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ABSTRACT

Many sensor node platforms used for establishing wireless sensor networks (WSN5s) can support multiple radio channels for
wireless communication. Therefore, rather than using a single radio channel for whole network, multiple channels can be
utilized in a sensor network simultaneously to decrease overall network interference, which may help increase the aggregate
network throughput and decrease packet collisions and delays. This method, however, requires appropriate schemes to
be used for assigning channels to nodes for multi-channel communication in the network. Because data generated by
sensor nodes are usually delivered to the sink node using routing trees, a tree-based channel assignment scheme is a
natural approach for assigning channels in a WSN. We present two fast tree-based channel assignment schemes (called
bottom up channel assignment and neighbor count-based channel assignment) for multi-channel WSNs. We also propose
a new interference metric that is used by our algorithms in making decisions. We validated and evaluated our proposed
schemes via extensive simulation experiments. Our simulation results show that our algorithms can decrease interference
in a network, thereby increasing performance, and that our algorithms are good alternatives for static channel assignment

in WSNs. Copyright © 2015 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Wireless sensor networks (WSNs) have applications in
a variety of sectors, including industrial automation, the
environment, health care, and the military [1,2]. A WSN
is composed of a large number of sensor nodes capable
of sensing physical or environmental conditions such as
temperature, humidity, sound, light, pressure, and so forth.
Sensor nodes in a WSN communicate with each other
over a radio channel occupying a portion of the spectrum
allocated for the wireless technology used by the nodes.
Depending on that technology, there may be one or more
channels available for a pair of sensor nodes to commu-
nicate over. Sensor nodes that use the 802.15.4/ZigBee
wireless communication standard, for example, can use
one channel if radios operate at 868 MHz, one of 10 chan-
nels if radios operate at 915 MHz and one of 16 channels if
radios operate at 2.4 GHz [3,4].

When a single channel is used in the network, all nodes
need to share the same channel, which may cause interfer-
ence and packet collisions and decrease aggregate through-
put. To decrease interference and support concurrent
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communication, multiple channels can be utilized if the
node platform supports them [5]. Many sensor node plat-
forms available today (i.e., Chipcon CC2420 [6], Nordic
nRF905 [7], and Crossbow TelosB [8]) support multi-
ple channels using 802.15.4/ZigBee technology, which
enables different channels to be used for different pairs
of nodes.

At 2.4 GHz, ZigBee provides 16 channels that can be
utilized concurrently, channels 11 to 26, as shown in
Figure 1 [9]. The channel width is 2 MHz, and channel sep-
aration is 5 MHz; hence, adjacent channels do not overlap
(and hence, all channels are orthogonal) and are expected
not to interfere with each other. In practice, however, there
can be some interference between two adjacent channels,
as observed by [10]. Hence, instead of 16, one can consider
eight orthogonal ZigBee channels to be utilized in practice.

When multiple channels are available in a WSN, node
pairs can use different channels to reduce interference
in the vicinity. A single node, however, can still oper-
ate on only one channel at a time, unless it has multiple
radio transceivers. Reducing interference in the network by
using multiple channels can reduce packet corruptions and
collisions. Another benefit is concurrent communication.

Copyright © 2015 John Wiley & Sons, Ltd.
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Figure 1. ZigBee channels at 2.4 GHz.

Close node pairs can communicate simultaneously, if they
operate on non-overlapping channels.

Multi-channel operation in a WSN can be achieved by
dynamic (short term) or static (long term) channel assign-
ment [11]. Short-term channel assignment involves a
different channel to be assigned to a communicating pair
with every packet or so. Some Medium Access Control
(MAC) protocols designed for multi-channel WSNs fol-
low this approach [12,13]. They use time synchronization
at the nodes and perform fast channel switching. This
method, however, causes a high overhead for resource-
constrained sensor nodes, as noted by [10]. Therefore,
long-term channel assignments may be more preferable for
WSNs, which is the focus of our paper. For such channel
assignment in WSNs, because the data are usually gathered
from the nodes to the sink using routing trees, tree-based
approaches are quite natural. In [10], for example, the
authors propose a tree-based channel assignment protocol
for WSNs that does not switch channels and does not use
time synchronization among nodes.

In this paper, we propose two efficient tree-based chan-
nel assignment protocols with the aim of decreasing the
network interference. We also propose a new interference
metric that is used by our algorithms in making chan-
nel assignment decisions. We validate and evaluate the
performance of our algorithms via extensive simulation
experiments and compare them with other work from the
literature. Our results show that our algorithms are effec-
tive in decreasing network interference and are feasible to
use for static channel assignment in multi-channel wireless
sensor networks. We also identify under which conditions
network performance can be improved.

As a summary, contributions of the paper can be listed
as follows:

e Proposed algorithms are long-term channel assign-
ment algorithms; therefore, they require less frequent
channel switching, which decreases power consump-
tion and complexity in sensor nodes.

e Multi-channel networks are considered in the paper.
In the simulations, it is shown that proposed algo-
rithms are efficient for different number of available
channels (two to eight channels are tested).

e Also, simple performance metrics considering inter-
ference are defined to evaluate algorithms.

Tree-based Channel Assignment Schemes for Multi-channel WSNs

e Proposed channel assignment algorithms are inde-
pendent from the physical layer and link layer tech-
nologies and can work on a variety of link layers
supporting multiple channels.

