
A Distributed Fault-Tolerant Topology
Control Algorithm for Heterogeneous

Wireless Sensor Networks
Hakki Bagci, Ibrahim Korpeoglu, Senior Member, IEEE, and Adnan Yazıcı, Senior Member, IEEE

Abstract—This paper introduces a distributed fault-tolerant topology control algorithm, called the Disjoint Path Vector (DPV), for

heterogeneous wireless sensor networks composed of a large number of sensor nodes with limited energy and computing capability

and several supernodes with unlimited energy resources. The DPV algorithm addresses the k-degree Anycast Topology Control

problem where the main objective is to assign each sensor’s transmission range such that each has at least k-vertex-disjoint paths to

supernodes and the total power consumption is minimum. The resulting topologies are tolerant to k� 1 node failures in the worst case.

We prove the correctness of our approach by showing that topologies generated by DPV are guaranteed to satisfy k-vertex supernode

connectivity. Our simulations show that the DPV algorithm achieves up to 4-fold reduction in total transmission power required in the

network and 2-fold reduction in maximum transmission power required in a node compared to existing solutions.

Index Terms—Topology control, fault tolerance, k-connectivity, disjoint paths, heterogeneous wireless sensor networks, energy efficiency

Ç

1 INTRODUCTION

WIRELESS sensor networks (WSNs) have been studied
extensively for their broad range of potential moni-

toring and tracking applications, including environmental
monitoring, battlefield surveillance, health care solutions,
traffic tracking, smart home systems and many others [1].
WSNs are typically composed of large number of tiny sen-
sors that are capable of sensing, processing and transmitting
data via wireless links. Sensor nodes collaborate in a distrib-
uted and autonomous manner to accomplish a certain task,
usually in an environment with no infrastructure.

Power efficiency and fault tolerance are essential proper-
ties to have for WSNs in order to keep the network function-
ing properly in case of energy depletion, hardware failures,
communication link errors, or adverse environmental con-
ditions, events that are likely to occur quite frequently in
WSNs [2], [3]. Topology control is one of the most important
techniques used for reducing energy consumption and
maintaining network connectivity [4]. There are many reac-
tive and proactive topology control techniques for tolerating
node failures in WSNs [37].

In this paper, we focus on a proactive fault-tolerant topol-
ogy control algorithm in heterogeneous WSNs with a two-
layered architecture where the lower layer consists of low-
cost ordinary sensor nodes, with limited battery power and
short transmission range. The upper layer consists of

supernodes, which have more power reserves and better
processing and storage capabilities. Links between superno-
des have longer ranges and higher data rates; however,
supernodes are fewer in number due to their higher cost.
Supernodes can also have some special abilities like acting
against an event or a certain condition. This type of superno-
des are called actors (or actuators), and sensor networks that
contain actors are called wireless sensor and actor networks
(WSAN). In WSANs, data gathered by sensors is forwarded
to actors for performing the required actions [5]. A heteroge-
neous WSN with supernodes are known to be more reliable
and have longer network lifetime than the homogeneous
counterparts without supernodes. Heterogeneity can triple
the average delivery rate and provide a five-fold increase in
the network lifetime if supernodes are deployed carefully [6].

This paper introduces a new algorithm called the Dis-
joint Path Vector (DPV) algorithm for constructing a
fault-tolerant topology to route data collected by sensor
nodes to supernodes. In WSNs, guaranteeing k-connectiv-
ity of the communication graph is fundamental to obtain
a certain degree of fault tolerance [4]. The resulting topol-
ogy is tolerant up to k� 1 node failures in the worst case.
We propose a distributed algorithm, namely the DPV
algorithm, for solving this problem in an efficient way in
terms of total transmission power of the resulting topolo-
gies, maximum transmission power assigned to sensor
nodes, and total number of control message transmis-
sions. Our simulation results show that our DPV algo-
rithm achieves between 2.5-fold and 4-fold reduction in
total transmission power required in the network,
depending on the packet loss rate, and a 2-fold reduction
in maximum transmission power required in a node com-
pared to existing solutions. The power efficiency of our
algorithm directly results from the novel approach that
we apply while discovering the disjoint paths. This
approach involves in storing full path information instead

� H. Bagci and A. Yazıcı are with the Department of Computer Engineering,
Middle East Technical University, Ankara, Turkey.
E-mail: hakki.bagci@tubitak.gov.tr.

� I. Korpeoglu is with the Department of Computer Engineering, Bilkent
University, Ankara, Turkey.

Manuscript received 10 Nov. 2013; revised 8 Feb. 2014; accepted 12 Mar.
2014. Date of publication 8 Apr. 2014; date of current version 6 Mar. 2015.
Recommended for acceptance by D. Manivannan.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TPDS.2014.2316142

914 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 26, NO. 4, APRIL 2015

1045-9219� 2014 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

of just next node information on the paths and provides a
large search scope for discovering the best paths through-
out the network without the need of global network
topology.

The paper is organized as follows: In Section 2 we
present related work on topology control algorithms for
WSNs. We describe our approach and our DPV algorithm
in Section 3 and present our simulation results in Section
4. We conclude our paper in Section 5. We also include a
supplementary file, which can be found on the Computer
Society Digital Library at http://doi.ieeecomputersociety.
org/10.1109/TPDS.2014.2316142, providing further exam-
ples and details about the algorithm.

2 RELATED WORK

Topology control is defined as controlling the neighbor set
of nodes in a WSN by adjusting transmission range and/or
selecting specific nodes to forward the messages [7]. Topol-
ogy control approaches can be divided into two main cate-
gories, namely, homogeneous and nonhomogeneous [4]. In
homogeneous approaches transmission range of all sensors
are the same whereas in nonhomogeneous approaches
nodes can have different transmission ranges.

There are many topology control methods proposed in
literature and they can be classified according to the techni-
ques they use [34]. Many topology control methods [8], [9],
[10], [11], [12], [13] are built on the transmit power adjust-
ment technique which depends on the ability of sensors to
control their transmit power. Some algorithms [15], [14],
[16], [17], [18] use sleep scheduling which aims to decrease
energy consumption while nodes are in idle state. Others
use geometrical structures, location and direction informa-
tion and also combinations of these techniques [19], [20],
[21], [22], [23], [24], [25] and [36]. The difference between
these studies and our work is that we try to minimize nodes’
total transmission power in two-tiered heterogeneous topol-
ogies whereas other works focus on flat homogeneous
topologies. In addition we focus on connectivity between a
sensor node and supernodes whereas they focus on connec-
tivity between any two nodes.

