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Abstract

In mobile computing, power is a limited resource. Like
other devices, communication devices need to be prop-
erly managed to conserve energy. In this paper, we
present the design and implementation of an innovative
transport level protocol capable of significantly reduc-

ing the power usage of the communication device. The

protocol achieves power savings by selectively choosing
short periods of time to suspend communications and

shut down the communication device. It manages the

important task of queuing data for future delivery during
periods of communication suspension, and decides when

to restart communication. We also address the tradeoff

between reducing power consumption and reducing delay
for incoming data.

We present results from experiments using our imple-
mentation of the protocol. These experiments measure
the energy consumption for three simulated communica-
tion patterns and compare the effects of different suspen-
sion strategies. Our results show up to an 83% savings

in the energy consumed by the communication. This can

translate to a 6-9% savings in the energy consumed by

an entire high end laptop or a savings of up to 40% for

current hand-held PCs. The resulting delay introduced
is small (0.4-3.1 seconds depending on the power man-
agement level).

1 Introduction

In today’s world of mobile communications, one of the
most precious commodities is power. The mobile host
can only operate as long as its battery maintains power.
New machines are being made to use less power allowing
for smaller batteries with smaller capacities. The trend
in mobile computing is towards more communication-
dependent activities, with mobile users switching from

traditional wired Ethernet communication to wireless com-
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munication (using wireless Ethernet cards, for example).
When inserted, many wireless communication devices
consume energy continuously. Although dependent on
the specific machine and wireless device, this energy con-
sumption can represent over 50% of total system power
for current hand-held computers and up to 10% for high-
end laptops. These trends make it imperative that we
design power-efficient communication subsystems.

Various techniques, both hardware and software, have
been proposed to reduce a mobile host’s power consump-
tion during operation. Most software-level techniques
have concentrated on non-communication components of
the mobile host, such as displays, disks and CPUs. In
particular, researchers have looked at methods to turn
off the display after some period of inactivity (as often
implemented in BIOS or screen savers), to spin down the
hard disk of the mobile host [7, 9, 16], and to slow down
or stop the CPU depending on work load [8, 17, 24). The
principle underlying the techniques for controlling these
components is to estimate (or guess) when the device will
not be used and suspend it for those intervals. Stemm et.
al [23] have identified the problem of excess energy con-
sumption by network interfaces in hand held devices, and
have provided trace-driven simulation results for simple
software-level time-out strategies. The new IEEE 802.11
standard that is being adopted by some vendors adopts
lower level solutions (at the MAC and PHY layer) to
support idle-time power management. Hardware-level
solutions for managing the communication device focus
on modulating the power used by the mobile transmitter
during active communication {21, 22, 19].

Our research presented in this paper focuses on software-
level techniques for managing the mobile host’s commu-
nication device through suspension of the device during
idle periods in the communication. We present a novel
transport level protocol for managing the suspend/resume
cycle of the mobile host’s communication device in an
effort to reduce power consumption. The management
of communication devices creates a new and interest-
ing challenge not present when managing other devices’
power consumption. Similar to hard disks and CPUs,
the communication devices continuously draw power un-
less they can be suspended. A suspended hard disk or
CPU can be restarted by any user requiring that device.
However, when a communication device is suspended,
the mobile host is effectively cut off from the rest of the
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network. A mobile host with a suspended communica-
tion device can only guess about when other hosts may
have data destined for it. If the suspension of the mobile
host’s communication does not match prevailing commu-
nication patterns, the isolation can cause buffers to over-
flow both in the mobile host and in other hosts trying
to communicate with it. Additionally, other hosts may
waste precious resources trying to communicate with the
mobile host if they have no knowledge about whether or
not the mobile host’s communication is suspended.

Our goal is to provide mechanisms for managing and
reducing the power consumption of the communication
device. We present a simple model for mobile communi-
cation that provides adaptable functionality at the trans-
port layer for suspending and resuming communication.
By exposing this functionality to the application, we en-
able application-driven solutions to power management.
Power savings are attained by suspending communica-
tions and the communication device for short periods
of time. During these suspensions, data transmissions
are queued up in both the mobile host and any other
host trying to communicate with the mobile host. The
key to balancing power savings and data delay lies in
identifying when to suspend and restart communications.
By abstracting power management to a higher level, we
can exploit application-specific information about how
to balance power savings and data delay.

Intuitively, power conservation is achieved by accumu-
lating the power savings from many small idle periods.
We, however, need to be careful to monitor any addi-
tional energy consumption caused while executing the
suspend/resume strategies. Additionally, we need to con-
sider the effect on other hosts who are trying to commu-
nicate with the suspended mobile host. A base station
using our protocol has enough knowledge about the state
of the mobile host to know when it is suspended and
can use this information to help employ scheduling tech-
niques. We implemented our protocol and experimen-
tally determined its effect on power consumption and
the quality of communication. Using three simulated
users designed to capture typical mobile communication
patterns, we obtained 48-83% savings in the power con-
sumed by the communication subsystem, while introduc-
ing a small additional response delay (0.4-3.1 seconds
depending on the power management level) that is ac-
ceptable for many applications, like web browsing.