The rest of the paper is organized as follows: In
Section 2, we discuss some related work from the litera-
ture. In Section 3, we explore a tree-based channel assign-
ment. In Section 4, we formally present the problem and
describe our proposed solution in detail. We describe our
simulation environment and present our simulation results
in Section 5, and we conclude the paper in Section 6.

2. RELATED WORK

A controlled channel sharing strategy for cognitive radio
networks is presented in [14]. In this work, channel assign-
ment for wireless access points is considered. We focus,
however, on channel assignment for WSNs.

In [12], Zhou et al. propose a channel assignment
scheme for multi-channel WSNs and divide their scheme
into two parts: frequency assignment and media access. For
frequency assignment, in order to reduce interference and
hidden terminal problems, nodes within two communica-
tion hops are assigned different frequencies, if possible. In
media access, neighbor nodes can compete for the medium
by using a slotted carrier sense multiple access protocol.
The authors also state that packet sizes in WSNs are rel-
atively small; therefore, Request to Send/Clear to Send
(RTS/CTS) packets used in wireless ad hoc networks are an
overhead and not suitable for WSNs. They focus more on
media access aspects, and therefore, their work is different
than ours here.

In [13], Zhang et al. propose a multi-channel MAC
protocol for multi-hop ad hoc networks, which is based
on time division multiple access (TDMA). The proposed
algorithm requires time synchronization between nodes to
switch the channels to a common frequency for communi-
cating pairs. The protocol supports both unicast and broad-
cast communication. Pal and Nasipuri [15] also proposes a
dynamic channel selection scheme, which tries to control
overhearing in the network, to decrease the wasted energy
in a node that occurs when receiving packets intended for
other nodes. In this proposal, nodes temporarily switch
their channel to the channel of the receiver in order to send
data. In [16], the authors propose a channel assignment
scheme that is a hybrid approach of dynamic, static, cen-
tralized, and distributed concepts. References [13,15,16]
all focus on dynamic channel assignment, whereas we
focus on static (long term) channel assignment. Long-term
channel assignment schemes avoid the communication and
configuration overhead of frequent channel switching and
strict time synchronization. Because wireless sensor nodes
are resource constrained, we did not prefer the use of
a channel assignment scheme that performs fast channel
switching, at every time slot, for example.

So and Vaidya [17] proposes a MAC protocol for ad
hoc wireless networks that utilizes multiple channels
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dynamically with the aim of increasing performance. The
IEEE 802.11 standard is assumed as the link layer; how-
ever, a new MAC protocol is designed rather than using
the predefined 802.11 MAC protocol. The latter was orig-
inally designed for single-channel operation and does not
perform well in a multi-channel scenario because of the
multi-channel hidden terminal problem. The work tackles
the problem at the data plane, at the MAC layer, whereas
we tackle it at the control plane, before the network
starts operating.

Jeong et al. [18] propose a WSN architecture where
the network is divided into clusters and the cluster heads
have dual heterogeneous radios. All sensor nodes except
the cluster heads have only IEEE 802.15.4 radios. One of
the radios in a cluster head is used to communicate with
the sensor nodes, and the other radio (802.11 radio) is
used to communicate with the other cluster heads. Cluster
heads have more processing power and a more powerful
battery so as to increase network lifetime. Although the
channels used by the 802.11 and 802.15.4 radios are cho-
sen as orthogonal, 802.11 traffic especially causes severe
interference with 802.15.4 traffic. The authors state that
even a 30-cm distance between radios does not cancel
out the interference. They propose an adaptive aggrega-
tion and scheduling algorithm for the cluster heads to
decrease interference. Our work here does not assume a
clustered architecture.

The channel assignment proposed in [19] tries to uti-
lize multiple channels in a WSN to increase throughput
in a fair manner. It forms sub-trees, and for each sub-tree,
it uses a distinct set of channels. But it uses a separate
channel in each level of a sub-tree, and this causes fre-
quent channel switching in a node while receiving packets
from children and sending them to the parent. Our scheme,
however, assigns channels for longer terms and therefore
does not require frequent channel switching. Addition-
ally, [19] requires a slotted operation and therefore is more
suitable to run on a TDMA-based MAC protocol, where
our scheme is not slotted and can therefore run equally
well on both TDMA-based and code division multiple
access-based MAC protocols.

Yu et al. [20] propose a distributed game-based chan-
nel assignment algorithm for WSNs. Game-based channel
assignment algorithm takes both network topology and
routing information into account. Because it is a distributed
algorithm, all sensor nodes are involved in the channel
assignment, which may bring more overhead and com-
plexity to sensor nodes, and therefore can cause more
power consumption. In our solution, channel assignment
algorithm runs in the base station (BS), as a central-
ized algorithm, to avoid this situation. Channel assignment
problem in WSNss is also considered in [21,22]. The differ-
ence between these solutions and ours is that our solution
considers channel assignment and routing jointly. That is,
routing tree of the network is also formed during channel
assignment phase. Therefore, a separate routing algorithm
is not needed. At the end of our channel assignment, each
node in the network knows its parent and can send the
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packets it receives from its children to this parent. In this
way, data from all sensor nodes reach the BS.