Clustering can also be considered as another way of
topology control, where the aim is to organize the network
into a connected hierarchy for the purpose of balancing
load among the nodes and prolonging the network lifetime
[26]. Hierarchical clustering techniques [27], [28] and [29]
select cluster heads depending on various criteria and
create a layered architecture. However, these techniques
start with a flat topology and end up with a layered one.
On the other hand, we start with a layered architecture
from the beginning, where the supernodes are already
given. Instead of building clusters, we focus on maintain-
ing fault-tolerant connectivity between sensor nodes and
supernodes.

An active research area where layered and heteroge-
neous architectures are utilized is wireless sensor and
actor networks. WSANs usually have a two-layer architec-
ture where the lower level is composed of low cost sensor
nodes and the upper layer consists of resource-rich actor
nodes which take decisions and perform appropriate
actions [5]. In WSANs, there are usually two type of

wireless communication links: actor-actor and sensor-
actor links [30]. The links between sensors and actors are
assumed to be less reliable [31], hence there are several
methods proposed for maintaining reliable sensor-actor
connectivity [30], [31], [32]. The methods of [31] and [32],
however, do not employ k-connectivity between sensors
and actors and thus they do not guarantee fault-tolerance
in case of k� 1 node failures. Although [30] addresses the
k-actor connectivity problem, it does not consider the
energy efficiency of the resulting topologies. Our approach
differs from these works by maintaining k-connectivity
and addressing power efficiency at the same time.

A prominent work on fault-tolerant topology control
for heterogeneous WSNs with a two-layer network archi-
tecture is proposed by Cardei et al. [35], addressing both
k-connectivity and energy efficiency. As we do, they focus
on the k-degree Anycast Topology Control (k-ATC) prob-
lem, which aims adjusting the transmission range of the
sensor nodes to achieve k-vertex supernode connectivity
and minimize the nodes’ maximum transmission power.
They propose a greedy centralized algorithm called
global anycast topology control (GATC), and also a dis-
tributed algorithm called distributed anycast topology
control (DATC), which provides k-vertex supernode con-
nectivity by incrementally adjusting the transmission
range of the sensor nodes. GATC is mostly of theoretical
importance since it is not practical to apply it for large
scale WSNs due to the requirement of global topology
knowledge. The DATC algorithm [35] is a distributed and
hence a more practical solution to the k-ATC problem.
This algorithm requires only 1-hop neighborhood topol-
ogy information, which can also be extended to h-hop.
The objective of DATC is to ensure that any neighbor
node u, in the reachable neighborhood of any node v, is
either directly reachable from node v or there are at least
k-vertex disjoint paths from v to u.

Our algorithm differs from DATC by the approach that
we adopt for discovering vertex disjoint paths. In DATC,
each node starts with a minimal set of neighbors and mini-
mal power level. The power level is increased incremen-
tally and only the paths from the neighborhood that is
reachable with that power level can be discovered. The
nodes outside of the reachable neighborhood are totally
unknown to the node performing discovery and thus they
are out of the search scope for discovering paths. This is an
important limitation for DATC because it has a low chance
to find k-vertex disjoint paths for its neighbors in its reach-
able neighborhood, which typically has nodes that are in 1
or 2 hops distance from the node performing the discovery.
In contrary to DATC, in our algorithm, a sensor node can
discover paths including nodes outside of its reachable
neighborhood. This is achieved by storing full path infor-
mation from supernodes to sensor nodes in local informa-
tion tables. In this way, the DPV algorithm has more
chance to discover better k-disjoint paths than DATC.
Another difference of our algorithm from DATC is that, we
decrease the power level only after deciding the final topol-
ogy. During path discovery in the DPV algorithm, nodes
operate with maximum power, thus, increasing the likeli-
hood of discovering more paths than DATC. Our simula-
tion results are in conformity with this discussion.

BAGCI ET AL.: A DISTRIBUTED FAULT-TOLERANT TOPOLOGY CONTROL ALGORITHM FOR HETEROGENEOUSWIRELESS SENSOR... 915

3 DISJOINT PATH VECTOR ALGORITHM

We propose a new algorithm, called Disjoint Path Vector
Algorithm, for fault-tolerant topology control in two-tiered
heterogeneous WSNs consisting of resource-rich superno-
des and simple sensor nodes with batteries of limited capac-
ity. Before introducing our algorithm we give some
necessary definitions:

Definition 1 (Vertex disjoint paths). A set of paths with com-
mon end points that have no other vertices in common.

Definition 2 (k-vertex supernode connectivity). A WSN is
k-vertex supernode connected if, for any sensor node v 2 V ,
there are k pairwise vertex disjoint paths from v to one or more
supernodes. In other words, a WSN is k-vertex supernode con-
nected if the removal of any k� 1 sensor nodes does not parti-
tion the network [35].

To obtain fault-tolerant topologies we focus on k-vertex
supernode connectivity where each sensor is connected to
at least one supernode by k-vertex disjoint paths. Such
topologies are tolerant to k� 1 node failures in the worst
case. Our algorithm is based on the observation that for a
node we can remove the edges with neighbors that are not
on one of the k-vertex disjoint paths from the node to one of
the supernodes. To achieve this, we need to determine
which neighbors are on one of such paths and which are
not. Our DPV algorithm finds a superset of the required ver-
tices in order to guarantee the k-vertex supernode connec-
tivity. Having found the required neighbors, each node
removes edges not connected to a required node in coordi-
nation with its neighbors. Then, to save energy, we decrease
the transmission range of the sensor nodes but still reach
the farthest node in the new set of neighbors.

DPV is a distributed algorithm executed by each sensor
node in the network. Each node uses topology information
in its 1-hop neighborhood. Paths to the supernodes are
explored using messages, which contain path information
from a supernode to a sensor node. Global network topol-
ogy information is not required by the DPV algorithm.