In Section 2, we present our basic mobile communication
model, and the important issues in power management
for communication. In Section 3 we present our power
management protocol and discuss the effect of timing
issues on the effectiveness of our protocol. Section 4 de-
scribes our experimental setup and the communication
patterns used in our experiments. We then present mea-
surements from the implementation of our protocol and
discuss the results in the context of several real systems.
In Section 5, we discuss adaptive control strategies.

2 Communication Model and Power Management

The introduction of wireless links into communication
systems based on wired links has posed a number of
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problems. These problems include different loss char-
acteristics and different bandwidth capabilities on the
wired and the wireless line, synchronization of discon-
nected operations, and issues involving packet forward-
ing. These problems pose significant challenges for end-
to-end communication protocols. Two types of models
have been studied [2]. The first model exploits the natu-
ral hop existing in the communication route to a mobile
host. Standard communication protocols are used by
wired hosts to a base station and specialized protocols
are used for the final hop from the base station to the
mobile hosts [1]. The second model utilizes and tunes
existing end-to-end protocols, providing help and hints
along the way [3].

We target our approach at the transport layer, where we
provide a set of mechanisms that allow communication to
be suspended and resumed. We assume a model where
the mobile host is communicating with the rest of the
network through a base station. This base station may
be a proxy, or it may be the connection point for end-
to-end communication with other hosts. Often, dealing
with mobility does not fit into the standard seven layer
model. By exposing power management techniques to
the application, we provide a system-level solution aimed
at end-to-end communication. For our experiments in
this paper, we concentrate on the communication be-
tween the mobile host and the base station, and for clar-
ity assume that all communication to and from the mo-
bile host is directed through one specific base station.
This work can be extended to include changing base sta-
tions through techniques similar to those used in [1, 3].

Current wireless communication devices typically oper-
ate in two modes: transmit mode and receive mode.
The transmit mode is used during data transmission.
The receive mode is the default mode for both receiv-
ing data and listening for incoming data. Much of the
time, the wireless communication device sits idle in re-
ceive mode, and, while the power required for reception is
less than the power required for transmission, this power
consumption is not negligible. The IEEE 802.11 stan-
dard provides for some power management at the lower
(MAC or PHY) layers. Compliant cards can exchange
information about outstanding data to decide on when
to wake up suspended cards. There are ongoing efforts
to provide IEEE 802.11 compliant support for power
management by introducing new features into the next
generation wireless communication cards [11]. An ap-
proach that relies solely on techniques provided by the
device (e.g., the 802.11 standard) cannot take applica-
tion specific information into consideration when deter-
mining power management strategies. Researchers have
also considered hardware-level solutions to provide low
power communication capabilities [21, 22, 19]. Such so-
lutions reduce the power cost of operating in either one
of the modes, and are orthogonal to our approach which
addresses the amount of time the device spends in each
mode.

Logical areas to look for software-level power conserva-
tion in communication are two-fold. Since data transmis-
sion is expensive, we can reduce the time spent in trans-
mission. This can be achieved by data reduction tech-
niques and intelligent data transfer protocols. The ob-
vious technique of data compression reduces the amount




of transmission time, but requires additional CPU cy-
cles for performing compression. The connection be-
tween compression and communication rates is studied
in [5]. Through simple experiments, we observed that,
considering the current power requirements of CPUs ver-
sus wireless communication devices, the benefit in terms
of power savings from reduced communication time of-
ten outweighs the increased energy consumption costs
for compression. Intelligent data transfer protocols can
be used to reduce the effect of noisy connections that
cause power-expensive retransmission of lost messages.
Our continuing research addresses the assessment of the
effects of different techniques for data reduction, includ-
ing reduced reliability requirements, and their effect on
both power reduction and communication quality.

The second area, and the emphasis of this paper, is the
cost of leaving the communication device sitting idle dur-
ing periods of no communication activity. During such
idle periods, the communication device draws power lis-
tening for incoming data. Our goal in this work is to
reduce the amount of time the device sits idle drawing
power by judiciously suspending it. Suspending a wire-
less communication device is similar to slowing a CPU
in that there are some small power costs associated with
suspension and resumption. As mentioned in Section 1,
the difficult part here is to deal with when to suspend
and resume the communication device, how to deal with
the mobile host being unreachable at times, and how
to address the issue of not losing en-route data. Our
protocol and its implementation presented here address
these problems. Since the protocol itself generates ad-
ditional communication during these idle periods, there
needs to be a balance between when it is beneficial to use
the power management techniques, and when we should
leave the device on continuously.

