
Distributed Construction and Maintenance of
Bandwidth and Energy Efficient

Bluetooth Scatternets
Metin Tekkalmaz, Hasan Sözer, and Ibrahim Korpeoglu, Member, IEEE

Abstract—Bluetooth networks can be constructed as piconets or scatternets depending on the number of nodes in the network.

Although piconet construction is a well-defined process specified in Bluetooth standards, scatternet formation policies and algorithms

are not well specified. Among many solution proposals for this problem, only a few of them focus on efficient usage of bandwidth in the

resulting scatternets. In this paper, we propose a distributed algorithm for the scatternet formation problem that dynamically constructs

and maintains a scatternet based on estimated traffic flow rates between nodes. The algorithm is adaptive to changes and maintains a

constructed scatternet for bandwidth-efficiency when nodes come and go or when traffic flow rates change. Based on simulations, the

paper also presents the improvements in bandwidth-efficiency and reduction in energy consumption provided by the proposed

algorithm.

Index Terms—Bluetooth, scatternet formation, ad hoc networks, network topology, algorithm design, distributed computing.

Ç

1 INTRODUCTION

BLUETOOTH [1] is a short range wireless RF technology
designed initially for cable replacement at indoor

places, but also supports usage scenarios for personal area
or local area networking. Its low cost, low power consump-
tion, and ad hoc connectivity features make it a good
wireless connectivity choice for mobile devices due to their
anytime-anywhere connection requirement and limited
battery power.

Bluetooth devices are able to form small networks, which
are called piconets, with up to eight nodes. A piconet
consists of a master node and one or more slave nodes. The
scheduling of packets into the common FHSS radio channel
of a piconet is coordinated by the master node via a polling
based TDMA scheme. No direct communication between
any two slave nodes is allowed within a piconet. Data traffic
among slave nodes has to go through the master node.

Bluetooth standards also specify some set of mechanisms
to construct larger networks called scatternets. A scatternet
is actually nothing but a network consisting of multiple
piconets with common nodes between them, called bridges,
to forward traffic between those piconets. Since all members
of a piconet follow the same pseudorandom hopping

sequence over some set of predefined RF channels specified
in Bluetooth standards, and since each piconet has a
different hopping sequence, a bridge node follows the
hopping sequence of different piconets, which it belongs to
at different times.

Although piconet construction is a well-defined process
described in current Bluetooth standards, scatternet forma-
tion algorithms and policies are not specified with enough
detail. Therefore, this is an open research area and many
methods have been proposed so far for the scatternet
formation problem. Once the scatternet is constructed,
maintaining it in case of new node arrivals and node
departures is another issue, which is not addressed much in
the literature. Additionally, despite numerous works on
scatternet formation, there is only a few studies ([2], [3], and
[4]) that focus on constructing a scatternet with the aim of
having the bandwidth capacity of the resulting scatternet
utilized as efficiently as possible considering the traffic
demands of the nodes constituting the scatternet. These
studies all propose static (i.e., do not handle new node
arrivals and node departures) and centralized solutions.

In this paper, we provide an algorithm that dynamically
constructs a scatternet and concurrently modifies it to make it
more bandwidth-efficient. In order to reduce the traffic load
on a scatternet and thereby effectively utilize the capacity of
the scatternet, our approach is based on reducing the path
lengths between highly communicating nodes, as the
approach followed in [4]. Different from [4], however, our
algorithm works in a distributed manner with no central
coordination and without requiring the availability of global
topology and traffic demand information in advance.
Furthermore, it is dynamic (i.e., new node arrivals and node
departures are handled appropriately) and it can adapt to
changes in the number of traffic flows and their rates,
consequently preserving bandwidth-efficiency. Moreover,

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 17, NO. 9, SEPTEMBER 2006 963

. M. Tekkalmaz is with ASELSAN A.S. MST-YMM-REH, Mehmet Akif
Ersoy mh., 16. cad. No:16, Yenimahalle, Ankara, Turkey.
E-mail: metint@cs.bilkent.edu.tr.

. H. Sözer is with the Software Engineering Research Group, University of
Twente, Faculty of Electrical Engineering, Mathematics, and Informatics,
PO Box 217 7500 AE, Enschede, The Netherlands.
E-mail: sozerh@ewi.utwente.nl.

. I. Korpeoglu is with the Department of Computer Engineering, Bilkent
University, TR-06800, Ankara, Turkey. E-mail: korpe@cs.bilkent.edu.tr.

Manuscript received 15 Feb. 2005; revised 31 May 2005; accepted 2 Sept.
2005; published online 26 July 2006.
Recommended for acceptance by I. Stojmenovic, S. Olariu,
and D. Simplot-Ryl.
For information on obtaining reprints of this article, please send e-mail to:
tpds@computer.org, and reference IEEECS Log Number TPDSSI-0128-0205.

1045-9219/06/$20.00 � 2006 IEEE Published by the IEEE Computer Society

messaging overhead imposed by the algorithm is kept as low
as possible.

We evaluated our algorithm by way of simulation
experiments to observe how it affects the efficient use of
bandwidth in a scatternet. For the evaluation, we used a
metric called weighted average shortest path (WASP) which is
introduced in [4] and that indicates the amount of bandwidth
usage in a scatternet for a given traffic demand. Our
simulation results show that the use of our algorithm in a
scatternet results with up to around 45 percent improvement
in the value of the WASP metric, implying a significant
improvement in the bandwidth-efficiency in a scatternet. We
also investigated how energy consumption in a scatternet is
affected by our algorithm. Besides resulting with more
available bandwidth and less delay in communication, which
are immediate consequences of efficient bandwidth usage,
the use of our algorithm also causes reduction in the total
energy spent in a scatternet and the energy spent in the
individual nodes. Hence, our algorithm also constructs and
maintains a scatternet in an energy-efficient way.

The remainder of the paper is organized as follows: In
the next section, related previous studies are summarized.
In Section 3, a scatternet construction algorithm is de-
scribed. In Section 4, evaluation criteria for bandwidth
efficiency are explained and simulation results, based on
these criteria, are presented. Finally, some future work
issues are discussed and the paper is concluded in Section 5.

2 RELATED WORK

There have been many solution proposals for the Bluetooth
scatternet formation problem [5]. Most of these proposals
focus on the efficiency of the scatternet formation algorithm,
considering the duration of the construction process and
number of messages exchanged during the construction, as
it is the case in [6], [7], and [8]. Some of them also apply
heuristics in order to make the constructed scatternet
efficient in terms of some metrics. One such heuristic that
is followed by some studies is to keep the number of
piconets as small as possible in the resulting scatternet with
the goal of decreasing the amount of interpiconet traffic and
interference. There exist other studies, which focus on
different aspects of the problem. In [9] and [10], for instance,
tree-shaped topologies are formed for the ease of routing.
Some studies, like [11], on the other hand, aim to form fault-
tolerant topologies by means of constructing alternative
paths between nodes.