3.1 Network Model

We consider a heterogeneous WSN consisting of M
supernodes and N sensor nodes, with M � N . Sensor
nodes are randomly deployed in the 2D plane. Supernodes
are deployed at known locations manually. We are inter-
ested in sensor-sensor and sensor-supernode communica-
tions only. We do not model supernode-to-supernode
communications because we assume that supernodes are
not energy constrained and thus can directly communicate
with a base station or can send data collected from sensors
to other supernodes if necessary. Delivering a message
originated at a sensor node to any of the supernodes is
considered a successful delivery. In the initial network
topology each sensor node has transmission range Rmax.
We represent the initial network topology with an undi-
rected weighted graph G ¼ ðV; EÞ, where V ¼ fv1; v2; . . . ;
vN; vNþ1; . . . ; vNþMg is the set of nodes and E ¼ fðvi; vjÞ j
distðvi; vjÞ < Rmaxg is the set of edges, where distðvi; vjÞ
depicts the distance between nodes vi and vj. The first N
nodes in V are the energy-constrained sensor nodes and
the last M nodes are the resource-rich supernodes.

3.2 Problem Statement

We aim to construct a k-vertex supernode connected net-
work topology to route data collected by sensor nodes to
the supernodes for two-tiered WSNs with the network
model given in Section 3.1. We model topology control as a
transmission range assignment problem for each sensor
node in the network. The objective is to minimize the
assigned transmission power for all sensors while maintain-
ing k-vertex disjoint paths from each sensor to the set of
supernodes. In this topology, each sensor node in the net-
work must be connected to at least one supernode with
k-vertex disjoint paths.

We can define the problem as follows: given a k-vertex
supernode connected WSN with M supernodes and N
energy-constrained sensor nodes that can adjust their trans-
mission range up to a predefined constant Rmax, determine
the transmission range of each sensor such that the total
transmission power is minimized and the resulting topol-
ogy is still k-vertex supernode connected. Next, we state the
problem definition more formally.

Problem Definition: Given an undirected graphG ¼ ðV;EÞ,
where V is the set of all vertices and E is the set of all edges,
and given two disjoint subsets of vertices, namely, M � V ,
N � V and M \N ¼ ;, where there exists at least k-vertex
disjoint paths from each vertex v 2 N to the set of vertices
M, find the set of edges F such that GðV;E � F Þ satisfies the
following:

1) There exist at least k-vertex disjoint paths from each
vertex v 2 N to the set of verticesM.

2)
PN

i¼1 pi is minimized, where pi is the weight of the
maximum weighted edge 2 ðE � F Þ of vi 2 N .

3.3 Disjoint Path Vector Algorithm for k-Vertex
Supernode Connectivity

Our DPV algorithm efficiently assigns transmission power
levels for sensor nodes while preserving the network’s
k-vertex supernode connectivity in a distributed and local-
ized manner. It consists of five main stages where the first
stage is path information collection, initiated by the supern-
odes through Init messages. An Init message contains the
ID of the supernode that created the message and can only
be transmitted by a supernode. These messages are received
by the sensor nodes in the network and each receiver node
updates its local path information according to that data.
Sensor nodes transmit PathInfo messages when an update
occurs in their local disjoint path lists. Upon receiving a
PathInfo message, each sensor node computes the disjoint
paths to the supernodes by using its local data and the path
information received from the PathInfo message. If the
incoming PathInfo message decreases the cost of the dis-
joint paths, the message is forwarded by adding the
updated path information. The cost of a set of disjoint paths
is defined as the maximum of the costs of the paths in the
set. When further decrement is not possible, the first stage
of the algorithm ends and the second stage starts in which
each node calculates its required neighbors using the locally
found set of disjoint paths as the input.

In the third stage, for each disjoint path a Notifymessage
is initiated by each sensor node and forwarded along the
nodes in the path. Neighbor nodes in a disjoint path mark

916 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 26, NO. 4, APRIL 2015

each other as a required neighbor. In the fourth stage, neigh-
bors that are not selected as required are removed from the
neighbor list. In the final stage, each node adjusts its trans-
mission power level to reach its farthest required neighbor
according to the new topology that resulted from the
removal of the non-required nodes. We now give a detailed
explanation for each stage of the DPV algorithm.

After deploying sensor nodes and supernodes, the first
stage of the algorithm is initiated by Init messages that
supernodes broadcast through the network. Any sensor
node receiving an Init message updates its local path infor-
mation table by adding an entry for the path to the super-
node that sent the message. In this special case such an
entry will only include the ID of the supernode and the cost
of the link between the receiver node and supernode. The
cost will be the length of the link. An entry in a sensor
node’s local path information table at a sensor node
includes a path to a supernode and the cost of that path.
The cost of a path is the length of the longest link in the
path. Paths are sorted according to cost in ascending order
in the local path information table. Details of the distributed
algorithm run by each sensor node in the information collec-
tion stage are given in Algorithm 3.1. The DPV algorithm
notations are introduced in Table 1.

Having updated the local path information table, a sen-
sor node creates and transmits a PathInfo message, which
contains its ID and path information table. A PathInfo
message can only be sent by sensor nodes whereas an Init
message can only be sent by supernodes. Init messages
contain only ID of the sending supernode whereas a
PathInfo message includes paths to supernodes and their
costs. Sensor nodes transmit PathInfo messages to their
reachable neighborhood using maximum power. Any sen-
sor node that receives a PathInfo message calculates the
union of the existing and the received paths via PathInfo
message. Then, the set of disjoint paths with the minimum
cost is calculated for the existing paths and for the newly
calculated union. Notice that the size of calculated disjoint
sets is at most k, because we need only k disjoint paths. If
the new cost is lower than the current cost, the local path
information table is updated. The resulting list of disjoint
paths is stored for use in the next stages of the DPV
algorithm. The details of the algorithm for finding disjoint
paths (MIN_DIS_SET) run by each sensor node are given
in Section 3 of the supplementary file, available online.