In contrast to the solutions proposed by the IEEE 802.11
standard, we believe that power management should be
controlled by the mobile host, potentially even the appli-
cation. By providing power control at the transport layer
(or above), we can provide power management interfaces
to the application, allowing the application to better con-
trol the communication, enabling adaptive power man-
agement driven by the needs of the application. Specif-
ically, communications using the [EEE 802.11 standard
will always pay the overhead of delays imposed by using
power management, while our techniques allow the appli-
cation to determine when such delays are too high, and so
adapt power management levels. Stemm et. al [23] have
also investigated methods for reducing power consump-
tion of network interfaces, specifically targeting their re-
search at hand-held devices. Their research suggests
application-specific solutions to such problems. In con-
trast, our research provides a general solution capable of
hosting various strategies, both static and adaptive. Qur
measurements are with a real implementation of a power
management protocol in an experimental setup. We are,
therefore, able to observe the effects of the queuing of
data and the real effect of extra energy consumption by
such a protocol. We measure the power consumption in
the context of the entire system, considering such costs
as message processing and disk accesses, for various sim-
ulated workloads that we expect mobile users to perform.
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3 Communication-Based Power Management

Currently, a typical mobile host leaves its wireless Eth-
ernet card in receive mode during the time it is not be-
ing used, unless the user explicitly removes the card.
The technique described in this section provides mecha-
nisms to extend battery lifetime by suspending the wire-
less Ethernet card during idle periods in communication.
At the heart of the technique lies a protocol where the
mobile host acts as a master and tells the base station
when data transmission can occur. When the mobile
host wakes up, it sends a query to the base station to see
if the base station has any data to send. This permits
communication device suspension at the mobile host, and
enables the implementation of communication schedul-
ing techniques at the base station. The suspend/resume
cycle results in bursts of communication that may be
followed by periods of inactivity. Although producing
such bursty communication may incur additional delay,
bursty communication patterns lend themselves well to
efficient scheduling techniques.

With the suspension of 2 communication device, a mobile
host will experience an additional delay in data transmis-
sion since data on both the sending and receiving sides
may be held up during suspension. The mobile host can
monitor its own outgoing communication patterns to in-
sure that, despite these suspension times, communication
continues smoothly without buffer overflow. The base
station, on the other hand, has no means to restart com-
munication if it notices that it is running out of buffer
space. It is up to the mobile host to understand the base
station’s expected communication patterns so that the
buffers at the base station do not overflow. In order to ef-
ficiently use our power management techniques, our com-
munication layer must monitor the communication pat-
terns of the mobile host and match the suspend/resume
cycle to these patterns.

The protocol we describe in this section allows a mobile
host to suspend a wireless communication device. Peri-
odically, or by request from the application, the protocol
wakes up and reinitiates communication with the base
station. In the rest of this section, we will describe our
power management protocol in detail and discuss the sig-
nificance of some of the timing parameters. Appendix A
describes in detail the commands used by the protocol
and the possible states and state transitions for both the
master and slave.

3.1 Power Management Control Protocol

In this protocol, the mobile host is the master and the
base station acts like a slave. The slave is only allowed
to send data to the master during specific phases of the
protocol. During non-transmit phases, the slave queues
up data and waits for commands from the master. Idle
periods for both the master and the slave can be detected
through the use of idle timers or indicated to the protocol
from the application. In the protocol state diagrams for
the master and the slave (Figure 1 and Figure 2), In:
indicates an input event that can be either an incoming
message or a timeout, Q: indicates the state of the queue,
and OUT: indicates an outgoing response message.
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As shown in Figure 1, the slave is initialized to be in
the SLEEPING mode. It can only leave that mode upon a
WAKE_UP message from the master. If the slave has data
to send, it will enter the SEND.RECV mode. The slave will
stay in this mode until it has detected that it has no more
data to transmit, whereupon, it will send a DONE message
to the master, enter the RECEIVING mode, and continue
receiving until it receives a SLEEP message. If during this
time the slave detects that there is new data to transmit,
it will send a NEW.DATA message to the master and enter
the RECEIVINGWAIT mode. The slave can only start to
transmit when it receives a WAKE_UP message. If a SLEEP
message is received first, the waiting data stays buffered
and is not transmitted until the next resume cycle.

Although the state diagram for the master (Figure 2) is
much more complex, we can see that the states may be
partitioned into three sets. The first set (SLEEPING) con-
cerns the master when it is sleeping. When the master
is in the SLEEPING mode, it can be woken up by one of
two triggers: a wakeup timer or new data to transmit.
If the wakeup timer expires, the master sends a WAKEUP
message along with any new data to the slave. If there
is new data to transmit to the slave before the wakeup
timer expires, the master has the option to wake up and
transmit this new data, or continue sleeping and queue
up the data until the timeout expires.

The second set of states (SENDINGWAIT, WAITING, and
WAIT_FOR.OK) concerns the master when it is waiting for
a response from the slave about whether or not the slave
has data to send. In the SENDING_WAIT mode, the master
is transmitting data and in the WAITING mode it has no
data to transmit. When the master receives a response
from the slave in the form of a DATA or a NO_DATA message,
the master enters the appropriate state in the third set.
Additionally, if while in the SENDINGWAIT mode an idle
timer expires indicating that the master has no more
data to send, the master enters the WAITING mode and
continues waiting for a response from the slave. In the
WAIT_FOR_OK mode, the master has told the slave that it
should sleep and is waiting for a SLEEP_OK message.

When the master is in one of the final set of states
(SENDING, SEND/RECV, and RECEIVING), it is actively send-
ing and/or receiving data. In the SENDING mode, the
master may receive 2 NEW_.DATA message from the slave.
The master responds with a WAKE_UP message and enters
the SENDINGWAIT mode. When neither the master nor
the slave have any more data to send, the master sends
a SLEEP message and enters the WAIT_FOR_OK mode.