Although various proposals have been made to form
scatternets with various objectives, algorithms that favor the
efficient usage of bandwidth are not widely studied. In [12],
as one of the earliest studies, traffic patterns among the
piconet members is taken into consideration while selecting
the master of the piconet. Some studies on constructing
efficient scatternet topologies are [2], [3], and [4]. All these
three proposals are single-hop, centralized, and static
solutions. Baate et al. [2] propose a graph theoretical
solution which uses 1-factors to construct a scatternet.
Marsan et al. [3] approach to the problem as a min-max
optimization. Topal [4], on the other hand, uses a set of
heuristics to designate the locations and the roles of the

nodes, assuming that the traffic flow information is known
a priori.

There are also proposals for the scatternet formation
problem that are distributed and dynamic. They are
dynamic in the sense that they can handle node arrivals
and departures. However, they do not consider traffic
dynamics and trigger maintenance procedures when traffic
conditions change. In [13], where a distributed and multi-
hop algorithm is provided, the focus is on reducing the
scatternet formation time, and a scatternet is not maintained
based on traffic conditions. Also, the scatternet topology has
to be a tree, which is not a requirement in our solution.
Chiasserini et al. [14] propose a distributed and dynamic
algorithm that resembles our work in considering traffic
conditions for re-arranging a scatternet. However, the goal
is not increasing the bandwidth efficiency, but reducing the
load on the most congested node. It also provides an
optimal topology in that respect but achieves this through a
centralized algorithm. As another difference, we base our
solution on an estimation of traffic load at a finer
granularity, whereas [14] assumes that the traffic load on
a node is classified as either low or high.

Along with the scatternet formation proposals which
consider the relation between topology and efficiency, there
are studies that try to reveal the relation between them, such
as [15], [16], and [17]. Kapoor et al. [16] apply an analytical
approach, whereas Miorandi et al. [17] try to establish a
mathematical foundation to determine the relations between
the topology and network capacity. On the other hand,
Miklos et al. [15] apply a statistical approach in order to
investigate the effects of topology on performance.

3 THE CONSTRUCTION ALGORITHM

We now describe, in this section, our distributed solution
for bandwidth and energy efficient scatternet construction
and maintenance. Our solution requires two main proce-
dures, Link Establishment and Maintenance procedures, to be
executed concurrently in a scatternet. The Link Establishment

procedure handles new node arrivals (i.e., new connections)
and node departures (i.e., disconnections), hence, incremen-
tally constructing a scatternet. On the other hand, the
Maintenance procedure works on the base topology con-
structed by the Link Establishment procedure and maintains
the bandwidth-efficiency of the scatternet by modifying it.

The Maintenance procedure constantly collects informa-
tion about the traffic flowing in the scatternet and runs a set
of operations based on this information when significant

changes in the traffic pattern and rates are observed. These
operations are performed in order to modify the scatternet
topology so that the node pairs whose communication
demands between each other are relatively higher are
placed closer to each other in the scatternet.

The Maintenance procedure depends on some assump-
tions. The first assumption is that all the nodes which are
going to be part of the scatternet are in the communication
range of each other. Another assumption is that the
topology on which the Maintenance procedure works has
the following properties:

964 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 17, NO. 9, SEPTEMBER 2006

. There are only slave/slave types of bridges (i.e.,
there is no master/slave type of bridge) and

. a slave/slave type of bridge connects exactly two
piconets (i.e., cannot connect to more than two
different master nodes).

The Link Establishment procedure takes these restrictions
into account while establishing new links and the Main-
tenance procedure preserves these properties while modify-
ing the topology.

The restrictions on the properties of the topology can be
eliminated with slight modifications on the operations of
the Maintenance procedure. However, they are preferred to
exist for the efficiency of the resulting scatternet topology.
As studied in [18], master/slave bridges constitute a burden
for the load balancing and simultaneous communication in
different piconets. When a master/slave bridge switches
from the master role in a piconet to the slave role in another
piconet, all traffic in the piconet where the bridge was the
master earlier has to be stopped, which prevents all
members of that piconet from sending or receiving data.
This implies an inefficient use of channel bandwidth for
that piconet and long packet delays for the sessions using
that piconet. Additionally, the switching time of bridges
cannot be underestimated and sharing a bridge’s time for
more than two piconets would make that bridge a bottle-
neck. It is also pointed out by other studies, described in
[19], that a master/slave bridge ceases intrapiconet com-
munication, while participating in another piconet and
bridge degree has a direct impact on switching overhead.
Consequently, master/slave bridges are not favored if a
special type of topology (i.e., tree) is not an issue and almost
all solution proposals for the Bluetooth scatternet formation
problem put restrictions on bridge degree [5]. The draw-
back of such restrictions is the limitation that they impose
on the variety of topology configurations. Another ap-
proach would be not to put any restriction on bridge
degrees and to leave the switching overhead problem to the
scheduling algorithm. Hence, the number of different
topologies would be increased.

We also assume that the routing protocol running over a
scatternet constructed by our algorithm selects paths with
minimum number of hops between any two communicat-
ing nodes. The proposed algorithm can still work with a
routing protocol that does not satisfy this condition, but
such a routing protocol contradicts with the basic approach
of the algorithm and cost metrics used for evaluation.

In the following section, we explain the method we use
to estimate the traffic flow pattern and rates. Then, in
Section 3.2, we describe several operations that are used to
maintain a scatternet and that make use of the acquired
traffic flow information and, in Section 3.3, we describe how

these several operations are combined together to define the
Maintenance procedure. Section 3.4 provides the details of
Link Establishment procedure.

3.1 Estimating the Traffic Pattern

Since the scatternet topology is modified according to the
communication demands between nodes, traffic flow
pattern and rates must be estimated. We identify three
types of traffic in a piconet about which we collect
information:

. Intrapiconet Traffic: This is the traffic flowing
between members of the piconet (i.e., traffic due to
master-slave and slave-slave communication).

. Incoming/Outgoing Traffic: This is the traffic
flowing between members of the piconet and the
neighboring piconets.

. Relayed Traffic: This is the traffic received from a
neighboring piconet and forwarded to another
neighboring piconet.

Consider the piconet shown in Fig. 1. It consists of a total
of six members: a master node M; two slave/slave bridges,
S0 and S2, connected to the neighboring piconets P0 and P1,
respectively; and three slave nodes, S1, S3, and S4. For such
a piconet, a traffic table, as illustrated in Fig. 2, is
constructed and maintained at the master node M.

Each cell in the table is used to store the rate of traffic
observed between the entities that match the corresponding
row and column. As indicated with the shaded cells in the
figure, half of the table is used, since we are only interested
in the rate of total traffic flowing between any two nodes
irrespective of its direction. Therefore, we store the total rate
of traffic sent and received between any two nodes as a
single entity in the table.