In [10], Wu et al. propose a tree-based multi-channel
protocol for WSNs called GreedyPMIT to decrease net-
work interference. They divide the problem into two main
parts: channel assignment and routing. Their proposed
solution forms a shortest-path tree, which eliminates the
complexity of the routing algorithm, which now simply
forwards packets to the parent of each node. They propose
a channel assignment algorithm that partitions the network
into k trees rooted at the BS where £ is the number of avail-
able non-overlapping channels. The authors state and show
that time synchronization between each node and channel
switching bring an overhead to WSNs, because of their
limited power processors and clock drifts. Therefore, they
avoid using these methods in their algorithm and focus on
partitioning the network into trees. The work in [10] uses
a tree-based channel assignment and was an inspiration for
our work in this paper. Therefore, we provide a detailed
explanation of the algorithm in [10] in the next section. Our
algorithms, however, apply different techniques in a tree-
based channel assignment and therefore are different than
that in [10].

3. TREE-BASED CHANNEL
ASSIGNMENT

Because channel switching and time synchronization in
dynamic channel assignment schemes are significant over-
heads in WSNs, as described in [10], static channel
assignments may be more suitable. Additionally, because
tree-based routing is common for WSNs because of the
existence of well-defined sink points, a tree-based chan-
nel assignment scheme, where the routing tree is divided
into sub-trees with different channels, is a natural approach
to consider.

In [10], the scheme divides the network into k vertex-
disjoint trees rooted at the sink node, that is, the BS,
where k is the number of available channels. The value
of k depends on the wireless link technology and can
be, for example, 8 or 16 for 802.15.4 links. The authors
of [10] and our algorithms assume that the BS has & radios
to communicate with each tree. Each tree operates on a
non-overlapping channel, so there will be no interference
between any two trees (zero inter-tree interference). The
only interference, then, will be in between the same tree
nodes (intra-tree interference), and the aim of the pro-
posed scheme is to minimize that interference. Because
our algorithms in this paper have some commonalities with
the algorithm in [10], we discuss the algorithm in more
detail next.

To minimize intra-tree interference, [10] first defines
an interference metric. The authors consider the interfer-
ence of a node as the interference that can potentially be
received by the node from the other same tree nodes in its
interference disk. After calculating the interference values
of all nodes, the interference value of a tree T is defined
as the interference of the non-leaf node with the maxi-
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mum interference value. The interference values of the leaf
nodes are not taken into account because leaf nodes in a
WSN do not receive data.

The aim is to partition the network so that the maximum
intra-tree interference of all trees will be minimized. Wu et
al. [10] state this problem as the PMIT problem (partition a
sensor network into k vertex-disjoint trees with minimizing
the maximum intra-tree interference value of all trees) and
prove that it is NP-complete. Consequently, they propose a
greedy algorithm, named GreedyPMIT, that tries to reduce
the maximum intra-tree interference value of all trees.

Algorithm 1 is the pseudocode of the GreedyPMIT algo-
rithm proposed in [10]. It first applies a breadth-first search
(BFS) to form a fat tree rooted at the BS (Algorithm 2).
That fat tree is the shortest-path tree. Nodes keep their
heights in the tree, and they may have multiple parents.
From the first level of the fat tree (children of the BS) to
the last level, Algorithm 1 assigns channels to the nodes
one by one for each level. Then, the nodes on each level
are sorted in ascending order by the number of parents in
the fat tree. In that sorted order, the algorithm assigns a
channel, that is, tree, to that node, which has the least inter-
ference after being added. The authors also prove that the
complexity of their algorithm is O(dkn?) in the worst case,
where d is the diameter of the graph G = (V, E) (where V
is the set of nodes and E is the set of edges indicating direct
reachability), n is the number of nodes, and & is the number
of channels.

4. OUR PROPOSED CHANNEL
ASSIGNMENT SCHEMES

To decrease network interference, we propose new greedy
tree-based channel assignment algorithms for single-sink
WSNs. Our algorithms are long-term channel assign-
ment schemes, and they are centralized. Because the node
channels are not changed dynamically, we prefer to use
centralized algorithms.

Each sensor network has a sink node (BS) that has higher
processing capability. Such a BS with higher process-
ing power is a good location to implement the algorithm,
because most of the time, the BS may need to know
about the network topology for other purposes anyway, and
this information can be used for our channel assignment
scheme as well.

Even though topology information is not available at the
BS, it can be obtained by broadcasting a topology inquiry
message from the BS and collecting the related replies
from the sensor nodes using a default channel where all
nodes start operating at. Moreover, sensor node locations
can be obtained via a distributed localization algorithm.
For some applications, nodes can be placed manually, and
therefore, node locations can be known at network setup
time. In this case, there is no overhead for the BS to learn
the network topology.

While collecting topology information, the nodes can
operate on a single well-defined default bootstrap channel.
After learning the topology of the network, our algorithm
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Algorithm 1 GreedyPMIT in [10]

Input: k channels, a graph G = (V,E), a root r, and the
interference set of every node.
Output: For each node u, channel, and parent,,.
1: use BFSFatTree algorithm to construct a fat tree rooted

atr.
2: for each channel i do
3: Ti=r;
4: end for
5: for each node u do
6:  channel, = 0;
7. parent, =null;
8: end for
9: level =1,
10: repeat
11:  node_list = {u|height(u) == level; channel,, ==0}.
12:  sort node_list in ascending order by the number of

node’s parents.
13:  for each node u in node_list do

14: find 7;, which keeps connected and has the least
interference after adding u.

15: T; = T; U {u};

16: channel, = i,

17: parent, = v, which connects u and has the least
interference among all nodes in 7.

18: update the interference value of 7.

19:  end for

20:  level++;

21: until /evel > the maximum height of the fat tree

can start running in the BS to compute the channels to be
assigned to each sensor node. Afterwards, the configura-
tion information for each node can be pushed to the nodes
over the default channel, and each node can learn about
its configuration (its assigned channel and its parent and
children in its routing sub-tree).