Wireless connections are very susceptible to interference
from both external devices and other wireless devices us-
ing the same settings or talking to the same base station.
By using this protocol, we provide the base station with
useful information about the communication patterns of
the mobile host. Although not required by the proto-
col, the master can inform the slave of its sleep time,
or the slave can suggest appropriate sleep times to the
master. If the protocol is used such that only prespeci-
fied timeouts trigger restarting communication, the slave
can design a communication scheduling algorithm based
around the known sleep time of the master. Addition-
ally, if the sleep times for the master are sufficiently long,
the slave can save any data destined for the master to
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disk. This will free the buffer space being used by the
data destined for the master so it can be used for other
active communications.

3.2 Timing Considerations

Timing is a key issue for both the performance of the
mobile host as well as the amount of power that can
be saved. If the wireless Ethernet card is suspended too
often, the user will see lags in data transfer performance.
On the other hand, if it is not suspended long enough,
the gain in battery life time may be undetectable.

In order to determine when the card should be suspended,
the protocol needs to determine the communication pat-
terns for both sender and receiver. There are two ways
by which idle periods in the communication can be de-
tected. The first, and simplest, is when the application
can actually inform the protocol that it doesn’t have any
data to send. This requires a more complex application
that has information about its communication patterns.
The second method is to use a timer set with a timeout
period. If the timer expires and no communication has
occurred since the last expiration, the protocol concludes
that there is an idle period in the communication. The
appropriate timeout period depends on the requirements
of the application. Timeout periods that are too short
may cause the protocol to go to sleep prematurely, re-
sulting in poor response time for applications dependent
on communication. On the other hand, timeout periods
that are too long may cause the protocol and the com-
munication device to remain active for unnecessarily long
periods of time, wasting precious energy.

The other timing parameter is the sleep duration which
defines how long the master should keep the communi-
cation suspended. The appropriate sleep duration also
depends on the requirements of the application. Longer
sleep periods will cause longer lags in any interactive ap-
plications. Shorter sleep periods will not extend battery
lifetime appreciatively. The application needs to deter-
mine the appropriate tradeoff for battery lifetime versus
delay. In many instances, the expected time and data
size for the response to a request initiated by the mobile
host can be estimated. This includes, for example, ap-
plications like mail, web browsing, and file transfer. In
this context, hints provided by the application could be
very helpful. In our experiments reported in Section 4,
we examine the effects of fixed timeouts that require no
application support and can be implemented within the
transport layer. Adaptively varying the timeouts or us-
ing learning techniques are discussed in Section 5.

A mobile host that is running multiple applications can-
not base its power strategy on the expected communica-
tion patterns of a single application. In this situation,
the power management protocol must take hints about
sleep/wake up durations for all executing applications.
By exposing power management to the application, and
hence to the user, our power management protocol can
be guided in the appropriate allocation of resources.

A final consideration is the time required to wake up and
shut down the specific wireless network card. Qur pro-
tocol is designed to be independent of the specific card
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being used. Since our techniques address issues regard-
ing the end-to-end transmission of data, we assume that
this wakeup time is minimal in comparison to the total
transfer time. Although this may not be true for all de-
vices currently, the interface standards proposed in [10]
suggest that future devices will provide relatively inex-
pensive transitions between waking and sleeping states.

4 Experiments

The goal of our experiments is to show that, by using
our power management techniques, we can save a sig-
nificant amount of the power consumed by the wireless
Ethernet card. The tradeoff is an increased transmission
delay observed by the receiver. First we will present our
experimental setup and the user communication patterns
used in our experiments. We will then show the impact
of the power management techniques in the context of
these user communication patterns. Finally, we will dis-
cuss our results in the context of several real systems.

4.1 Experimental Setup

In order to determine the impact of our power manage-
ment techniques, we measure the power consumption of
a wireless Ethernet card under varying conditions. In
our experiments, we use a 915MHz Lucent WaveLAN
PCMCIA wireless Ethernet card that can transmit data
up to 150KBps. It provides three power modes: trans-
mit, receive and suspend, and does not perform power
management at the MAC layer. The system is config-
ured as shown in Figure 3, with a wireless Ethernet in a
NEC Versa 6320 laptop (the mobile host) communicating
with a Gateway Solo 2200 (the base station) using a sec-
ond WaveLAN PCMCIA card, both machines running
Linux. We plugged the laptop into a universal power
supply (UPS) to filter out voltage fluctuations. Our mul-
timeter samples the current 11-12 times a second. From
these samples and the output voltage of the UPS, we can
monitor the power being used by the computer.

WaveLAN WaveL AN

) (

UPS

HP DIGITAL
MULTIMETER

Figure 3: Experimental Setup

To determine the power consumption of the entire com-
puter, we monitor the current being drawn from the
transformer by the computer. This trace of current read-
ings (11~12 readings a second), when integrated over
time, provides us with the total energy and average power
consumed during that time period. From baseline infor-
mation we collected about the necessary energy to run
an idle computer, we can compute the cost of communi-
cation. This cost of communication includes the energy
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consumed by the communication device and any energy
consumed by the CPU and hard disk due to the commu-
nication. Each experiment was performed over a period
of 30 minutes to provide sufficiently long samples. To en-
sure stability in our reported numbers, we repeated our
experiments several times for each scenario. The results
presented in this section were taken from specific sam-
ple runs. Each individual run was chosen from a set of
qualitatively similar runs of a particular experiment

According to specifications from the manufacturer [18],
the power requirements of the WaveLAN card are those
shown in Table 1, Column 2. Column 3 in Table 1
shows the power requirements measured during our ex-
periments without any power management. The mea-
surements for receive mode were taken while the com-
puter was idle, which implied no extra disk or CPU ac-
tivity. As mentioned earlier, the power consumption for
transmission includes any incidental CPU and hard disk
power consumed to effect communication. It is interest-
ing to note that the transmitter is rarely at full power for
long periods of time. We observe that our measurements
of the power required while the device is in either mode
are very close to the documented specification.