Traffic within a piconet has to pass through the master
node of the piconet and, therefore, almost all information
required to generate the traffic table is available at the
master node without any significant extra messaging.
Information exchange is only needed for obtaining the rate
of traffic flowing between bridge nodes and the correspond-
ing neighboring piconets. In the case shown in Fig. 1, for
instance, S0 and S2 should send traffic flow information
between themselves and piconets P0 and P1, respectively, to
the master node M.

The rate of traffic flow may change rapidly, which would
leadto aconstant alteration of the scatternet topology. In order
to prevent that, a discrete-time aging method shown in (1) can
be used while collecting traffic information. This method

TEKKALMAZ ET AL.: DISTRIBUTED CONSTRUCTION AND MAINTENANCE OF BANDWIDTH AND ENERGY EFFICIENT BLUETOOTH... 965

Fig. 1. A sample piconet on which traffic data is gathered.

Fig. 2. A traffic table that is maintained at the master node of a piconet.

smoothly integrates changes in the instantaneous traffic rate,
Rinst, to the average traffic rate, Ravg. In (1), the effect of the
instantaneous traffic rate to the average traffic rate can be
adjusted by varying the � parameter between 0 and 1:

RavgðtÞ ¼ ��Ravgðt� 1Þ þ ð1� �Þ �RinstðtÞ: ð1Þ

How the structure of the traffic table is changed due to
topology changes in a piconet is described in Section 3.4.

3.2 Operations

The Maintenance procedure is composed of a set of
operations, which are explained in the following sections.

3.2.1 Master/Bridge Reassignment

This operation reassigns master and bridge roles to the
members of a piconet so that the cost function introduced
with (2), (3), and (4) is minimized. In these equations, n is
the number of slaves in the piconet (including the bridges)
where we perform this operation, and m is the number of
neighboring piconets. T represents the traffic table, while
subscripts identify row and column indices.

Cp ¼ Cintra�p þ Cinter�p; ð2Þ

Cintra�p ¼
Xn�1

i¼0

TSiM þ
Xn�1

i¼0

Xn�1

j¼iþ1

2�TSiSj ; ð3Þ

Cinter�p ¼
Xm�1

i¼0

TPiM þ
Xm�1

i¼0

X

j¼0^
Sj 6¼ bridge ToPi

n�1

2�TPiSj : ð4Þ

The cost function (Cp) has two components: cost of
intrapiconet traffic (Cintra�p) and cost of interpiconet traffic
(Cinter�p). In order to calculate the cost, traffic flow rates
between communicating entities multiplied by the length of
corresponding communication paths are summed up. Since
all traffic flow passes through the master node, traffic flow
rates of slave/slave and slave/piconet communication are
multiplied by two. There is no cost of communication
incurred on the piconet of interest for traffic flowing
between a neighboring piconet and the corresponding
bridge node (bridgeToP), hence, such traffic amounts are
excluded in the calculation of Cinter�p. Similarly, the cost of
relayed traffic is not included in the cost function, since it is
not affected by the selection of different master and bridge
nodes.

Algorithm 1 describes the execution steps of the Master/
Bridge Reassignment operation. The nested loops generate all
possible master and bridge assignments and, for each such
assignment, the cost function, Cp, is calculated. If the
current cost is the minimum among the ones calculated by
now, the current master/bridge configuration is saved. At
Line 26, we have the master/bridge configuration that
minimizes the bandwidth usage within the piconet and
roles are reassigned to the nodes according to it. Since there
are n choices for the master node, and m out of n� 1 nodes
will be chosen as bridges and these bridges can be assigned
to neighboring piconets in m! ways, Cp is calculated n�
Cðn� 1;mÞ �m! times.

If the master node changes because of the operation, the
traffic table is transferred to the new master node where the
Maintenance procedure will be executed next.

Algorithm 1 Master/Slave Reassignment

1. min-Cp 1
2. min-master NULL

3. min-bridge0 NULL

4. min-bridge1 NULL

5. . . .

6. min-bridgem NULL

7. for all Nodes M in the piconet do

8. for all Permutations of neighboring piconets:

PaPb . . .Px do

9. for all m out of n� 1 combinations of nodes, excl. M:

SkSl . . .Sy do

10. bridgea k

11. bridgeb l

12. . . .

13. bridgex y

14. Calculate Cp
15. if Cp < min-Cp then

16. min-Cp Cp
17. min-master M

18. min-bridge0 Pa : Sk
19. min-bridge1 Pb : Sl
20. . . .

21. min-bridgem Px : Sy
22. end if

23. end for

24. end for

25. end for

26. Rearrange master and bridge roles in the piconet
according to the values of min-master, min-bridge0,

min-bridge1, . . . , and min-bridgem

Although this operation rearranges roles locally inside a
piconet, it also has a global effect as illustrated in Fig. 3.
Suppose that nodes labeled as A and B in the figure
communicate heavily with each other. The master node of
P0 will assign node A as the bridge node for P1, since cost
function will be minimized in this way because of the high
traffic flow rate between node A and piconet P1. Afterward,
the master node of P1 will notice a high traffic flow rate
between the new bridge node A and piconet P2. As a result
of the Master/Bridge Reassignment, node A will now be given
role as the bridge node between piconets P1 and P2. After
node A becomes a member of piconet P2 and the master
node of P2 executes the Master/Bridge Reassignment, A will
be the new master node in piconet P2 and the length of the
communication path between nodes A and B will be
reduced to one.

This is just a sample scenario and it might have been the
case that B approaches A, or they could have met at piconet
P1, depending on the order of execution of the Master/Bridge

966 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 17, NO. 9, SEPTEMBER 2006

Fig. 3. Global effect of Master/Bridge Reassignment.

Reassignment operation by the master nodes. At the end,
however, A and B will be closer to each other in the
scatternet as a result of successive executions of the Master/
Bridge Reassignment operation in different piconets.

The Master/Bridge Reassignment operation improves the
bandwidth usage in the scatternet due to the following
reasons in which P is the piconet where the operation is
executed and N is the set of neighboring piconets of P .

. For each piconet p s.t. ðp 6¼ P Þ ^ ðp =2 NÞ, p is not
affected by the execution of this operation, since
none of its members are changed and the amount of
traffic that is sent, received, or forwarded is not
affected by the operation.

. For each piconet p s.t. p 2 N , p is not affected by the
execution of this operation, since the amount of
traffic that is sent, received, or forwarded is un-
changed. From the viewpoint of p, the only
difference could be the replacement of the bridge
between p and P with another member of P .
However, traffic that is sent to or received from
new bridge and the previous one will be the same.

. Bandwidth usage is improved in P since the roles
are rearranged to reduce the cost of communication.

3.2.2 Piconet Division

This operation splits a piconet into two in order to increase
available bandwidth per piconet whenever necessary.
Similar to Master/Bridge Reassignment, in the Piconet Division,
for all possible role assignments to the nodes that will
constitue two piconets (out of one), the value of a cost
function is calculated and the assignment minimizing the
cost is selected. The cost function used in Piconet Division
operation is similar to (3) and (4) in the sense that it sums
up the end-to-end traffic flow rates between node pairs
multiplied by the corresponding communication path
lengths, for all such pairs. However, the resulting topology
of Piconet Division may have either one, two, three, or four-
hop paths, since we now have two piconets for which we
are trying to find the best role assignment, whereas hop
distances are either one or two in the Master/Bridge
Reassignment operation. In Fig. 4, a piconet is split into
two piconets.