Instead of a centralized algorithm, a distributed algo-
rithm could be used. However, a distributed algorithm
requires sensor nodes to do extra computation and com-
munication as well, besides the BS, for assigning channels.
Consequently, distributed solution would bring more over-
head and complexity to sensor nodes and therefore can
cause more power consumption. This is not desirable for
resource-constrained sensor nodes. Even when we leave
computation overhead and power restrictions aside, a dis-
tributed algorithm may be less effective, because sensor
nodes will be having partial information about the network
topology and channel assignment based on this partial
information will be causing more interference and colli-
sions. For these reasons, it may be harder, less energy effi-
cient, and less effective to implement channel assignment
in a distributed manner in a sensor network. Therefore, we
preferred a centralized solution.

We propose a centralized heuristic algorithms because
the problem is NP complete, as shown in [10]. The
main difference between our algorithms and the algorithm
in [10] is the tree union operation, which will be explained
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Algorithm 2 BFSFatTree in [10]

Input: a graph G = (V,E) and a root r.

Output: For every node u, its parent set parentSet(u) and
its height in the tree height(u).

1: for each node u in G do

2 height(u)= MAXIMUM INTEGER;

3:  parentSet(u)=null;

4: end for

5:8=r;

6

7

8

9

: height(r)=0;
: for each node u in S do
for each node u’s neighbor v do
: if height(v) > height(u) then
10: height(v)=height(u) + 1;

11: parentSet(v) = parentSet(v) U {u}.
12: S=SU{v}.

13: end if

14:  end for

15: end for

later in this section. We also define a new interference met-
ric. Our metric takes the physical distance between the
same tree nodes within the interference disk into account,
rather than just the number of nodes as performed in [10].
Accordingly, the interference value of a node is the sum of
interferences received from the same tree nodes falling into
its interference disk. More formally, the interference value
of a node u is calculated as 21@1 m, where N is the
set of the same tree nodes in the interference range of node
u; v; € N and d(u, v;) is the Euclidean distance between
nodes u and v;. After calculating the interference values
of all nodes, the interference value of a tree T is defined
as the interference value of the non-leaf node with a max-
imum interference value. That is, int(T) = max{int(u): u
is a non-leaf node of 7'}. We define this additional metric,
because according to the signal-to-interference-plus-noise
ratio (SINR) physical interference metric [23], the number
of nodes in the interference disk and the distance between
the nodes are important for the total interference received
at a node.

Assigning channels in a greedy manner has some draw-
backs. Because the trees are formed greedily, nodes in the
same tree can unintentionally be clustered nearby, which
causes high interference. An example of this situation is
given in Figure 2, which is drawn by our Java simulator.
The figure shows a network with 121 nodes, where the
communication range and the interference range are set as
1.5 and 2.25 units, respectively. The number of channels
(k) is set to three in this example. The channel a node is
using is indicated by the shape of the node (square, circle,
or triangle). As we can see, there are clusters (blocks) of
nodes that use the same channel: At the top right of the
figure, there is a block of square-shaped trees; at the top
left, there is a block of triangle-shaped trees; and at the
sides, there are blocks of circle-shaped trees. These blocks
increase the interference between the trees, and hence in
the network, because all or most of the nodes in a node’s
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Figure 2. A tree formation example, where lighter and darker
dotted circles denote communication range and interference
range of base station, respectively.

interference range become part of the same tree, which
increases the interference value of the tree.

Our main aim is to decrease the number and size of such
blocks, which will also help decrease network interference.
To overcome this problem, we define two new algorithms,
called bottom-up channel assignment (BUCA) and neigh-
bor count-based channel assignment (NCCA). Each of
these algorithms has two versions. The first versions (called
BUCA-N and NCCA-N) use a default (node count based)
interference metric as used in [10], that is, the num-
ber of nodes in the interference disk, to make decisions.
The second versions (called BUCA-D and NCCA-D) use
the distance-based interference metric, explained before,
to make decisions. Similarly, we refer to the original
GreedyPMIT algorithm with a node-count-based interfer-
ence metric as GreedyPMIT-N and to the GreedyPMIT
with the new interference metric, that is, a distance-based
interference metric, as GreedyPMIT-D.

To decrease the number and size of the blocks (clusters),
we want to initially form more than k trees and then care-
fully unite those trees into k trees to decrease the negative
effects of the greedy approach. The number of initial trees
can be as much as the number of the BS’s one-hop neigh-
bors. Therefore, we initially form ¢ trees, where c is the
number of children (one-hop neighbors) BS has.

Our algorithms are run by the BS, which is more pow-
erful than the other nodes. Because the BS knows the
network topology, other nodes do not consume energy
when the algorithm is run and the final tree is formed. After
forming the final tree, the BS sends the configuration infor-
mation to the network. This action begins at the root of
each sub-tree and then propagates down to the descendants.

As described in Algorithms 3 and 4, BUCA-N and
BUCA-D form the trees from bottom to top. Level 1 is the
top level, that is, the closest level to BS. In Algorithm 3,
like GreedyPMIT, first, a BFS fat tree is formed using
Algorithm 2. However, unlike GreedyPMIT, we start from
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the last level of the fat tree to assign channels to the nodes.
For each level from bottom to top, the nodes are sorted in
ascending order by the number of parents in the fat tree.
Then, in that sorted order, the algorithm assigns a channel,
that is, tree, to that node to reduce overall interference. We
also consider the distance between a node and its parent, as
well as the number of children a parent has.