State Documented | Measured
WaveLAN - suspended ow ow
WaveLLAN - receive 1.48W 1.52W
WaveLLAN - transmit 3.00W 3.10W

Table 1: Power Requirements of the Lucent WaveLAN
PCMCIA Wireless Ethernet card.

We chose Linux as a research platform because of the
available source code for both the PCMCIA driver and
the WaveLAN driver. In order to suspend the WaveLAN
card in Linux, a system call to the kernel is used to send
asuspend command to the WaveL AN driver. Suspension
stops the receive unit, turns off the card, and updates the
status of the PCMCIA device, removing its entry from
any routing tables. This update generates an unwanted
disk access. We modified the WaveL AN driver to update
the status, but to leave the routing tables untouched,
and called this the “sleep mode”. Switching from active
mode to sleep mode is now a matter of only the system
call to the kernel and does not access the disk. Similarly,
to wake up the WaveL AN card, a system call to the ker-
nel is used to restart the receive unit on the WaveLAN
card. The next generation of WaveLAN cards will have
a DOZE mode [11] that will provide a quicker transition
from active to DOZE than the transition from active to
suspended in the current model. Our power management
protocol was implemented in the context of an adaptive
communication framework that provides dynamic pro-
tocol configuration support to the application [14, 13].
Through the use of the framework interface, the applica-
tion can set and change specific protocol parameters.

4.2 Communication Patterns

The communication patterns used in our experiments
are designed to simulate different types of users. The

FTT



amounts of data transmitted and received and the idle
patterns of the users are varied randomly over time. The
communication patterns are chosen to model three “typ-
ical” users. Table 2 presents the minimum, maximum
and average amount of data in a transmission for each of
these users. For the simulated web users, a transmission
from the mobile host triggers multiple responses from the
base station to simulate the multiple files needed for a
web page. The average number of responses is shown in
the count column of Table 2. Table 3 shows the timing
patterns for the same users. Each user is described by
a transmission cycle. During this cycle, the mobile host
transmits and receives the amounts of data as described
in Table 2. When considered with the idle times shown
in Table 3, we can see the total amount of time per cycle
that the mobile host spends transmitting, receiving and
sitting idle. Our goal is to suspend the communication
device during as much of these idle times as possible.

The first pattern (WEB) simulates a user browsing the
web. The amount of data transmitted is relatively in-
significant in comparison to the amount of data received.
The sleep time represents the amount of time the user
would spend reading a page before going on to the next
one. Each request transmitted by the mobile host trig-
gers a number of responses. The delay between these
responses is varied from 0 to 15 seconds to simulate re-
sponses from a busy web server. The second pattern
(JW) simulates a user working on a joint project over
the wireless LAN. This user occasionally transmits and
receives large pieces of their work. There is no connection
between transmissions from the mobile and transmis-
sions from the base station. The third pattern (EMAIL)
simulates a user that mostly transmits and receives e-
mail messages. This user is idle most of the time be-
tween transmissions, and the size of the transmissions
are relatively small.

Typical mobile users tend to perform each of the above
activities to some degree. From that point of view, the
patterns presented above categorize users according to
their main activity. The goal of the adaptive techniques
discussed in Section 5 are to dynamically find appropri-
ate timeouts for user performing such activities.

4.3 Results

In this section, we consider the results from our exper-
iments in the context of the effects of our power man-
agement protocol on the energy consumed by the com-
munication. This energy consumption is affected by the
use of the CPU and the hard disk during communica-
tion. The savings we see come predominantly from the
reduced consumption by the wireless Ethernet card. In
Section 4.4, we discuss our results in the context of three
real systems. The effects of the power management on
a real system will depend on the power requirements of
the system itself.

4.3.1 Protocol Power Consumption

When running the experiments with our management
techniques turned on, we incur some overhead in terms of
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energy consumption. During idle periods in the commu-
nication, the overhead is due to the cost of waking up the
WaveL AN card, transmitting a query to the base station
and putting the card to sleep immediately since there
is no data to receive. Our results show that, even with
relatively short sleep times, this overhead is still signifi-
cantly less than the energy consumed by the WaveLAN
card had it been left in receive mode.

Our experiments produce a trace of the power measure-
ments from the multimeter. Plotting these traces gives
us a good, intuitive understanding of the effect of allow-
ing the wireless Ethernet card to sleep for short periods
of time. In each graph in Figure 4, we compare two
traces of the power consumed by the idle communica-
tion subsystem (i.e., when there is no actual transmis-
sion or reception). In Figure 4a, the sleep duration is
1 second, and in Figure 4b, the sleep duration is 2 sec-
onds. The first trace, the flat line at 1.5W marked by
the diamonds, shows the power consumed by the com-
munication when no power management is performed.
The second trace, the line at OW with occasional spikes
marked by the plus signs, shows the power consumption
with our power management protocol turned on.

