

Efficiency => pass by reference is fastest
way to pass structures of significant
size

Also, functions should not allow
reference
parameters.

See Examples of Parameter Passing.

K.Dincer Programming
Languages - Chapter 8

18

Some situations can be conveniently handled
if subprogram names can be sent as
parameters to other subprograms.

e.g. A numerical integration subprogram that
computes the area under the graph of a
given function by sampling the function at
a number of different points.

How it works?
- transmission of the subprogram code could

be done by passing a single pointer.
Issues:
1. Are parameter types checked?

If so, the description of the subprogram’s
parameters must be sent, along with the
subprogram name.

• Early Pascal and FORTRAN 77 do not
• Later versions of Pascal, Modula-2, and

FORTRAN 90 do
• C and C++ - pass pointers to functions;

parameters can be type checked

2. We skip the other issues such as “correct
referencing environment.”
In most statically scoped languages, it is
that of the subprogram that declared it:s
“Deep binding.”

Parameters that are Subprogram
Names

4

K.Dincer Programming
Languages - Chapter 8

19

In Pascal:
procedure integrate(function fun (x: real):real;

lowerbd, upperbd: real;
var result: real);

. . .
var funval : real;
begin
. . .
funval := fun (lowerbd);
. . .
end;

In C:
void bubble(int *work,

const int size,
int (*compare) (int, int))

{
if ((*compare)(i, j))

. . .
}
int ascending(const int, const int);
. . .
bubble(a, SIZE, ascending);

K.Dincer Programming
Languages - Chapter 8

20

Overloaded Subprograms
• An overloaded subprogram is one that has

the same name as another subprogram in
the same referencing environment.

• C++ has overloaded subprograms
built-in, and users can write their own
overloaded subprograms.
– Every incarnation of an overloaded

procedure must have a unique
protocol.

e.g.
int square(int x) { return x * x; }
double square(double y) { return y * y; }

The following call will give a compilation
error. Why?

void fun(float b = 0.0);
void fun();
. . .
fun();

K.Dincer Programming
Languages - Chapter 8

21

Generic Subprograms
A generic or polymorphic subprogram is one that

takes parameters of different types on
different activations

Overloaded subprograms provide ad hoc
polymorphism.

A subprogram that takes a generic parameter
that is used in a type expression that
describes the type of the parameters of the
subprogram provides parametric
polymorphism.

Examples:
• C++ template functions

template <class Type>
Type max(Type first, Type second) {

return first > second ? first : second;
}

C++ template functions are instantiated implicitly
when the function is named in a call or when its
address is taken with the & operator

K.Dincer Programming
Languages - Chapter 8

22

Another Example:

template <class Type>
void generic_sort(Type list[], int len)
{
int top, bottom;
Type temp;
for (top = 0; top < len - 2; top++)

for (bottom = top + 1; bottom < len - 1;
bottom++) {

if (list[top] > list[bottom]) {
temp = list [top];
list[top] = list[bottom];
list[bottom] = temp;
} //** end of for (bottom = ...

} //** end of generic_sort

Example use:

float flt_list[100];
...
generic_sort (flt_list, 100); // Implicit

// instantiation

K.Dincer Programming
Languages - Chapter 8

23

Separate and Independent Compilation
Essential in construction of large software

systems:
• only the updates modules need to be

recompiled during development or
maintenance.

• Linker collects the newly compiled and
previously compiled units.

Independent compilation is compilation of
some of the units of a program
separately from the rest of the program,
without the benefit of interface
information.

Separate compilation is compilation of
some of the units of a program
separately from the rest of the program,
using interface information to check the
correctness of the interface between the
two parts.

Language Examples:
• FORTRAN II to FORTRAN 77, C -

independent
• FORTRAN 90, Ada, Modula-2, C++ -

separate
• Pascal - allows neither

K.Dincer Programming
Languages - Chapter 8

24

Functions
Design Issues:
1. Are side effects allowed?
Not desired, so parameters should always be in

mode: Not possible in Pascal/C.
a. Two-way parameters (Ada does not allow)
b. Nonlocal reference (all allow)

2. What types of return values are allowed?
FORTRAN, Pascal - only simple types
C - any type except functions and arrays
C++ and Java - like C, but also allow classes
to be returned.

Accessing Nonlocal Environments
Besides parameter passing, a subprogram can

access variables from external environments.

The nonlocal variables of a subprogram are
those that are visible but not declared in

the subprogram.
Global variables are those that may be

visible in all of the subprograms of a
program.

Remember static and dynamic scoping!

5

K.Dincer Programming
Languages - Chapter 8

25

Methods:
1. FORTRAN COMMON
• The only way in pre-90 FORTRANs to

access nonlocal variables.
• Can be used to share data or share

storage.
sub1: REAL A(100)

INTEGER B(250)
COMMON /BLOCK1/ A,B

sub2: REAL C(50), D(100)
INTEGER E(200)
COMMON /BLOCK1/ C, D, E

2. Static scoping - discussed in Chapter 4

3. External declarations - C
• Subprograms are not nested
• Globals are created by external

declarations (they are simply defined
outside any function)

• Access is by either implicit or explicit
declaration

• Declarations (not definitions) give types to
externally defined variables (and say they
are defined elsewhere)

4. Dynamic Scope - discussed in Chapter 4

K.Dincer Programming
Languages - Chapter 8

26

User-Defined Overloaded Operators
Nearly all programming languages have

overloaded operators: e.g., + in C.

Users can further overload operators in C++
(Not carried over into Java.)

Example (C++):

class String {
private:

char *sPtr; // Pointer to start of string
int length; // string length

}
int String::operator==(const String &right)
{

return strcmp(sPtr, right.sPtr)==0);
}

Are user-defined overloaded operators good
or bad?

• too much overloading may hinder
readability

• in a large project, different groups may
overload the same operators differently.

K.Dincer Programming
Languages - Chapter 8

27

Coroutines
A coroutine is a subprogram that has

multiple entries and controls them
itself

- Also called symmetric control
- A coroutine call is named a resume

- The first resume of a coroutine is to its
beginning, but subsequent calls enter
at the point just after the last
executed statement in the coroutine

- Typically, coroutines repeatedly resume
each other, possibly forever

- Coroutines provide quasiconcurrent
execution of program units (the
coroutines)

- Their execution is interleaved, but not
overlapped