Like GreedyPMIT, NCCA-N and NCCA-D form trees
from top to bottom. Different from GreedyPMIT, how-
ever, NCCA considers ¢ the number of initial trees, instead
of k (channel count) the number of initial trees. All of
our four algorithms (NCCA-N, NCAA-D, BUCA-N, and
BUCA-D) form ¢ (child count of BS) the number of ini-
tial trees. For example, c is equal to 8 in Figure 2. Then,
they decrease the number of trees to k by uniting them.
Therefore, for NCCA, we give ¢ as the channel number
input to GreedyPMIT (Algorithm 1). The rest is similar
to GreedyPMIT, except the last part. After the last line
of GreedyPMIT, line 21, we calculate union interference
(unioninterf) matrix, which stores the interference values
of the trees, which may unite with each other, that is,
possible pairs. Then we call the function, which unites
trees, that is, UniteTrees. If the number of available chan-
nels (k) is greater than or equal to the number of initially
formed trees (c), there will be no union operation. In this
case, (k — c) channels cannot be used because the BS can
only communicate with ¢ nodes. The union operation tries
to minimize the maximum interference, as all our algo-
rithms do; the difference between BUCA and NCCA is the
forming procedure of the initial ¢ number of trees.

‘We assign channels to nodes after tree construction part.
The reason for this is to avoid assigning the same chan-
nels to sub-trees that are close to each other. Because we
do not know the future growing positions of sub-trees dur-
ing the tree construction, it is possible to assign the same
channels to sub-trees that will come close to each other in
the subsequent steps of tree construction.To control this in
a better manner, we first construct the trees and then unite
them considering their layout.

Algorithm 5 explains the union operation. At first, we
have c trees, and we try to decrease them to k trees. To do
this, we propose an iterative approach, which decreases the
total number of trees step by step by pairing, that is, unit-
ing, the trees in each iteration. Before pairing, we calculate
the number of pairs needed for each iteration, as explained
in Algorithm 6. We want to unite the initial ¢ number of
unpaired trees as N1, Ny, ..., Nk, assuming [N; — N;| < 1
for any i, j to form a balanced network, where N; denotes
the number of initial trees paired (united) to form the final
tree T;, and Zf;l N; = c. We calculate the number of
pairs according to the assumption in the CalculatePairs
method because this assumption is needed to do so and
the final tree may not ensure this assumption when uniting
the residual trees in Algorithm 5. Detailed explanations of
Algorithms 5 and 6 are given in Section 4.1.

We pair the trees as described in Algorithm 7 so that
interference is reduced, and move to the next iteration
with fewer but bigger trees. This algorithm takes as input
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Algorithm 3 BUCA

Input: k channels, a root r, a graph G = (V,E), and the
interference set of every node.

Output: set of c¢ initial trees T, where c¢ is the number of
neighbors of root r, channel,, and parent, for every
node u.

1: use BFSFatTree algorithm described in [10] to con-
struct a fat tree rooted at r.
2: for each node u do

channel, = 0; parent,=null; addedChildren-
Size(u)=0;
4 childrenSize(u)=# of children count in BFS fat tree;
5: end for
6: ¢c=0;
7: for each neighbor n of r do
8 T. = {r,n}; channel,, = c; parent, =r; c++;
9: end for
10: level = maximum level of BFS fat tree;
11: repeat

12:  node_list = {u|height(u) == level; channel, ==0}.

13:  sort node_list in ascending order by the number of
node’s parents.

14:  for each node u in node_list do

15: parents = {p|p € parentSet(u)}.
16: onlyChild = {p|p € parents; children-
Size(p)==1}.
17: if onlyChild # @ then
18: farthestParent = {p|p € onlyChild; distance(u,
p)==max}.
19: AddChild(u, farthestParent[random available
index)).
20: else
21: noAddedChildren = {p|p € parents; addedChil-
drenSize(p)==0}.
22: if noAddedChildren # @ then
23: minChild = {p|p € noAddedChildren;
childrenSize(p) ==min}.
24: else
25: minInterf = {p|p € parents;
interf(p,u) ==min}.
26: minChild = {p|p € minInterf;
childrenSize(p) ==min}.
27: end if
28: farthestParent = {p|p € minChild,
distance(u,p) ==max}.
29: AddChild(u, farthestParent[random available
index)).
30: end if
31:  end for
32:  level—;

33: until level > 1

34: calculate unionlnterf matrix, where unioninterf(i,j)
denotes the interference value of tree i when it is united
with tree j.

35: UniteTrees(unionlnterf, k, ¢, T).
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Algorithm 4 AddChild

Input: child # and parent p.

Output: T;, channel,, parent,, addedChildrenSize(p).
1: if DummyT, == then
2:  DummyT,={u};

3: end if

4: if DummyT, == then
5. DummyT, ={p};
6
7
8
9

. end if
: if p is not a level 1 node then
DummyT, = DummyT, U DummyT,;

: else

10:  find 7; where p € T;.

11: T; = T; U DummyT,;

12:  channel, =1,

13: end if

14: parent, =p;,

15: addedChildrenSize(p)+—+.