The Piconet Division operation requires that the piconet
has at least two slaves which are not bridges currently. Such
a constraint is necessary because, as a result of the
operation, a node will be required to be the master in the
offspring piconet (number of piconets increased from one to
two) and another node will be required to be the bridge to

connect the two piconets. Other than these, there must be
enough slave nodes to communicate with neighboring
piconets.

The Piconet Division operation improves the bandwidth
usage in the scatternet by increasing the total amount of
bandwidth that is available in the scatternet, since each
piconet adds extra bandwidth to the scatternet. Splitting a
piconet is not preferred unless the bandwidth in the piconet
is insufficient for intrapiconet, interpiconet, and forwarded
traffic, because it increases the communication path lengths
unlike other operations described in the paper. The Piconet
Division operation is executed whenever the bandwidth is
not sufficient in a piconet and the operation favors the
topology where the newly added bandwidth is used most
efficiently.

3.2.3 Slave Transfer

This operation transfers a slave node of a piconet to a
neighboring piconet if it is beneficial to do so and if the
neighboring piconet can accept it. In order to determine
whether a transfer of a slave is beneficial or not, gain and
cost of the transfer have to be computed first. Equations (5)
and (6) show how the gain, GST , and cost, CST , of a slave
transfer is calculated. In the equations, n denotes the
number of slave nodes in the piconet and m denotes the
number of neighboring piconets.

GST ¼ TSsPp ð5Þ

CST ¼ TSsM þ
Xm�1

i¼0^
i 6¼p

TSsPi þ
Xn�1

j¼0^
j6¼s^

Sj 6¼bridgeToPp

TSsSj : ð6Þ

The gain and cost of transfer is calculated for each
nonbridge slave node, Ss, in the piconet and for each
neighboring piconet, Pp, that has less than eight members.
The gain, GST , is the traffic flow rate between Ss and Pp. The
cost of transferring a slave, CST , is the summation of traffic
flow rates between the slave to be transferred and

. the master node of the piconet the slave belongs to
before transfer,

. neighboring piconets other than the candidate target
piconet, and

. other slave nodes except the bridge node connected
to the candidate piconet, which we denote as
bridgeToPp .

In fact, GST and CST should be multiplied by two, because
the transfer of a slave node increments or decrements

TEKKALMAZ ET AL.: DISTRIBUTED CONSTRUCTION AND MAINTENANCE OF BANDWIDTH AND ENERGY EFFICIENT BLUETOOTH... 967

Fig. 4. Piconet Division operation.

routing paths by two hops. However, they are omitted,
since this is the case for both cost and gain.
GST andCST values are calculated for allSs (0 � s � n� 1)

andPp (0 � p � m) pairs beforehand. Transfer of a slave Ss to
a piconet Pp for which GST � CST is positive is marked as a
beneficial transfer. The greater this value is, the more the
transfer is beneficial. After the determination of beneficial
transfers, each transfer is performed one by one starting from
the most beneficial one down to the least beneficial one,
unless for an (Ss-Pp) pair, slave Ss has already been
transferred to another piconet, since it was more beneficial,
or Pp has no more room for new slaves.

Although this operation affects two piconets, successive
execution of the operation also has a global effect as
depicted in Fig. 5. Suppose nodes labeled as A and B
communicate heavily with each other. The master node of
piconet P0 will notice that A communicates with piconet P1

more than it communicates with the members of piconet P0

and, therefore, the master node will eventually transfer
node A to piconet P1. After that, piconet P1 will eventually
notice a high traffic flow rate between node A and piconet
P2, and now it will transfer the node A to piconet P2. In this
way, nodes A and B will come together in the same piconet.

The Slave Transfer operation improves the bandwidth
usage in the scatternet due to following statements in which
P is the piconet where the operation is executed, hence the
one that the node is transferred from, and D is the set of
neighboring piconets to which at least one slave node is
transferred.

. For each piconet p s.t. ðp 6¼ P Þ ^ ðp =2 DÞ, p is not
affected by the execution of this operation, since its
member set remains unchanged and the amount of
traffic that is sent, received, and forwarded is not
affected by the operation.

. For each piconet pair ðP; pÞ s.t. p 2 D, the bandwidth
usage is improved, since a node transfer is sched-
uled only if the traffic sent and received by the
transferred node generates less load on the topology
after the transfer compared to the topology before
the transfer.

3.2.4 Piconet Merge

This operation creates one piconet out of two neighboring
piconets. Algorithm 2 outlines the execution steps of the
operation. The master node checks all the neighboring
piconets if merging with one of them is feasible or not.
Merge is feasible if the total number of nodes in the
resulting piconet would not exceed 8, and if the total traffic
flow rate in the resulting piconet would not exceed the
1 Mbps raw capacity of a Bluetooth piconet (or a practical
upper bound). The 8-node limit check is performed first,

since it is simpler. If the 8-node limit is satisfied, the traffic

tables of the piconets that are candidates for merge are

combined into a single table, to check whether the traffic

flow rate is less than 1-Mbps in the resulting piconet. If this

is also true, all nodes of the neighboring piconet are

assigned as slave nodes to the master node, executing the

operation. Thereafter, Master/Bridge Reassignment is exe-

cuted according to the new traffic table, which is con-

structed out of two old tables, in order to assign roles in the

newly constructed piconet.

Algorithm 2 Piconet Merge

1. for all Neighboring piconets p do

2. if (Total # of nodes in current piconet

+ Total # of nodes in p) < 8 then

3. Merge traffic tables

4. if Total traffic < 1 Mbps then

5. Assign all nodes of p as a slave to current piconet

6. Execute Master/Bridge Reassignment operation

7. Terminate

8. end if

9. end if

10. end for

The Piconet Merge operation can be thought as the reverse

operation of Piconet Division. The topology shown in Fig. 4b,

for example, turns into the topology shown in Fig. 4a as a

result of the execution of this operation.
Merging the traffic tables of two candiate piconets, which

is an important step of the procedure, is not a straightfor-

ward task because the traffic table of the resulting piconet

cannot be generated out of the traffic tables of these

piconets. As an example, in Fig. 4b, the traffic flow rate

between nodes 1 and 5 cannot be obtained from traffic

tables stored at nodes 2 and 4. Such information could be

obtained by keeping and maintaining extra information and

by exchanging extra messages. However, we apply a

heuristic for completing the unknown parts of the merged

traffic table: Envision two neighboring piconets P0 and P1

that are going to merge. From the traffic table of P1, we

know the amount of traffic flow between P1 and P0.

However, we do not know how much of it is destined to (or

originated from) P0, and how much of it is relayed at P0.