Any sensor node that updates its local path information
table transmits a PathInfo message containing the updated
path information table. Note that if a PathInfo message
does not cause an update in the receiver node’s disjoint
paths list, then no PathInfo message is sent by that sensor
node. This condition ensures the termination of the path
information collection stage. If further improvement on the
path costs is not possible, then transmission of PathInfo
messages ends. The DPV algorithm is guaranteed to con-
verge because there is an upper bound on the number of
PathInfo messages that any sensor can send during the
path information collection stage. A PathInfo message is
only transmitted if an update occurs in the local set of dis-
joint paths. An update can only occur if a lower-cost disjoint
path is discovered via a received PathInfo message. In the
worst case, there can be jEj different-cost disjoint paths
from a sensor node to the set of supernodes where jEj is the
number of edges in the network given that the cost of a path
is defined as the cost of the longest edge in that path. In the
worst case scenario, these jEj different-cost disjoint paths
can be discovered in the decreasing order of the path cost.
Suppose that each discovery results an update, then the
node will send at most jEj PathInfo messages. Since a
graph with n nodes can have at most Oðn2Þ edges, we con-
clude that any sensor node can transmit at most Oðn2Þ
PathInfo messages. However, this upper bound occurs
only when there is an edge between every node in the net-
work, which is an uncommon scenario in WSNs. This upper
bound can be better expressed as OðnDÞ, where D denotes
the maximum degree of a sensor node.

We set an upper limit on the number of hops a PathInfo
message can traverse during the path information collection
stage. This is the PathInfo message’s time-to-live (TTL)
value, and it directly affects the number of hops in the
resulting paths. This value is set at the supernode that sends
the Init message and it is included in every PathInfo mes-
sage. When a sensor node receives a PathInfo message that
has reached the TTL value, no further PathInfo message is
created even if an update occurs as a result of this PathInfo
message. This approach ensures that paths with a length

TABLE 1
DPV Notations

BAGCI ET AL.: A DISTRIBUTED FAULT-TOLERANT TOPOLOGY CONTROL ALGORITHM FOR HETEROGENEOUSWIRELESS SENSOR... 917

above a certain limit are not considered in the disjoint path
calculation; it can be considered as a prepruning that occurs
before determining the set of disjoint paths with minimum
cost. The Algorithm for finding the required nodes, which is
run by each sensor node, is given in Algorithm 3.2.

To guarantee that all nodes in a selected disjoint path are
labeled as required neighbors, we need to notify all the
nodes on that path. To achieve this, each node sends a
Notify message for each of its selected disjoint paths. A
Notify message is forwarded along the disjoint path for
which it was created. Each neighboring node in the disjoint
path marks each other as required neighbors. This stage
ensures that any node on a selected disjoint path will be
marked as a required neighbor of its neighbors that are also
on the same disjoint path. If any two neighbor nodes do not
mark each other as required neighbors, it means that the
link between these two nodes is not necessary and can be
removed. Algorithm 3.3 shows the steps taken by each sen-
sor node upon receiving a Notifymessage.

For a node that does not have path information of at least
k-vertex disjoint paths to supernodes, all neighbors are
defined to be required because it is not known which neigh-
bors can be removed. Such a node cannot decide which
neighbors are required and which are not, because it has
not sufficient local information. In that case all neighbors
are kept since all can potentially be a part of a disjoint path.
This approach ensures the k-vertex supernode connectivity
of the resulting network topology in case of insufficient local
information. Having determined the final set of neighbors,
each node adjusts its transmission power to reach its far-
thest neighbor according to the finished topology. A sample
run of DPV is given in Section 1 of the supplementary file,
available online. We prove that final topologies generated
by the DPV algorithm are k-vertex supernode connected in
Section 2 of the supplementary file, available online.

The running time complexity of the DPV algorithm is
OðnD2Þ, where n is the number of nodes in the network and
D is the maximum degree of a sensor node. In [35], the time
complexity of the DATC algorithm is given as OðD5Þ. So, in
dense graphs where D is high, DATC will experience much
higher computation overhead than the DPV algorithm. In
the worst case, where there is an edge between every node,
complexity of DATC will be Oðn5Þ whereas our algorithm
will be Oðn3Þ. In our experiments we measured the running
time of DPV as 4.5 seconds and the running time of DATC
(h ¼ 2) as 15.1 seconds on the average (we set the number of
sensor nodes to 500). This result is in conformity with our
running time analysis given in Section 4 of the supplemen-
tary file, available online.

The asymptotic message complexity of the DPV algo-
rithm is OðnDÞ. The message complexity of DATC is
reported as OðDÞ per node in [35]. However this is valid for
1-hop neighborhood only. For h-hop neighborhood the
complexity will be OðDhÞ, because each sensor needs to for-
ward the messages that it receives from its h-hop neighbor-
hood. On the other hand, one can note that the worst case
for the DPV algorithm, where paths are discovered in the
order of decreasing cost, is unlikely, since it is more proba-
ble to receive messages first from shorter paths than the lon-
ger ones. Therefore, we expect a lower message complexity
in the average case. Our simulation results are in conformity
with this analysis. Message complexity analysis of the DPV
algorithm is given in Section 5 of the supplementary file,
available online. Time and message complexity of the algo-
rithms are summarized in Table 2.

4 EVALUATION

In this section we report the results of the experiments that
we performed to evaluate our algorithm, comparing it with
GATC and DATC. We have implemented the DPV, GATC
and DATC algorithms using a custom simulator that we
developed. The simulator enables us to generate random
network topologies, execute the algorithms on the gener-
ated topologies, calculate the desired metrics, and visualize
the outputs of the experiments.

4.1 Experimental Setup

In our experiments, the sensors are randomly deployed in a
600 m � 600 m area. The supernodes are also randomly and
uniformly deployed in this area. The path loss exponent for
the wireless channel a is chosen to be 2 and the initial
maximum transmission range Rmax of the nodes is set to be
100m. Since it is required to have a network topology where
each sensor is at least k-vertex connected to the set of
supernodes, topologies that do not satisfy this condition are
discarded. For the parameters k and hwe use similar values

TABLE 2
Time and Message Complexities of DPV and DATC per Node

Where n is the Number of Nodes in the Network, D is the
Maximum Degree of a Sensor Node, and h is the Number of

Hops that Specifies the Local Neighborhood of a Node in DATC

918 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 26, NO. 4, APRIL 2015

with [35], which are typical values seen in k-connectivity
studies. The experiments are repeated at least 50 times for
each parameter set and average values are reported at 95%
confidence level with a maximum 5% confidence interval.
Confidence intervals for reported values are depicted on the
corresponding charts. Our simulation parameters are sum-
marized in Table 3.