Algorithm 5 UniteTrees
Input: unionlnterf matrix, where unionlnterf (i, j) denotes
the interference value of tree i when it is united with
tree j, k is the number of available channels, c is the
number of BS’s neighbors, and T is the set of trees.
Output: final tree T.
1: if kK < c then
2:  neededPairs = CalculatePairs(c, k);
level =0;
while neededPairs > 0 do
T = MarkAndPair(T, unioninterf, neededPairs,
level);
6 neededPairs = CalculatePairs(neededPairs, k),
7: level++;
8:  end while
9: if [¢] > 2 then
10: for i =level — 0 do

ReANE

11: for each tree T; in residuals[i] do

12: unite 7; with a tree in T that has the least
interference after adding 7.

13: end for

14: end for

15:  endif

16: end if

the unionlnterf matrix, where unionlnterf (i, j) denotes the
interference value of tree i when it is united with tree j. We
mark the elements in this matrix increasingly, until we can
pair p pairs, where p denotes the number of pairs needed
for each iteration. We repeat this procedure in Algorithm 5,
until we reach k trees, that is, when neededPairs is equal
to 0. For some iterations, we have residual trees that are
not paired. At the end, in reverse order, that is, starting
with the residual tree from the last iteration, we add these
residual trees to one of the k trees formed previously, as
explained in lines 9 to 15 in Algorithm 5, to minimize the
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global maximum interference. Finally, we will have k trees,
with hopefully less interference. A detailed explanation of
Algorithm 7 is presented in Section 4.2.

Algorithm 6 CalculatePairs
Input: number of unpaired trees upt, number of available
channels k.
Output: neededPairs.
1: minBranchedTree = L%tj
2: remainedBranches = upt % k;
3: if minBranchedTree % 2==1 then
4:  maximumEvenNo = (minBranchedTree —1) x k +
remainedBranches X 2;
else
maximumEvenNo = minBranchedTree X k;
end if
: neededPairs = maximumEvenNo /2.

P 9

In Figure 2, we showed an inefficient channel assign-
ment example, which produces blocks of the same tree
nodes. We presented our algorithms, which try to overcome
this problem and produce better results. In Figure 3, we
see the same network when our BUCA-N is used, and we
observe that the trees are distributed in the network more
uniformly than they were in Figure 2.

Proposed channel assignment schemes, NCCA and
BUCA, are independent of the physical and link layer
technologies and protocols used in the sensor networks.
Therefore, they can work properly with a variety of MAC
protocols. Hence, we are not specifying and fine-tuning
the schemes for a particular MAC protocol. This is one
of the advantages of our approach that is using long-term
scheduling: Channel assignment becomes less coupled
with the MAC protocol used. Table I summarizes the
differences between our four algorithms and GreedyPMIT.

Figure 3. Example tree formation when bottom-up channel
assignment-N is used.
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Table I. Comparison of our proposed algorithms and GreedyPMIT.

Initial tree No. of trees Unites initial Interference
Algorithms formation  formed initially trees? m
GreedyPMIT-N  Top-down k No No. of Nodes
GreedyPMIT-D Top-down k No Distance between
nodes
NCCA-N Top-down c If (k <c¢) No. of nodes
NCCA-D Top-down If (k <c¢) Distance between
nodes
BUCA-N Bottom-up If (k <c¢) No. of nodes
BUCA-D Bottom-up c If (k <c¢) Distance between

nodes

NCCA, neighbor count-based channel assignment; BUCA, bottom-up channel assignment.

Algorithm 7 MarkAndPair

Input: set of trees T, unionlnterf matrix (where unionin-
terf(i,j) denotes the interference value of tree i when it
is united with tree j and p denotes the number of pairs
needed), and level /.

Qutput: paired trees T, residual trees residuals.

1: maxPairs = 0;

2: max= 0;

3: count = 0;

4. while maxPairs < p do

5 set every element of mins array with MAXIMUM

INTEGER.
6. fori =0 — Tlengthdo
7: for j = 0 — T.length do
8: if i # j and unionInterf|i][j] > max and union-
Interfi][j] < mins[i] then
9: mins[i] = unionInterf[i][j];
10: end if
11: end for
12:  end for

13:  sort the mins array in ascending order.
14:  if count == 0 then

15: max=mins[2 X p — 1];
16:  else

17: max = mins|0];

18:  end if

19:  fori =0 — Tlength do
20: for j = 0 — T.length do
21: if i # j and unionlnterf[i][j] < max then
22: marked([il[j] = true;
23: end if

24: end for

25:  end for

26:  maxPairs =number of trees in maximum matching
calculated by using marked elements.
27: count++;
28: end while
29: unite the trees according to maximum matching.
30: residuals[l] = set of unmatched trees in this level / (if
any).

4.1. Uniting trees

Figure 4 shows an example of the union operation, where
the number of children of BS (¢) = 16 and the number
of available channels (k) = 3. As performed in the first
step of CalculatePairs (Algorithm 6), we calculate | 7| as
ng—ﬁj = 5 and try to divide the three trees as a union of five
initial (Step 1) trees, that is, 5-5-5. Then we must add the
number of remaining trees, which is 16%3 = 1 (only one
tree); consequently, our three trees will be united as a 6-5-5
number of initial trees. This is the expected final version of
the trees. We unite the trees so that the difference between
the number of united trees for each final tree is minimal.
That is, in this example, it is 6 — 5 = 1. However, these
numbers are used only for calculating the number of pairs
for each step, and at the end, the trees can be formed as 7-
5-4 or another combination if that results in the minimum
interference. In this figure, we assume that the final tree is a
6-5-5 tree. The next step in this iteration is to calculate the
number of pairs needed, which is the greatest even num-
ber for each tree, which is less than or equal to the united
trees’ count. Therefore, we take 4 for the trees with united
tree counts equal to 5 and take 6 for the other one. Then
we add those even numbers and divide by 2 to find the
number of pairs. Calculating W, we find that we need
seven pairs for this iteration, as described in Algorithm 6.
Finally, we need to pair these seven trees so that the inter-
ference will be minimal. The pairing operation is explained
in MarkAndPair (Algorithm 7). We can assume that the
pairing operations in Figure 4 are carried out according to
that algorithm, which will be explained in the next section.