But, from the traffic table of P0, we also know what ratio of

traffic flow between P0 and P1 is generated or consumed by

the members of P0. Combining this information, we can

estimate the amount of traffic flow between P1 and the

members of P0 assuming the traffic is equally shared by the

piconet members.
The Piconet Merge operation improves the bandwidth

usage in the scatternet due to following statements in which

P1 and P2 are the piconets that are merged, whereas N1 and

N2 are the sets of neighboring piconets of P1 and P2,

respectively. P is the piconet formed as a result of the merge

operation and N is the set of its neighbors satisfying

N ¼ N1 [N2.

. For each piconet p s.t. ðp 6¼ P Þ ^ ðp =2 NÞ, p is not
affected by the execution of this operation, since
none of their members are changed and the amount

968 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 17, NO. 9, SEPTEMBER 2006

Fig. 5. Global effect of the Slave Transfer operation.

of traffic that is sent, received, and forwarded is not
affected by the operation.

. For each piconet p s.t. p 2 N , p is not affected since the
amount of traffic that is sent, received, and for-
warded is still the same, although one node at each
neighboring piconet is possibly replaced by the
execution of this operation.

. The bandwidth usage is improved in the network
constituted by the members of P , since the commu-
nication cost is lower after the operation.

3.3 Maintenance Procedure

As indicated in the previous sections, the Maintenance

procedure is a combination of a set of operations which we
have described already. In this section, we present a fusion
algorithm that combines these operations together and
establishes an execution relation among them.

The fusion algorithm, shown in Algorithm 3, is executed at
a master node of a piconet after a warmup period when
enough information is ready in the traffic table if it will be the
first execution, whenever a significant change is observed in
the traffic table maintained at that master, or when the total
traffic that has to flow in the corresponding piconet is close to
the 1 Mbps capacity of the piconet. When total traffic demand
in a piconet is expected to exceed 1 Mbps, the piconet should
be split into two piconets in order to increase the capacity.
When this is not the case, however, as long as the bandwidth
constraints are satisfied, merging piconets as much as
possible is beneficial for the sake of shortening paths and
decreasing the number of bridges, which have to switch
between piconets.

Algorithm 3 The Fusion Algorithm

1. Execute Master/Bridge Reassignment operation

2. if Current node is still master then

3. Execute Slave Transfer operation

4. if Total piconet traffic > 1 Mbps then

5. Execute Piconet Division operation

6. else

7. Execute Piconet Merge operation
8. end if

9. end if

Significant change is supposed to occur when the value
of totalDiff calculated as in (7) exceeds a threshold value.
Adjustment of the threshold would affect the sensitivity of
the Maintenance procedure to the changes in the traffic flow
rate. In the equation, basically, the sum of differences
between the traffic flow rates for each pair of communicat-
ing entities (i.e., master node, slave nodes, and neighboring
piconets) represented in the current traffic table and the
traffic table that was used in the last execution of the fusion
algorithm is calculated.

totalDiff ¼
Xt�1

i¼0

Xt�1

j¼iþ1

Tij � Tlastij
�� ��: ð7Þ

As mentioned in Section 3.1, the messaging required to
collect information about the traffic characteristics is rather
low, since the information is collected at the master node,
where almost all the traffic related to the piconet passes

through. Similarly, the operations constituting the Main-
tenance procedure have low messaging demands, since the
messaging required during the execution of an operation
occupies only the nearby links with a low bandwidth
requirement. For example, during the Slave Transfer opera-
tion the master node that initiates the transfer commu-
nicates only with the node to be transferred and the master
node that accepts the transferred node. As another example,
during the Master/Bridge Reassignment operation, the master
node initiating the reassignment communicates only with
its slave nodes to inform them about their new roles and
with the master nodes of the neighboring piconets to inform
them about the new bridge nodes. Likewise, during the
Piconet Merge and Piconet Division operations, the commu-
nication between the master node initiating the operation
and other nodes that have an active role in the operation is
kept within the same set of nodes, leaving the rest of the
nodes unaffected as far as the bandwidth required during
the operation is concerned.

The fusion algorithm is expected to yield improvement
in the bandwidth usage of the scatternet, since the
operations which constitute the fusion algorithm are
expected to yield improvement in the bandwidth usage
whose reasons are explained in the sections in which the
operations are described. In general, all operations shorten
the paths between talkative nodes except the Piconet
Division operation, which improves the feasibility of
satisfying the requested traffic demands using the con-
structed scatternet. Gathering talkative nodes together as
much as possible would not make any sense if the
communication demands exceeds the practical limits. In
such cases, the Piconet Division operation splits the piconet
so that the capacity of the scatternet is increased. This
lengthens the communication paths, conflicting with the
aim of other operations, but it is a necessity to reduce the
amount of unsatisfied demands.

A master node should ensure that it is the only one
which is going to execute the fusion algorithm among the
master nodes of neighboring piconets to prevent possible
conflicting role and topology changes. It should be noted
that, conflicting, here, means different decisions, all of
which improve the performance of the scatternet as far as
bandwidth usage is considered. Hence, coordination is
required among the master nodes of neighboring piconets
to avoid concurrent execution of the fusion algorithm and to
provide sequential execution and iterative improvement.
However, such a coordination mechanism is not described
here, since it is considered out of scope of this paper.

3.4 Link Establishment Procedure

The links in Bluetooth are established after inquiry and page
steps. Inquiry and inquiry-scan modes of inquiry step play a
key role for device discovery and determination of master/
slave roles. The Link Establishment procedure in our proposal
specifies whether a node having a certain role (i.e., master,
bridge, slave, or free-node) can switch to inquiry or inquiry-
scan modes. This specification controls the discoverability of
nodes and, in this way, the established links are forced to meet
the restrictions described in Section 3. Table 1 shows which
modes of inquiry step are allowed in which roles of nodes in a
scatternet.

TEKKALMAZ ET AL.: DISTRIBUTED CONSTRUCTION AND MAINTENANCE OF BANDWIDTH AND ENERGY EFFICIENT BLUETOOTH... 969

Because of the mode assignments shown in Table 1, link
establishments are restricted to happen only between pairs
of nodes having the following role combinations: master/
slave, where slave becomes bridge; master/free-node,
where free-node becomes slave; slave/free-node, where
free-node becomes master; and free-node/free-node, where
one of them becomes master and the other becomes slave.
Bridge nodes cannot establish new links. As a result, there is
no master/slave bridges and a bridge node has exactly two
masters as required by the Maintenance procedure.

To handle disconnections, the Link Establishment proce-
dure uses the existing mechanisms of Bluetooth for this
purpose as it is, since if a scatternet satisfies the topological
requirements of Maintenance procedure, it will do so after
any node disconnection. Hence, handling node disconnec-
tions does not require a special treatment unlike the case for
handling new connections.