We assume that each node in the network has a unique
ID and for the first part of the simulations we assume no col-
lisions or retransmissions occur during wireless communi-
cations. Hence we only focus on topology and distance
effects. Then we extend our simulations with packet loss
scenarios in Section 4.2.5. In addition, we assume that nodes
can predict the length of the links using received signal
strength. As sensor nodes we consider TelosB motes which
have an adjustable transmission range where Rmax is 100 m.
As supernodes we consider Crossbow IRIS motes which
can have transmission ranges up to 300 m. Both nodes are
Zigbee/802.15.4 compliant so sensor nodes can both com-
municate with each other and also with supernodes. The
maximum transmission range for supernodes to communi-
cate with sensor nodes is set to be 100 m as well. For sensor
nodes, the transmit power needed to talk to a receiver in
range is calculated by assuming a simple path loss model
and using the simple formula pi ¼ rai , as done in [35]. Here,
pi is the transmit power node i is using, ri is the transmis-
sion range of the node, and a is the path loss exponent.
Hence, the power values are simply expressed as a function
of the transmission range (i.e., distance) for the purpose of
comparing the algorithms. Therefore, we do not give power
values in a specific energy unit such as Joule.

4.2 Results

4.2.1 Total Transmission Power

In this section we report our simulation experiment results
showing the total transmission power set for the sensor
nodes in the resulting topologies obtained after executing
GATC, DATC with 1-hop local neighborhood (h ¼ 1),

DATC with 2-hop local neighborhood (h ¼ 2) and DPV.
GATC’s results are presented as a reference point, since it
minimizes the maximum transmission power of sensor
nodes. GATC can achieve that since it has the global network
topology information by being a centralized algorithm.

In Figs. 1a and 1b, we present the total transmission
power in topologies with k ¼ 2. In Fig. 1a, the number of
sensor nodes increases from 100 to 500 and the number of
supernodes is set to be 5% of the number of sensor nodes.
We see that the total transmission power in the topologies
generated by our DPV algorithm is much lower than that of
DATC (h ¼ 1) and DATC (h ¼ 2) algorithms. This shows
that the link elimination approach utilized by DATC has
difficulties in discovering alternative disjoint paths to a long
direct edge using local data gathered from 1 or 2-hop neigh-
borhood, as we discussed in Section 2. Since the search
scope is limited, long, hence, costly edges cannot be substi-
tuted with cheaper disjoint paths, resulting long transmis-
sion ranges and thus high total transmission power.
Another important observation related to limited search
scope is that DATC (h ¼ 1) performs significantly worse
than DATC (h ¼ 2) which has a broader search scope. How-
ever, as will be seen in later figures, DATC (h ¼ 2) requires
significantly more control message transmissions compared
to DATC (h ¼ 1) for maintaining 2-hop neighborhood.

Fig. 1b shows the results of our experiments where the
number of supernodes is 10% of number of sensor nodes. In
Fig. 1b, we see almost the same picture as in Fig. 1a, except
that the total power values are little lower because, due to
the high number of supernodes in the network, it is more
likely that cheaper paths will be found. Our DPV algorithm
performs parallel to GATC and the difference between DPV
and DATC (h ¼ 2) becomes clearer as the network gets
denser.

Figs. 1c and 1d depict the total transmission power of
the topologies generated by the algorithms for k ¼ 3. We
see that the total transmission power of the topologies gen-
erated by DPV is significantly lower than that of DATC
(h ¼ 1) and DATC (h ¼ 2). For k ¼ 3, it is harder to substi-
tute a high cost edge with a low cost one because three dis-
joint paths are needed to be able to do that. DATC needs to
find these paths in its reachable neighborhood where our
algorithm can directly search for paths using information
in the path vectors. Therefore, our algorithm can achieve
lower total transmission power compared to DATC. We
also observe that satisfying 3-vertex disjoint supernode
connectivity requires more transmission power than satis-
fying 2-vertex disjoint supernode connectivity in general,
as expected.

TABLE 3
Simulation Parameters

Fig. 1. Total transmission power.

BAGCI ET AL.: A DISTRIBUTED FAULT-TOLERANT TOPOLOGY CONTROL ALGORITHM FOR HETEROGENEOUSWIRELESS SENSOR... 919

4.2.2 Maximum Transmission Power

In this section, we report our experiment results on maxi-
mum transmission power among all sensors in the resulting
topologies generated by the DATC, DPV and GATC algo-
rithms. Maximum transmission power is an important met-
ric for the resulting topologies because it is an indication of
the balance of energy consumption among all sensors. Even
if total transmission power is low, the resulting topology
may become disconnected or even partitioned if the maxi-
mum transmission power is high because sensor nodes
with a high transmission range will use more energy than
other nodes and deplete their batteries sooner.

Figs. 2a and 2b show the maximum transmission powers
of the topologies generated by the algorithms for k ¼ 2,
where the number of supernodes is 5 and 10% of the sensor
nodes, respectively. We observe that GATC produces topol-
ogies with the lowest maximum transmission power among
all algorithms. This is due to the fact that GATC is a central-
ized algorithm and has global network topology informa-
tion. Thus it directly knows where the longest edges reside
in the network and eliminates edges in the order of decreas-
ing cost when possible. The DPV and DATC algorithms, on
the other hand, are localized algorithms and have a partial
knowledge of the network topology. For that reason, they
generate topologies with higher maximum transmission
power compared to GATC. Our proposed DPV algorithm
has the next best performance, which is significantly better
than the DATC algorithms. This result is again related to
the available information for discovering disjoint paths.
DATC can obtain limited information compared to DPV,
therefore it cannot discover as many disjoint path as our
DPV algorithm. This results higher maximum transmission
ranges for DATC.

For k ¼ 3, Figs. 2c and 2d show the comparison of maxi-
mum transmission powers for the resulting topologies. The
results are similar to when k ¼ 2 except that maximum

transmission power values are greater. This is an expected
result because keeping the network 3-connected requires
keeping more neighbors connected, which leads to higher
transmission ranges for the sensor nodes.

4.2.3 Total Number of Control Message Transmissions

In this section we give and discuss our experiment results
regarding the total number of control message transmissions
during the execution of the DPV and DATC algorithms.
GATC does not require control message transmissions while
computing the topology, since the computation is done cen-
trally. Control message transmission metric is important
because it is necessary not only to consider power consump-
tion in the resulting topologies but also to consider the
power consumption required to generate those topologies,
which can be viewed as a fixed cost of obtaining the final
topologies. If this cost is high, then the power efficiency of
the resulting topology might become meaningless.