We can see from the two traces that the power consump-
tion is approximately 1.5W less when the WaveLAN card
is suspended. For the first trace, the power consumptions
stays at 1.5W since the communication device is always
powered on. For the second trace, the power consump-
tion is near zero most of the time, but spikes up at regular
intervals. These spikes are caused by the protocol wak-
ing up and sending a query to the base station to see if
there is any data waiting to be sent. By comparing the
two graphs, we can see that the overhead for transmit-
ting the queries is going to increase as the sleep duration
gets shorter. Figure 5(a) shows the percent savings of
using our protocol during idle periods when compared
to no power management.

Figure 5(b) shows a trace during the transmission of a
message to the base station. As we can see, the power
consumption for both traces is the same during the trans-
mission. The difference lies in the fact that after the
transmission is complete, the trace using power manage-
ment shows the effect of suspending the wireless Ethernet
on the power consumption.

4.3.2 Power Savings for Communication Patterns

In order to determine the longer term effects of power
management, we measure power consumption during com-
munication generated in the patterns discussed in Sec-
tion 4.2. In our experiments, we do not queue data at
the master; i.e., we always wake up the communication
device at the master if there is data to send. Figure 6
shows the results from our experiments in terms of the
percent of the total energy consumed by the communi-
cation that was saved by using our power management
protocol. For WEB, we see a 48-57% savings in the en-
ergy consumed by the communication. For JW, we see a
54-78% savings in the energy consumed by the commu-
nication. In the case of EMAIL, we compare the results
of no power management with those of power manage-
ment with sleep durations of 1 and 5 minutes. (Due to




Data Transmitted Data Received
Avg Avg
Min | Max | Avg Total {| Min | Max | Avg Total
Pattern | (KB) | (KB) | (KB) | Count | (KB) | (KB) | (KB) | (KB) | Count | (KB)
WEB 5 30 17.5 1 17.5 300 | 1200 | 750 10 7500
JW 5 500 | 227.5 1 227.5 5 500 | 227.5 1 227.5
EMAIL 5 300 | 152.5 1 152.5 5 300 | 152.5 1 152.5

Table 2: Communication Patterns for Three Simulated Users

User Sleep Time Average Time Average
Min | Max | Avg | Transmitting | Receiving | Sleeping | Percent
Pattern | (sec) | (sec) | (sec) (sec) (sec) (sec) Sleeping
WEB 10 | 300 | 155 0.116 50 1049 | 67.7% |
JW 10 300 155 1.52 1.52 151.96 98%
EMAIL | 10 | 600 | 305 1.02 1.02 302.96 99%

Table 3: Timing Patterns for Three Simulated Users
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the different time scale, these measurements are not in-
cluded in Figure 6.) These sleep durations result in a
savings of 81% and 83% of the power consumed by the
communication.
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Figure 6: Savings for Communication Power Consump-
tion

4.3.3 Delay

Power savings never come for free. In the context of com-
munication, this cost can be measured in delay. A sleep
duration of any length will impose, on average, a delay of
half the duration. This cost must be taken into consid-
eration when deciding how much power management to
use. In the context of a user that solely uses communica-
tion for email, a sleep duration of 1 minute is acceptable.
In reality, many email programs check mail on the order
of every 5 minutes, and hence, such a sleep duration is
more representative of the common email user. In con-
trast, a user who is working jointly across the network or
who is accessing web pages may not be willing to accept
such delays. In these cases, the sleep durations should
reflect the tolerance of the users to delays in receiving
data.

In the context of these experiments, we measure the
communication delay in terms of additional transmission
time per user data block at the base station. (We never
queued data at the mobile machine.) We calculate this
delay by determining the amount of time that the first
message in the data block was delayed. Once the first
message is sent, the rest will follow, and the delay to
those messages will depend purely on how quickly the
data can be transmitted. It is easy to show that the
maximum additional delay imposed by our protocol on
any data can never exceed the delay for the first packet,
and hence, the numbers we present are a conservative es-
timate. We measure this delay by determining the time
the transmission request was sent to the communication
subsystem and the time when the data is finally sent.
Since multiple transmission requests may queue up at
the base station during large bursts of traffic, delays may
be incurred even when no power management is used.
Figure 7 shows the average added delay for a given sleep
duration for the WEB pattern. When no power manage-
ment is used, the average added delay is approximately
1 second. This increases, as we would expect, with in-
creased sleep duration.
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4.4 Impact on System Costs

Now we consider the power savings in the context of
three real machines (see Table 4). The experiments that
we have described were performed on the NEC Versa
6320. We also measured the idle power consumption for
the Toshiba Libretto 60 with and without the WaveLAN
card and the idle power consumption for the HP Palmtop
PC 320LX. We then used the results from Section 4.3,
running the experiments on the NEC, to estimate the
effect of the communication patterns on the other two
machines. The Toshiba Libretto 60 is a small laptop
that can run either Windows 95 or Linux. We would
expect similar power costs for the hard disk and cpu for
this machine as we did for the NEC. The HP Palmtop
PC 320LX, on the other hand, runs Windows CE and
has no internal hard disk. This will probably change the
effect of power management on this type of machine. It
may be argued that a wireless card with the power profile
of WaveL AN is unlikely to be used with an HP Palmtop-
like machine. We simply use this as an example of the
trend towards lighter, more power efficient machines that
have small battery capacity.