Unlike the Maintenance procedure, the Link Establishment
procedure runs on any node. Nodes, except bridges and
masters that already have seven slaves, are scheduled to enter
one or both of the inquiry and inquiry-scan modes, which is
determined by the rules listed above, at certain intervals.
These intervals are determined by the master node for itself
and for its slaves. Once a new node is discovered in
accordance with the restrictions on the topology of scatternet,
the Link Establishment procedure further decides to establish
the link or not to. Link establishment can be restricted in order
to limit the average node degrees. One such restriction would
be to prevent establishing links between a slave and the
master of a one-hop distance piconet. This information can be
passed to slave nodes each time they are instructed to enter
inquiry-scan mode by the master, which already has one-hop
distance master information in its traffic table. Other controls
can be imposed whether to continue with page/page-scan
mode after the discovery, using probabilistic approaches, or
acquiring 2 or 3-hop information by extra messaging if
desired.

Whenever the Link Establishment procedure handles a
node connection or detects a node disconnection, it invokes
the Maintenance procedure to change the structure of the
traffic table, described in Section 3.1, appropriately. In such
cases, rows and columns should be added to or deleted
from the traffic table as described below. Here, M denotes a
master node, S denotes a slave node, B denotes a bridge
node, and F denotes a free-node:

. If a new connection is established between

- F and M, a row and a column should be added
for F , as a member of the piconet, to the traffic
table at M;

- F and S, whose master is M, a row and a
column should be added for F , as a neighboring
piconet, to the traffic table at M;

- M1 and S, whose master is M2, rows and
columns should be added for S, as a member
of the piconet, and for M2, as a neighboring
piconet, to the traffic table at M1. In addition, a
row and a column should be added for M1, as a
neighboring piconet, to the traffic table at M2.

. If a disconnection is detected between

- M and S, a row and column for S should be
deleted from the traffic table at M;

- M1 and B, whose other master is M2, rows and
columns for B and M2 should be deleted from
traffic table at M1. In addition, a row and
column for M1 should be deleted from the
traffic table at M2.

The Link Establishment procedure enables dynamic
handling of new link establishments and disconnections.
Hence, a scatternet topology, which can be further modified
by Maintenance procedure for bandwidth-efficiency, is
constructed on the fly. During the execution of the
Maintenance procedure, the set of nodes constituting the
piconet should not be changed, requiring coordination
between the Link Establishment and Maintenance procedures.
This can be achieved if the masters do not schedule slave
nodes for device discovery before starting a Maintenance

procedure.

4 SIMULATION RESULTS

In this section, we present the evaluation for our proposed
algorithm. For evaluation, we use a performance metric
called weighted average shortest path (WASP) proposed in
[4]. WASP relates the end-to-end traffic demand to the traffic
load imposed on a network with a given topology. The
amount of end-to-end traffic demand between two nodes is
expressed as the sum of two one-way traffic that has to flow
between these two nodes. The load imposed on the network
due to the traffic demand between two nodes is computed
by multiplying the amount of traffic demand by the number
of hops between the two nodes. Equation (8) shows how to
define the WASP of the flow of a node-pair x (WASPx),
where dx is the traffic demand of node pair x, Lx is the
number of hops between these two nodes, and n is the
number of all node-pairs demanding some amount of traffic
to flow in between:

WASPx ¼ ðdx � LxÞ=
Xn

i¼1

di: ð8Þ

The WASP of a network is defined as the sum of WASPs
of all end-to-end flows demanded in the network:

WASP ¼
Xn

i¼1

ðdi � LiÞ=
Xn

i¼1

di: ð9Þ

The WASP value in a network will be equal to one, when
communicating nodes in the network are separated from
each other by direct links (single-hop communication). In

970 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 17, NO. 9, SEPTEMBER 2006

TABLE 1
Modes Assigned to Roles at Inquiry Step

this case, the traffic load imposed on the network by a
certain traffic demand pattern will be minimum. When
demand is fixed, the WASP value gets closer to one as the
traffic load on the network decreases, meaning that pairs
with higher traffic demands are getting closer.

In order to test the performance of the proposed
algorithm, a custom simulation environment, which is
implemented in C++, is developed. The simulator computes
the bandwidth efficiency based on the WASP metric and
energy usage of the topologies. Since the simulation
environment is flow based, rather that packet based, it
focuses on the bandwidth and energy efficiency of a
topology and does not examine the amount of messaging
required for or the delay due to the execution of the
algorithm. The simulator takes the traffic characteristics as
input and computes WASP values and energy usages for
the initial and final topologies, for different scatternet sizes.
Simulations are run for different traffic characteristics and
for scatternet sizes varying between 10 and 100 nodes with
a step size of 10 nodes. For each scatternet size, 100 different
initial scatternet topologies are generated and the proposed
algorithm is run on arbitrary master nodes until no
significant improvement on total bandwidth usage is
obtained. Numerically speaking, if the improvement is less
than 1 percent compared to the previous topology, the
scatternet is assumed to be stabilized. For each scatternet
size, the WASP values for each of 100 initial and final
topologies are gathered and their average is calculated. For
more information on the simulation environment itself, [20]
can be referenced.

Three different traffic characteristics are used in simula-
tions. In the first type of traffic characteristic (TC-1), given a
pair of nodes out of all possible pairs of nodes, they

. do not communicate with a probability of 0.3;

. communicate at

- 5 Kbps with a probability of 0.2,
- 10 Kbps with a probability of 0.2,
- 15 Kbps with a probability of 0.2, and
- 20 Kbps with a probability of 0.1.

In the second type of traffic characteristic (TC-2) given a

pair of nodes, they

. do not communicate with a probability of 0.4;

. communicate at

- 5 Kbps with a probability of 0.3 and
- 30 Kbps with a probability of 0.3.

In the third type of traffic characteristic (TC-3), nodes are

grouped into three as Group-A, Group-B, and Group-C,
which constitute 30 percent, 30 percent, and 40 percent of all
nodes in a scatternet, respectively. Given a pair of nodes:

. both from Group-A, they communicate at 20 Kbps
with a probability of 0.7;

. both from Group-B, they communicate at 15 Kbps
with a probability of 0.8;

. both from Group-C, they communicate at 15 Kbps
with a probability of 0.6;

. one from Group-A and one from Group-B, they
communicate at 4 Kbps with a probability of 0.2;

. one from Group-A and one from Group-C, they
communicate at 2 Kbps with a probability of 0.3; and

. one from Group-B and one from Group-C, they
communicate at 3 Kbps with a probability of 0.3.

In TC-1 and TC-2, although there are demands with
different communication rates, the demands are evenly
distributed among node pairs. Different from TC-1 and TC-
2, in TC-3, however, there are groups where we have higher

rate of traffic demands between the nodes belonging to the
same group and lower rate demands between the nodes
belonging to different groups. The initial and final WASP
values for these three different traffic characteristics on

varying scatternet sizes are listed in Table 2. As it can be
clearly seen, whatever the traffic characteristics are, the initial
WASP values are very similar. However, as the scatternet-
wide communication relations among nodes get weaker, the
final WASP values decrease.