In Figs. 3a and 3b, we present the total number of
required control message transmissions to execute the algo-
rithms with k ¼ 2. The most important observation here is
that DATC (h ¼ 2) requires an asymptotically larger num-
ber of transmissions than DATC (h ¼ 1) or DPV, because in
DATC (h ¼ 2) each node needs to notify all nodes in its 2-
hop neighborhood. While DATC (h ¼ 1) and DPV require
only one message transmission for an update, DATC
(h ¼ 2) requires D transmissions, where D is the degree of a
given sensor node. This situation shows that DATC (h ¼ 2)
may not be feasible in practice, because transmitting so
many messages during algorithm execution will cause rapid
battery drain. Therefore, extending the DATC algorithm for
more than 1-hop neighborhood seems not to be scalable due
to the exponentially increasing number of update messages.

We also observe that DPV requires fewer transmissions
than DATC (h ¼ 1) to obtain a k-vertex supernode connected

Fig. 2. Maximum transmission power.

Fig. 3. Total number of transmissions.

920 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 26, NO. 4, APRIL 2015

network topology. This is expected because DPV transmits
an update message only if a set of disjoint paths with a lower
cost is discovered whereas DATC sends update messages in
all power increments. Due to smaller search scope, DATC is
often unable to find disjoint paths and thus the number of
power increments tends to be high.

In Figs. 3c and 3d, we present the total number of
required control message transmissions to execute the algo-
rithms with k ¼ 3. The behaviors of all three algorithms are
similar with k ¼ 2, except when k ¼ 3 all algorithms require
slightly more message transmissions.

4.2.4 Total Number of Control Message Receptions

Another factor that affects power efficiency is the total num-
ber of received control messages during the execution of the
topology control algorithms. This is again a fixed cost, as in
the case of total transmissions required.

Figs. 4a and 4b show the total number of received control
messages during the execution of the algorithms with k ¼ 2,
and Figs. 4c and 4d show the same for k ¼ 3. Here again we
observe that during the execution of DATC (h ¼ 2) many
more receptions occur compared to DATC (h ¼ 1) and DPV
in all cases. This is a direct result of high number of trans-
missions required by DATC as discussed in Section 4.2.3.

We observe that when the number of supernodes is 5% of
the sensor nodes and k ¼ 2, DPV requires fewer receptions
than DATC (h ¼ 1). In all other cases the total number of
received messages for DPV and DATC (h ¼ 1) is almost the
same. For all algorithms, number of receptions tend to
increase when k and the number of supernodes increase,
but the increase for DATC (h ¼ 2) is significantly faster than
that of DPV and DATC (h ¼ 1). Another important observa-
tion is that the number of receptions is about five times
greater than the number of transmissions. This result is
expected because when a message is transmitted it is
received by multiple nodes in the 1-hop neighborhood.

4.2.5 Effect of Packet Losses

In wireless transmission medium, packet losses may be fre-
quent due to collisions, link failures, high bit error-rates,
and environmental conditions. In order to justify our
results, we present an additional scenario where packet
losses can occur in any link in the network with a given
probability. In this scenario, retransmissions are also consid-
ered and maximum number of retransmissions is set to be 3.
We change the packet loss ratio (PLR) between 0.1 and 0.4
with a step size of 0.1, and present the effect of packet losses
on total transmission power in Figs. 5a, 5b, 5c, and 5d.

We observe that when PLR increases, total transmission
power also increases. This is an expected result because
under a higher PLR, a higher number of information
exchange messages are lost and thus nodes can obtain
incomplete topology information from their neighbors.
Using this partial information all three algorithms miss
some of the more efficient paths because messages carrying
that information are lost due to communication failures.

As seen in Figs. 5a and 5b, our DPV algorithm performs
better than both DATC (h ¼ 1) and DATC (h ¼ 2), as in the
previous scenarios that do not consider packet losses. How-
ever, we see that the reduction in total power is not as high
as in the previous scenarios; it drops to 30% when PLR is
0.2. When PLR is 0.3 or higher, DATC (h ¼ 2) starts per-
forming better than our algorithm in terms of total transmis-
sion power of the final topologies. This is due to the fact that
DATC algorithms are more localized than DPV because
they only use 1-hop or 2-hop neighborhood information
which means their messages go only 1- or 2-hops long. On
the other hand, DPV algorithm gathers path information
from a wider area and therefore control messages can tra-
verse up to a predefined TTL value which is typically six or
seven. Since messages traverse longer paths in DPV algo-
rithm, they are more likely to get lost. To elaborate, success-
ful delivery chance of a message over a 2-hop path is three

Fig. 4. Total number of receptions.

Fig. 5. Total transmission power for k ¼ 2 with packet loss.

BAGCI ET AL.: A DISTRIBUTED FAULT-TOLERANT TOPOLOGY CONTROL ALGORITHM FOR HETEROGENEOUSWIRELESS SENSOR... 921

times higher compared to a 5-hop path when PLR is 0.3.
However, a PLR value as high as 0.3 per link is not very
realistic. In [33], it is reported that the average PLR is below
0.1 for Crossbow IRIS motes when the transmitter-receiver
separation is between 0 and 70 meters. In addition, total
number of control message transmissions for DATC (h ¼ 2)
is much higher than DPV due to the need of power update
messages in 2-hop neighborhood, as seen in Figs. 6a, 6b, 6c,
and 6d. DATC (h ¼ 1) still results with the highest total
transmission power due to its limited search scope as dis-
cussed in Section 4.2.1. Therefore, we can conclude that
under realistic PLR values, our algorithm DPV still outper-
forms DATC algorithms in terms of total transmission
power and total number of transmissions.

5 CONCLUSION

In this paper we introduce a new distributed and fault-
tolerant algorithm, called Disjoint Path Vector Algorithm
(DPV), for constructing fault-tolerant topologies for hetero-
geneous wireless sensor networks consisting of supernodes
and ordinary sensor nodes. Our algorithm results in topolo-
gies where each sensor node in the network has at least
k-vertex disjoint paths to the supernodes. The objective of
the algorithm is to minimize the total transmission power of
the nodes in the network.