In the second step, the trees in the first step are paired
according to Algorithm 7, and we obtain seven paired trees
and two residual trees (Trees 11 and 14). The residual trees
are trees that have no pair in this level. These two trees
come from rounding the two 5s to 4 in the previous step,
and they were left unpaired to be used in the following
steps. Similar to the previous step, we calculate the number
of pairs with a result of three.

In the third step, we obtain k = 3 trees, where each is
a union of four trees. We also obtain a residual tree in this
level and save it, as in the previous step. In this step, we
reach k = 3 trees; therefore, we do not need to calculate
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the pairs in the following step (which can be calculated as
0 from Algorithm 6). We now need to unite the residual
trees to form the final tree. When doing so, we unite them
in reverse order. We unite bigger residual trees (the trees
from the previous steps) first, because they are more prone
to increasing interference. As seen in Figure 4, we unite the
residual tree of step (c) in the fourth step and the residual
trees of step (b) in the last step to minimize the final inter-
ference. Finally, we have three trees that are a union of 16
trees, and a 6-5-5 formation can be seen from the united
trees, where two trees are a union of five step 1 (initial)
trees and the other tree is the union of six step 1 trees.

4.2. Marking and pairing trees

To determine which tree will be paired with which, we
must first calculate the interference values when tree i is
paired (united) with tree j, for all (i,j) pairs. Then, we
form a matrix M, where the value in M(i,j) is equal to
M(j, i), which is the interference value when tree i is united
with tree j, or vice versa. We also label self-interference,
M(i, i) as X, which will not be processed in any step in the
algorithm. The procedure of choosing pairs is described in
Tables II-IV with an example where we have seven trees
to be united, and the number of pairs needed to be formed
in this iteration is three. Therefore, at the end, six trees will
have unique pairs, and the other tree will be a residual tree.

To pair the trees with minimal interference, we develop a
straightforward method. First, we find the minimum inter-
ference values in each row and sort them in ascending
order. In the example, the minimum numbers are 13, 13,
14, 16, 15, 17, and 14 in the row order. The ascend-
ing order sorted version of them is 13, 13, 14, 14, 15,
16, and 17. Because we need three pairs, we first select the
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first 3x 2 = 6th minimum number and check if we can pair
three trees by using it; therefore, we remove 17 from the
list. To do this, we set the maximum interference max as the
sixth minimum number, that is, 16. The second step is to
mark the elements of the matrix that are less than or equal
to max = 16, as shown by the bold elements in Table II.
Later, we check whether we can form three pairs with all
unique elements with marked elements. By “all unique,”
we mean that if a tree 7 is paired with a tree j, then it can-
not be paired with any tree again; therefore, the remaining
pairs cannot contain tree i or j.

We check how many trees can be paired in our simu-
lations with a brute-force approach; hence, the approach
has O((r — 1)!) complexity in the worst case, where r is
the number of rows in the matrix. This pairing problem
can be defined as finding the maximum matching in a non-
bipartite graph. We can consider the interference matrix as
a graph G = (V, E), where V is the set of trees and E is the
set of edges between them. There is an edge between two
trees i and j if M(i,j) is marked (bold). Then the match-
ing is the set of edges in the graph with unique vertices.
Maximum matching is a matching that has the maximum

Table Il. Demonstration of marking, step 1.

1 2 3 4 5 6 7

Residuals[0]
Ol

1 X 13 14 19 15 21 14
2 13 X 26 16 18 17 19
3 14 26 X 18 22 32 25
4 19 16 18 X 23 19 20
5 15 18 22 23 X 40 33
6 21 17 32 19 40 X 25
7 14 19 25 20 33 25 X
16| 7

. AA
AENVAY

15| 6

© @iy (o
SPASD

4
15

(S, ]

Residuals[1]

oW

(e) %%
VAW

Figure 4. Demonstration of uniting trees. (a) ¢ = 16,k = 3, |¢/k] = 5, ¢%k = 1, divided as 6-5-5, (6 + 4 + 4)/2 = 7 pairs and

(b)c=7k=3, lc/k] = 2, ¢%k = 1, divided as 3-2-2, (2 4+ 2 + 2)/2 = 3 pairs. (c) Now, we have three trees; then we will unite

residual trees to those trees in reverse order in steps (d) and (e): (d) Residual tree in step (c) is added (denoted with bold numbers),
and (e) residual trees in step (b) are added (denoted with bold numbers).
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number of edges possible. This definition is the same as our
maximum-pair definition, where we calculate the maxi-
mum pairs in the given marked trees and compare the result
with the number of pairs needed. If we reach the number
of pairs needed, we pair the trees according to the maxi-
mum matching. Although our solution in our simulations
has a O((r — 1)!) running time, this time can be decreased
to O(|V|*) by using Edmond’s maximum matching algo-
rithm [24] or to O(|E]| \/M) by using Micali and Vazirani’s
maximum matching algorithm [25].