Power Requirements
Idle w/fo Idle w/
WaveLAN { WaveLAN
Machine Card Card
NEC Versa 6320 14W 15.5W
Toshiba Libretto 60 W 8.5W
HP Palmtop PC 320LX 1.2W 2.7TW

Table 4: Measured Power Requirements for Three Ma-
chines

The first machine, the NEC Versa 6320, is a high end
machine that consumes 14W while sitting idle. In this
context, the 1.5W consumed by the WaveLAN card only
represents approximately 10% of the power consumed
by the computer when it is idle. In comparison, a ma-
chine like the Toshiba Libretto consumes only 7W when
idle. The 1.5W of the WaveLAN card now represents
approximately 18% of the power consumed by the com-
puter when it is idle. If we take this one step further,
we can see that for a machine like the HP Palmtop PC,
this percentage increases to over 50%. To compensate
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for this problem, some manufacturers have introduced
wireless Ethernet cards that have an internal battery, al-
though they still draw some amount of power from the
main battery. In this case, the power consumed from the
main battery by the idle device represents approximately
10% of the entire system power of the HP. Although this
reduces the effect on the lifetime of the main battery,
we still need to consider the effects on the battery for
the card itself. Our techniques will work to extend the
lifetimes of both batteries.

Considered in the context of the NEC, the results dis-
cussed in Section 4.3 show a 6.2-8.9% savings for the
JW pattern and a 8.0-9.5% savings for the WEB pattern.
If we now project these results onto the other two ma-
chines, we see even better savings of the power consumed
by the entire system. Figure 8 compares the results for
the percent saved of the total system power for these
three machines over varied sleep durations. The crossing
of the plots for the WEB and JW patterns for the HP is
due to the fact that the power consumption of the com-
munication device is more than the power consumption
of the HP. Therefore, the better communication power
savings for the JW pattern dominates the results. This
is simply an artifact of the fact that the two patterns
will eventually cross for all cases, as can be seen by the
plots for the Toshiba. Most importantly, we can see that
the trend toward machines like the Toshiba and the HP
make it imperative that we properly manage communica-
tion devices, since the power consumed by these devices
represents more and more of the total system power.
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Figure 8: Savings for Three Types of Machines

5 Adaptive Mobile Power Management

We have shown that power management for communi-
cation devices can extend battery life. We also see that
there is not one scheme that will fit all users or all ap-
plications. This leads us to investigate mechanisms for
adapting power management levels during communica-
tion. The goal of this paper is not to address the issue of
prediction, but provide the mechanism by which predic-
tive algorithms can be used to adjust power management
parameters; in particular, the timeout and sleep duration
parameters in our implementation.

The ideal power management technique would sleep when-
ever there is no data to receive from the base station and
wake up for any incoming receptions as well as tell the
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base station exactly when to expect transmissions from
the mobile host. The goal of adaptive power manage-
ment techniques is to be able to estimate when there
is data to transmit from either side. Poor prediction
can cause unsuccessful power management and waste re-
sources such as buffer space and bandwidth.

With our protocol, the sleep duration can be adapted
to fit the communication patterns of the application. As
the sleep durations increase, we can see that the curve for
the amount of energy saved will level off. This happens
as the savings reach the theoretical maximum savings
for the particular communication pattern. The theoret-
ical limit is reached when the communication device is
only active when there is actual data transfers occur-
ring. For smaller sleep durations that are much smaller
than the expected time between transmissions, the com-
munication device is still active during some of the idle
period. As the sleep duration increases, the probability
that there is data waiting at the base station increases.
As an example, consider Figure 9 which shows the per-
cent of the total time spent sleeping for both the JW
and the WEB patterns. As the sleep duration increases,
the percent of the total time spent sleeping approaches
the theoretical limit (98% for JW and 67% for WEB; see
Table 3). From the fact that the sleep time for the WEB
pattern comes closer than the JW pattern to the optimal
sleep time, we can see that the power management tech-
niques that we used were more successful for the WEB
pattern.
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Figure 9: Percent of Total Time spent Sleeping

By providing an application-level interface to our power
management protocol, applications can control the poli-
cies used for determining sleep durations. In this way,
application-specific information can be used to determine
optimal adaptation strategies.

In the context of our experiments, we implemented a
simple adaptive algorithm similar to [6] for the web user.
The algorithm responds to communication activity by
reducing the sleep duration to 250 milliseconds and re-
acts to idle periods by doubling the sleep duration up to
5 minutes. We can use this simple algorithm because the
communication patterns of the web user are somewhat
predictable. A request from the mobile host expects mul-
tiple responses from the base station. As the mobile host
notices that no more responses are available, it can de-
duce that either there are no more responses or that the
server is busy and the responses may be delayed. For this
communication pattern, such an adaptive algorithm pro-




oW

vides a 58% savings in the power consumed by the com-
munication device. This savings is an improvement over
the 5 sec static sleep duration. While for the 5 second
sleep duration, we saw a 3.12 second additional delay, for
the adaptive algorithm, we only saw a 2.77 second delay.
This suggests that adaptive and predictive techniques
have merit in mobile communication power management
for communication applications. It also demonstrates
that applying power management at the transport or
application layer has benefits. These techniques can be
used in conjunction with adaptive techniques used at the
MAC layer [4, 19].