Through extensive simulations, we show that our
approach outperforms the existing algorithms in terms of
energy efficiency. Compared to an existing solution, the
DATC algorithm, our DPV algorithm achieves a 4-fold
reduction in total transmission power and a 2-fold reduc-
tion in maximum transmission power under the assump-
tion of no packet losses. When we consider the packet
losses, 2.5-fold reduction in total power consumption can be
achieved for a packet loss rate of 0.1. In addition, DPV
achieves these results by requiring fewer message transmis-
sions and receptions than DATC.

The most important contribution of this study is to gener-
ate topologies that have total transmission powers close to
GATC, which is a centralized algorithm. As mentioned
before, GATC requires global network information and
hence, it is less practical for large-scale networks. The solu-
tion that we propose is, however, distributed and localized,
thus is scalable to large networks and therefore suitable for
use in real applications.

REFERENCES

[1] J. Yick, B. Mukherjee, and D. Ghosal, “Wireless sensor network
survey,” Comput. Netw., vol. 52, no. 12, pp. 2292–2330, 2008.

[2] G. Anastasi, M. Conti, M. Francesco, and A. Passarella, “Energy
conservation in wireless sensor networks: A survey,” Ad Hoc
Netw., vol. 7, no. 3, pp. 537–568, 2009.

[3] H. Liu, A. Nayak, and I. Stojmenovic, “Fault-tolerant algorithms/
protocols in wireless sensor networks,” Guide Wireless Sensor
Netw., pp. 261–291, Chapter 10, 2009, DOI: 10.1007/978-1-84882-
218-4_10

[4] P. Santi, “Topology control in wireless ad hoc and sensor
networks,” ACM Comput. Surveys, vol. 37, no. 2, pp. 164–194, 2005.

[5] I. F. Akyildiz and I. H. Kasimoglu, “Wireless sensor and actor net-
works: Research challenges,” Ad Hoc Netw., vol. 2, no. 4, pp. 351–
367, 2004.

[6] M. Yarvis, N. Kushalnagar, H. Singh, A. Rangarajan, Y. Liu, and S.
Singh, “Exploiting heterogeneity in sensor networks, in,” in Proc.
IEEE Int. Conf. Comput. Commun., 2005, vol. 2, pp. 878–890.

[7] Y. Wang, “Topology control for wireless sensor networks,” in
Wireless Sensor Netw. Appl., pp. 113-147, Chapter 5, 2008,
DOI: 10.1007/978-0-387-49592-7_5

[8] X. Wang, M. Sheng, M. Liu, D. Zhai, and Y. Zhang, “RESP: A k-
connected residual energy-aware topology control algorithm for
ad hoc networks,” in Proc. IEEE Wireless Commun. Netw. Conf.,
2013, pp. 1009–1014.

[9] L. Li, J. Halpern, P. Bahl, Y. Wang, and R. Wattenhofer, “A cone-
based distributed topology control algorithm for wireless multi-
hop networks,” IEEE/ACM Trans. Netw., vol. 13, no. 1, pp. 147–
159, Feb. 2005.

[10] N. Li and J. C. Hou, “FLSS: A fault-tolerant topology control algo-
rithm for wireless networks,” in Proc.10th ACM Annu. Int. Conf.
Mobile Comput. Netw., 2004, pp. 275–286.

[11] N. Li and J. C. Hou, “Localized fault-tolerant topology control in
wireless ad hoc networks,” IEEE Trans. Parallel Distrib. Syst.,
vol. 17, no. 4, pp. 307–320, Apr. 2006.

[12] L. Wang, H. Jin, J. Dang, and Y. Jin, “A fault tolerant topology con-
trol algorithm for large-scale sensor networks,” in Proc. 8th Int.
Conf. Parallel Distrib. Comput, Appl. Technol, 2007, pp. 407–412.

[13] D. M. Blough, M. Leoncini, G. Resta, and P. Santi, “The k-neigh
protocol for symmetric topology control in ad hoc networks,” in
Proc. 4th ACM Int. Symp. Mobile ad hoc Netw. Comput., 2003, p. 152.

[14] Y. Chen and S. H. Son, “A fault-tolerant topology control in wire-
less sensor networks,” in Proc. 3rd ACS/IEEE Int. Conf. Comput.
Syst. Appl., 2005. p. 57.

[15] B. Chen, K. Jamieson, H. Balakrishnan, and R. Morris, “Span: An
energy-efficient coordination algorithm for topology maintenance
in ad hoc wireless networks,”Wireless Netw., vol. 8, no. 5, pp. 481–
494, 2002.

[16] S. Kumar, T. H. Lai, and J. Balogh, “On k-coverage in a mostly
sleeping sensor network,” in Proc. ACM Annu. Int. Conf. Mobile
Comput. Netw., 2004, pp. 144–158.

[17] C. Hua and T.-S. P. Yum, “Asynchronous random sleeping for
sensor networks,” ACM Trans. Sensor Netw., vol. 3, no. 3, pp. 1–15,
2007.

[18] Y. M. Baryshnikov, E. G. Coffman, and K. J. Kwak, “High perfor-
mance sleep-wake sensor systems based on cyclic cellular
automata,” in Proc. Int. Conf. Inform. Process. Sensor Netw., 2008,
pp. 517–526.

[19] O. Younis and S. Fahmy, “HEED: A hybrid, energy efficient, dis-
tributed clustering approach for ad hoc sensor networks,” IEEE
Trans. Mobile Comput., vol. 3, no. 4, pp. 366–379, Oct. 2004.

[20] N. Li, J. C. Hou, and L. Sha, “Design and analysis of an MST-based
topology control algorithm,” IEEE Trans. Wireless Commun., vol. 4,
no. 3, pp. 1195–1206, May 2005.

Fig. 6. Total number of transmissions for k ¼ 2 with packet loss.

922 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 26, NO. 4, APRIL 2015

[21] X. Li, Y.Wang, andW. Song, “Applicationsof k-localMST for topol-
ogy control and broadcasting in wireless ad hoc networks,” IEEE
Trans. Parallel Distrib Syst, vol. 15, no. 12, pp. 1057–1069, Dec. 2004.

[22] W. Wu, H. Du, X. Jia, Y. Li, and S. C.-H. Huang, “Minimum con-
nected dominating sets and maximal independent sets in unit
disk graphs,” Theoretical Comput. Sci., vol. 352, no. 1, pp. 1–7, 2006.