In Fig. 6, improvements in WASP for TC-1, TC-2, and
TC-3 are shown for varying scatternet sizes. For TC-3, the
improvements are higher than TC-1 and TC-2, and

TEKKALMAZ ET AL.: DISTRIBUTED CONSTRUCTION AND MAINTENANCE OF BANDWIDTH AND ENERGY EFFICIENT BLUETOOTH... 971

TABLE 2
Initial and Final WASP Values for TC-1, TC-2, and TC-3

improvements up to 46 percent are reached, since heavily
communicating nodes can be grouped together in the
scatternet for TC-3. On the other hand, in TC-1 and TC-2, as
a node is moved toward another node it highly commu-
nicates with, it gets further from the other nodes it
communicates with at the same rate, because every node
has a similar probability of communication with another
node at certain rate. TC-2 has better improvement than TC-
1, since the ratio of noncommunicating nodes is higher in
TC-2 and it has a more diverse traffic distribution than TC-
1. Fig. 6 also shows that, as the scatternets get larger, the
improvements decrease. This is due to the increasing
communication rate per piconet. As the number of com-
municating nodes increases, the total traffic demand and,
consequently, the load on the scatternet increases, meaning
that a piconet should relay more traffic. According to the
proposed algorithm, a piconet is divided if the traffic flow
rate within the piconet exceeds 1 Mbps. Hence, as the
scatternet gets larger, the piconets tend to divide, which
increases the path lengths between communicating nodes
and consequently the value of WASP metric. Although
improvement in the WASP decreases, since the average
available bandwidth per piconet on the way from source to
destination increases, the data packets are not dropped due
to high congestion, which, in fact, means improvement in
general performance.

The simulation environment is also used to investigate
the differences between the initial and final scatternet
topologies. For example, the scatternet, which has a chain
topology, shown in Fig. 7, is converted into the topology
shown in Fig. 8a in four executions of the algorithm. In the
figure, the dark nodes are masters, gray nodes are bridges,
and white nodes are slaves. For this case, the traffic demand
for each node pair is assumed to be 3 Kbps. The WASP
value of the initial topology is 3.3 and the WASP value of
the final topology is 2. As it is clear from the figure, after the
algorithm is applied, we have fewer of piconets and,
therefore, they are utilized better. Starting from the same
chain topology, but this time with traffic demands among
the nodes increased to 8 Kbps per node pair, the final
topology depicted in Fig. 8b is reached. This final topology

is different from the previous final topology, due to the fact
that the capacity of a piconet is limited and, therefore, its
value affects the topology of the resulting scatternet. The
final WASP value is 2.18 this time.

Our algorithm shortens the path lengths between nodes.
Hence, it reduces the amount of data needed to be forwarded.
This, in turn, reduces the energy consumption. In order to
measure the effectiveness of our algorithm in this respect as
well, we observed various metrics related to energy con-
sumption with our simulation experiments. To compute the
energy required for transporting traffic between two adjacent
nodes, we used the radio model proposed in [21]. One
parameter of this model is the distance (d) between two
adjacent nodes that are communicating. In the model, this
distance affects the energy required to transmit. We assumed
that the Bluetooth nodes do not perform power control,
hence, the energy required to transmit is independent of the
distance and we take it fixed. The fixed energy consumption
value per unit transfer is computed with respect to the
maximum communication range of Bluetooth, which is
10 meters for most Bluetooth devices. We fixed the values of
the remaining parameters of the model as they are in [21],
since these values are consistent with the values specified in
Bluetooth standards [1].

As in the case with the WASP measurements, we run
simulations for different scatternet sizes. For each scatternet
size, we repeated the experiments 100 times, each time with
a different random topology. Energy consumptions of the
nodes are measured for each of these topologies and their
average is calculated. In Fig. 9, energy consumption
distribution is plotted, which shows how many nodes

972 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 17, NO. 9, SEPTEMBER 2006

Fig. 6. Improvement in WASP.

Fig. 7. Initial scatternet topology.

Fig. 8. Final scatternet topologies at communication rates of (a) 3 Kbps

and (b) 8 Kbps.

Fig. 9. Energy consumption distribution.

consume how much power (nJ/sec) before and after the
execution of our algorithm. This is the simulation result we
obtained for a scatternet with 50 nodes, but we also
obtained very similar results for other scatternet sizes
between 10 and 100. In Fig. 10a, the average energy
consumption value per node is plotted for different
scatternet sizes. We observe that up to 38 percent reduction
in the average energy consumption per node is achieved
after the execution of our algorithm. This is also the case for
total energy consumption in a scatternet. Energy consump-
tion of the node that consumes the maximum energy in a
scatternet is plotted in Fig. 10b for different scatternet sizes.
As it can be seen from the figure, our algorithm achieves up
to 28 percent reduction in the maximum energy consump-
tion at a node. In Fig. 11, we also plot the standard deviation
of the energy consumption per node in a scatternet. We see
a decrease in the standard deviation after execution of our
algorithm. This show that our algorithm not only reduces
the overall energy consumption in a scatternet, but also it
leads to a more even distribution of power consumption
among the nodes. Reduction in standard deviation is up to
24 percent.

5 CONCLUSION AND FUTURE WORK

In this paper, we propose a Bluetooth scatternet formation
and maintenance algorithm. The algorithm is different from
previous proposals due to its basic motivation, which is to

minimize the bandwidth usage in the resulting scatternet
topology. The proposed algorithm works in a distributed
fashion and it is adaptive, that is, it preserves bandwidth
efficiency as traffic demands change. It is also dynamic so
that it handles arrivals of new nodes and departures of
existing ones. As the bandwidth usage is reduced in the
scatternet, available bandwidth for new communication
demands increases. Furthermore, since the average load on
the links is reduced, the average end-to-end latency is also
reduced. Another benefit is that the average power
consumption per node is expected to decrease, since the
amount of traffic which is not directly related with a node
but still needs to be forwarded by that node is reduced. This
expectation is also verified by simulation results, which
showed that our algorithm not only reduces overall and
average power consumption, but also leads to a more even
distribution of power consumption. We evaluated the
proposed algorithm with respect to different aspects and
the results are observed to be promising.

Although the proposed scatternet formation and main-
tenance algorithm is designed to meet the requirements of a
practical solution for wireless ad hoc networks, such as
distributed approach with as low messaging overhead as
possible and adaptivity to changing conditions, it has one
major restriction which is the assumption that all nodes are
in the Bluetooth range of each other. This assumption may
not be valid for some application scenarios. Therefore, for
future work, we consider enhancing the proposed algo-
rithm to handle this kind of situation as well. Another open
issue about the algorithm is that it lacks the proof of
guaranteeing to reach a stable topology if the nodes that
constitute the scatternet and their communication demands
remain unchanged. Due to the dynamic nature of ad hoc
networks, both in the sense of node movements and traffic
variations, this is not a very significant problem for practical
purposes, but it is an important issue and, therefore, should
be examined as part of our future work.