An important aspect to keep in mind is that efficient pre-
diction or estimation is not always simple or useful. Tak-
ing the communication patterns of multiple applications
would also make adaptation more challenging. Learning-
theory based estimation techniques [15, 12] can provide
better adaptive algorithms for deciding when to power
off and when to turn back on the communication de-
vice. Many such techniques inherently try to estimate
the distribution generating the communication packets,
and hence application provided hints help such estima-
tion techniques.

6 Conclusions

In this paper, we have studied the important issue of
power management in mobile wireless communication.
We have presented a novel transport-level protocol by
which a mobile host can judiciously suspend and restart
its communication device, and by informing the base sta-
tion appropriately, not lose en-route data. We have pre-
sented experimental results from an implementation of
this protocol, and shown power savings of up to 83% for
communication. This translates to a savings of 6-9% in
terms of total system power for high end laptops, and can
represent up to 40% savings for current hand-held PCs.
When we consider the subset of our results for email and
web browsing applications in the context of hand-held
PDAs, our implementation results agree in large mea-
sure with the simulation results in [23]. It is important
to note that if other components of the mobile machine
are managed better, the relative improvement numbers
due to efficient power management of the communication
device will be more prominent. For most applications the
resulting small additional delay (e.g., 0.4-3.1 seconds for
some web browsing responses) should be acceptable.

Open problems include the development of intelligent

techniques (e.g., learning-based methods) to estimate when

there is queued data at the base station, so that recep-
tion delays can be reduced. Such techniques might also
adapt the timeout choice for users with varied communi-
cation patterns. It will be interesting to explore the cor-
rect APIs to provide to applications so that they can give
hints to the protocol about their communication patterns
(in the spirit of transparent informed prefetching [20]).
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A Power Control Protocol

Protocol Commands: During the course of commu-
nication both the master and the slave use commands
to inform the receiving side of state changes. Protocol
commands are as follows:
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PMC_CMD_WAKE UP: Used by the master to inform the slave
that it can wake up and transmit data if it has any mes-
sages queued up.

PMC_CHMD_NO_DATA: Used by the slave to inform the master
that upon wake up, the slave had no data to send.
PMC_CHD_DATA: Used for any messages that simply con-
tains data.

PMC_CMD_NEW_DATA: Used by the slave to indicate to the
master that it now has data to transmit.

PMC_CHD_DONE: Used by the slave to indicate the end of
data transmission.

PMC_CHMD_SLEEP: Used by the master to inform the slave
that it should go to sleep.

PMC_CHMD_SLEEP.OK: Used by the slave to indicate that it
completed the sleep command.

Master Protocol: The mobile host has the responsi-
bility of determining when communication takes place.
At any point in time, the master can be in one of the
following states:

PMC_STATE_SLEEPING: The protocol is sleeping and no
data can be transmitted or new data requests will be
allowed and a PMC.CMD_WAKEUP is sent. Additionally, no
data should be received when the protocol is sleeping.
PMC_STATE.SENDING: Only the master is sending data.
Subsequent data requests are queued for transmission.
PHMC_STATE_SENDING.WAIT: Only the master is sending data.
The slave has been queried for new data to send. Subse-
quent data requests are queued for transmission.
PMC_STATE.RECEIVING: Only the slave is sending data.
New data requests will be queued for transmission and
the master will enter the PHC_STATE_SEND_RECYV state.
PMC_STATE.SEND_RECV: Both the master and the slave are
sending data. Subsequent data requests are queued for
transmission.

PMC.STATEWAITING: The master woke up and has noth-
ing to send. It has sent a query to the slave to see if it
has any new data to send.

PMC_STATEWAIT_FOR_OK: The master has determined that
communication should be suspended and is waiting for a
response from the slave.

Slave Protocol: The base station follows the com-
mands of the master. At any point in time, the slave
can be in one of the following states:

PHMC_STATESLEEPING: The protocol is sleeping and no
data can be transmitted. Upon receiving a message, the
slave wakes up and enters either the PMC.STATE_RECEIVING
state or the PMC_STATE_SEND.RECV state, determined by
whether or not the slave has data to send.
PHMC_STATE_RECEIVING: Only the master is sending data.
New transmissions will not be allowed. If new transmis-
sions are requested, the slave sends a PMC_CMD.NEW_DATA
message and enters the PHC_STATE RECEIVING.WAIT state.
PMC_STATE.RECEIVING.WAIT: Only the master is sending
data. New transmissions will not be allowed. Upon
receipt of a PMC.CMD_WAKE_UP message, the slave starts
transmitting and enters the PHC_STATE_SEND_RECYV state.
PMC_STATE_SEND_RECV: Both the master and the slave are
sending data. Subsequent data requests are queued for
transmission.