[23] J. Wu, F. Dai, M. Gao, and I. Stojmenovic, “On calculating power-
aware connected dominating sets for efficient routing in ad hoc
wireless networks,” IEEE/KICS J. Commun. Netw., vol. 4, no. 1,
pp. 59–70, Mar. 2002.

[24] W.-Z. Song, Y. Wang, X.-Y. Li, and O. Frieder, “Localized algo-
rithms for energy efficient topology in wireless ad hoc networks,”
in Proc. ACM Int. Symp. Mobile Ad-Hoc Netw. Comput., 2004,
pp. 98–108.

[25] W.-Z. Song, X.-Y. Li, O. Frieder, and W. Wang, “Localized topol-
ogy control for unicast and broadcast in wireless ad hoc
networks,” IEEE Trans. Parallel Distrib. Syst., vol. 17, no. 4,
pp. 321–334, Apr. 2006.

[26] O. Younis, M. Krunz, and S. Ramasubramanian, “Node clustering
in wireless sensor networks: Recent developments and deploy-
ment challenges,” IEEE Netw., vol. 20, no. 3, pp. 20–25, May/Jun.
2006.

[27] K. K. Mamidisetty, M. J. Ferrara, and S. Sastry, “Systematic selec-
tion of cluster heads for data collection,” J. Netw. Comput. Appl.,
vol. 35, pp. 1548–1558, 2012.

[28] S. Bandyopadhyay and E. J. Coyle, “An energy efficient hierarchi-
cal clustering algorithm for wireless sensor networks,” in Proc.
22nd Annu. Joint Conf. IEEE Comput. Commun., 2003, vol. 3,
pp. 1713–1723.

[29] M. Azharuddin, P. Kuila, and P. K. Jana, “A distributed fault-
tolerant clustering algorithm for wireless sensor networks,” in
Proc. IEEE Int. Conf. Adv. Comput., Commun. Inform., 2013,
pp. 997–1002.

[30] J. Wu, S. Yang, and M. Cardei, “On maintaining sensor-actor con-
nectivity in wireless sensor and actor networks,” in Proc. IEEE
Conf. Comput. Commun., 2008, pp. 888–896.

[31] K. Ozaki, K. Watanabe, S. Itaya, N. Hayashibara, T. Enokido, and
M. Takizawa, “A fault-tolerant model for wireless sensor-actor
system,” in Proc. 20th Int. Conf. Adv. Inform. Netw. Appl., vol. 2,
Apr. 2006, p. 5.

[32] T. Melodia, D. Pompili, V. C. Gungor, and I. F. Akyildiz, “A dis-
tributed coordination framework for wireless sensor and actor
networks,” in Proc. 6th ACM Int. Symp. Mobile ad hoc Netw. Com-
put., 2005, pp. 99–110.

[33] C. Cirstea, M. Cernaianu, and A. Gontean, “Packet loss analysis in
wireless sensor networks routing protocols,” in Proc. 5th Int. Conf.
Telecommun. Signal Process., Jul. 2012, pp. 37–41.

[34] Z. Gengzhong and L. Qiumei, “A survey on topology control in
wireless sensor networks,” in Proc. 2nd Int. IEEE Conf. Future
Netw., 2010, pp. 376–380.

[35] M. Cardei, S. Yang, and J. Wu, “Algorithms for fault-tolerant
topology in heterogeneous wireless sensor networks,” IEEE Trans.
Parallel Distrib. Syst., vol. 19, no. 4, pp. 545–558, Apr. 2008.

[36] M. Haghpanahi, M. Kalantari, and M. Shayman, “Topology con-
trol in large-scale wireless sensor networks: Between information
source and sink,” Ad Hoc Netw., vol. 11, no. 3, pp. 975–990, 2012.

[37] M. Younis, I. F. Senturk, K. Akkaya, S. Lee, and F. Senel,
“Topology management techniques for tolerating node failures in
wireless sensor networks: A survey,” in Comput. Netw., vol. 58,
pp. 254–283, 2014.

Hakki Bagci received the BS and MS degrees in
computer science from Bilkent University,
Ankara, Turkey, in 2004 and 2007, respectively.
He received the PhD degree from the Depart-
ment of Computer Engineering, Middle East
Technical University. He has worked as a
researcher at the National Scientific and Techno-
logical Research Council of Turkey (TUBITAK)
since 2004. His research interests include distrib-
uted algorithm design for wireless sensor net-
works.

Ibrahim Korpeoglu received the BS degree
(summa cum laude) in computer engineering,
from Bilkent University in 1994, the MS, and PhD
degrees from the University of Maryland at Col-
lege Park, both in computer science, in 2000 and
1996, respectively. He is an associate professor
in the Department of Computer Engineering, Bil-
kent University, Ankara, Turkey. Since 2002, he
is a faculty member in the Department of Com-
puter Engineering of Bilkent University. Before
that, he worked in several research and develop-

ment companies in USA including Ericsson, IBM T.J. Watson Research
Center, Bell Laboratories, and Bell Communications Research (Bell-
core). He received Bilkent University Distinguished Teaching Award in
2006 and IBM Faculty Award in 2009. He is a member of the ACM and a
senior member of the IEEE.

Adnan Yazıcı received the PhD degree in com-
puter science from the Department of EECS,
Tulane University, in 1991. He is a full professor
and chairman in the Department of Computer
Engineering, METU, Ankara, Turkey. His current
research interests include intelligent database
systems, spatio-temporal databases, multimedia
and video databases, and wireless multimedia
sensor networks. He has published more than
180 international technical papers. He has
received IBM Faculty Award for 2011 and Young

Investigator Award bestowed by the Parlar Foundation, for the year
2001. He was a conference co-chair of the 23rd IEEE International Con-
ferences on Data Engineering in 2007, the 38th Very Large Data Bases
in 2012 and a program co-chair of Flexible Query Answering Systems in
2011. He is the director of Multimedia Database Laboratory at METU.
He is a member of the ACM and a senior member of the IEEE.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

BAGCI ET AL.: A DISTRIBUTED FAULT-TOLERANT TOPOLOGY CONTROL ALGORITHM FOR HETEROGENEOUSWIRELESS SENSOR... 923

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