ACKNOWLEDGMENTS

This work is supported partially by The Scientific and
Technological Research Council of Turkey (TÜBITAK) with
projects 103E014 and 104E028, and by the Europion Union
FP-6 Program with project NEWCOM IST NoE 507325. The
authors also thank Dilek Karabudak for kindly reviewing
this paper.

TEKKALMAZ ET AL.: DISTRIBUTED CONSTRUCTION AND MAINTENANCE OF BANDWIDTH AND ENERGY EFFICIENT BLUETOOTH... 973

Fig. 10. Average and maximum energy consumption.

Fig. 11. Standard deviation of energy consumption.

REFERENCES

[1] Bluetooth, Bluetooth Special Interest Group, 2006, http://
www.bluetooth.com.

[2] S. Baatz, C. Bieschke, M. Frank, C. Kuhl, P. Martini, and C. Scholz,
“Building Efficient Bluetooth Scatternet Topologies from 1-
Factors,” Proc. IASTED Int’l Conf. Wireless and Optical Comm., 2002.

[3] M.A. Marsan, C.F. Chiasserini, A. Nucci, G. Carello, and L.D.
Giovanni, “Optimizing the Topology of Bluetooth Wireless
Personal Area Networks,” Proc. IEEE INFOCOM, 2002.

[4] T. Topal, “Constructing Efficient Bluetooth Scatternets,” Mas-
ter’s thesis, Dept. of Computer Eng., Bilkent Univ., http://
www.thesis.bilkent.edu.tr/0002478.pdf, 2004.

[5] R.M. Whitaker, L. Hodge, and I. Chlamtac, “Bluetooth Scatternet
Formation: A Survey,” Ad Hoc Networks, to appear.

[6] C. Law, A.K. Mehta, and K.Y. Siu, “Performance of a New
Bluetooth Scatternet Formation Protocol,” Proc. ACM Symp. Mobile
Ad Hoc Networking and Computing (MobiHoc), 2001.

[7] C. Law and K.Y. Siu, “A Bluetooth Scatternet Formation
Algorithm,” Proc. Symp. Ad Hoc Wireless Networks, 2001.

[8] T. Salonidis, P. Bhagwat, L. Tassiulas, and R. LaMaire, “Dis-
tributed Topology Construction of Bluetooth Personal Area
Networks,” Proc. INFOCOM, 2001.

[9] G. Tan, A. Miu, J. Guttag, H. Balakrishnan, T. Berners-Lee, L.
Masinter, and M. McCahill, “Forming Scatternets from Bluetooth
Personal Area Networks,” Technical Report Mit-lcs-tr-826, MIT
Laboratory for Computer Science, 2001.

[10] G. Zaruba, S. Basagni, and I. Chlamtac, “Bluetrees-Scatternet
Formation to Enable Bluetooth-Based Personal Area Networks,”
Proc. IEEE Int’l Conf. Comm., 2001.

[11] C. Petrioli, S. Basagni, and I. Chlamtac, “Configuring Bluestars:
Multihop Scatternet Formation for Bluetooth Networks,” IEEE
Trans. Computers, special issue on wireless Internet, vol. 52, no. 6,
pp. 779-790, 2003.

[12] D. Miorandi and A. Zanella, “On the Optimal Topology of
Bluetooth Piconets: Roles Swapping Algorithms,” Proc. Mediterra-
nean Conf. Ad Hoc Networks, Med-Hoc-Net, 2002.

[13] F. Cuomo, G. di Bacco, and T. Melodia, “Shaper: A Self-Healing
Algorithm Producing Multi-Hop Bluetooth Scatternets,” Proc.
IEEE Globecom, Dec. 2003.

[14] C.-F. Chiasserini, M.A. Marsan, E. Baralis, and P. Garza, “Towards
Feasible Distributed Topology Formation Algorithms for Blue-
tooth-Based WPANs,” Proc. 36th Hawaii Int’l Conf. System Science
(HICSS-36), Jan. 2003.

[15] G. Miklos, A. Racz, Z. Turanyi, A. Valko, and P. Johansson,
“Performance Aspects of Bluetooth Scatternet Formation,” Proc.
First ACM Int’l Symp. Mobile Ad Hoc Networking and Computing,
2000.

[16] R. Kapoor, M. Sanadidi, and M. Gerla, “An Analysis of Bluetooth
Scatternet Topologies,” Proc. Int’l Conf. Comm. (ICC), 2003.

[17] D. Miorandi, A. Trainito, and A. Zanella, “On Efficient Topologies
for Bluetooth Scatternets,” Lecture Notes in Computer Science,
vol. 2775/2003, pp. 726-740, 2003.

[18] M. Kalia, S. Garg, and R. Shorey, “Scatternet Structure and Inter-
Piconet Communication in the Bluetooth System,” Proc. IEEE Nat’l
Conf. Comm., 2000.

[19] K.E. Persson, D. Manivannan, and M. Singhal, “Bluetooth
Scatternets: Criteria, Models and Classification,” Ad Hoc Networks,
to appear.

[20] M. Tekkalmaz, “Distributed Construction and Maintenance of
Bandwidth-Efficient Bluetooth Scatternets,” Master’s thesis,
Dept. of Computer Eng., Bilkent Univ., http://www.thesis.
bilkent.edu.tr/0002644.pdf, 2004.

[21] W. Heinzelman, A. Chandrakasan, and H. Balakrishnan, “Energy-
Efficient Communication Protocol for Wireless Microsensor Net-
works,” Proc. Hawaii Int’l Conf. System Sciences, 2000.

Metin Tekkalmaz received the BS and MS
degrees in computer engineering from Bilkent
University, Ankara, Turkey, in 2002 and 2004,
respectively. Currently, he is a software en-
gineer at ASELSAN Inc. and a PhD student at
Bilkent University. His research interests include
wireless ad hoc and sensor networks.

Hasan Sözer received the BS and MS degrees
in computer engineering from Bilkent University,
Ankara, Turkey, in 2002 and 2004, respectively.
From August 2002 until January 2004, he
worked as a software engineer at ASELSAN
Inc. in Turkey. He is currently a PhD student at
the University of Twente in The Netherlands. His
research interests include software engineering
and wireless ad hoc networks.

Ibrahim Korpeoglu received the BS degree in
computer engineering from Bilkent University,
Ankara, Turkey, and the MS and PhD degrees in
computer science from the University of Mary-
land, College Park. He is currently an assistant
professor in the Department of Computer En-
gineering at Bilkent University. Prior to that, he
worked in several companies in the US, includ-
ing Ericsson, the IBM T.J. Watson Research
Center, Bell Laboratories, and Telcordia Tech-

nologies. His research interests include wireless ad hoc and sensor
networks, mobile computing, peer-to-peer networks, and distributed
systems. He is a member of the IEEE and the ACM.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

974 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 17, NO. 9, SEPTEMBER 2006

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings with Distiller 7.0 or equivalent to create PDF documents suitable for IEEE Xplore. Created 29 November 2005. ****Preliminary version. NOT FOR GENERAL RELEASE***)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