By using marked trees, we can calculate the maximum
number of pairs using one of the matching algorithms. For
example, the maximum number of pairs that can be formed
according to Table II is two. One example of these two
pairs is {1,3} and {2,4}. As evident in the table, if {1,2}
were chosen as a pair, we would not be able to find second
pair; therefore, either 3, 5, or 7 should be chosen as the pair
of 1 to find a maximum matching in this step.

The iteration described will be repeated until the num-
ber of maximum matchings is greater than or equal to the
number of pairs needed. In the next iteration, we again find
the minimum interference values in each row; however, we
skip the marked interference values and do not take them
into account while finding this minimum. Then, in these r
minimum interference values, we find their minimum and
set them as max. Then we mark all the elements in the
matrix that are equal to max. In the example, max is equal
to 17, which is the minimum number in all unmarked ele-
ments. Therefore, we mark all the elements in the matrix
that are equal to 17, as seen in Table III. Next, we calcu-
late the maximum matchings with the given marked trees.
Only the pair {2,6} is added to the previous pair list, which
does not help form the third pair because as we mentioned
before, Tree 2 should be paired with Tree 4 in order to form
two pairs; therefore, we cannot use the newly added pair
{2,6} and cannot form three pairs in this iteration.

Now, we need to find the next minimum unmarked inter-
ference value and calculate the maximum matching. The
next value is 18; therefore, we set max as 18 and mark the
values that are equal to 18. The new matrix in this iteration
can be seen in Table IV. And now, we can have three pairs
with these marked trees; one example of the maximum
matchings is {1,7}, {2,5}, and {3,4}, with a residual Tree
6. As evident in the table, another maximum matching can
be formed as {1,5}, {2,6}, and {3,4}, with a residual Tree
7. Our algorithms choose one of the maximum matchings
according to the algorithm used for finding them.

Table lll. Demonstration of marking, step 2.

1 2 3 4 5 6 7
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Table IV. Demonstration of marking, step 3.

1 2 3 4 5 6 7

X 13 14 19 15 21 14
13 X 26 16 18 17 19
14 26 X 18 22 32 25
9 16 18 X 23 19 20
15 18 22 23 X 40 33
21 17 32 19 40 X 25
14 19 25 20 33 25 X

N O o WN -

4.3. Complexity of our proposed algorithms

Because the PMIT problem is NP complete, the proposed
algorithm in [10] is greedy and has a time complexity of
O(dkn?) in the worst case, where d is the diameter of the
graph G = (V,E), where V is the set of nodes and E is
the set of edges indicating direct reachability; n is the num-
ber of nodes; and £ is the number of channels, as explained
before. Our algorithms also have a polynomial time com-
plexity. The time complexity of GreedyPMIT stems from
the tree formation part; however, in our case, the complex-
ity of the tree unions should also be considered. We have a
similar time complexity to GreedyPMIT in the initial tree
formation part; however, rather than forming k trees, we
initially form c trees.

As shown in Algorithm 5, we repeat calling MarkAnd-
Pair and CalculatePairs methods while neededPairs are
greater than 0. In each iteration, neededPairs decreases by
pairing two trees, and we put the residual trees (if any)
into a residuals array. Because we are dealing only with
the paired trees and not the residuals in the while loop, the
number of iterations in that while loop depends on only
the paired trees, and neededPairs is calculated according
to the paired trees. In the worst case, neededPairs can be
decreased into L%J in each iteration, because we
can have at most that number of pairs. Therefore, the while
loop executes at most O(log c) times, where c is the number
of neighbors in the BS’s communication range because it is
the first and greatest parameter that CalculatePairs takes.
Because CalculatePairs runs in constant time, we should
examine the running time of the MarkAndPair method.

In Algorithm 7 (MarkAndPair), the operations outside
the while loop run in constant time; therefore, we should
calculate the running time of the while loop. The first
loop in lines 6 to 12 runs in at most O(c?) time, because
T.length, that is, the number of trees in the network, can
be at most ¢. The for loop in lines 19 to 25 also runs
in O(c?). The critical part of this algorithm is finding the
maximum pairs from the marked elements, performed in
line 26. This pairing problem is defined as finding the

T X 183 14 19 15 21 14 maximum matching in a non-bipartite graph, and the run-
2 13 X 26 16 18 17 19 ning time of finding the maximum pairs in line 26 can be
3 14 26 X 18 22 32 25 decreased to O(|V|*) by using Edmond’s maximum match-
4 19 16 18 X 23 19 20 ing algorithm [24] or to O(|E|/|V|) by using Micali and
5 15 18 22 23 X 40 33 Vazirani’s maximum matching algorithm [25], as described
6 21 17 32 19 40 X 25 before. The maximum matching operation is repeated until
7 14 19 2% 20 33 25 X the number of maximum matchings is greater than or equal
Wirel. Commun. Mob. Comput. 2016; 16:1694-1712 © 2015 John Wiley & Sons, Ltd. 1703
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to the number of pairs needed p. In every iteration, in the
worst case, we can mark only two entries marked[i][j] and
marked|j][i] at line 22 and calculate the maximum match-
ing again. Therefore, in the worst case, O(c?) iterations are
needed to reach to p maximum matchings. Consequently,
running time of MarkAndPair algorithm can be calculated
as O(c? x ¢*) = 0(c°), when Edmond’s algorithm [24] is
used for finding the maximum matching, because the com-
plexity of algorithm is O(|V|*), and |E| can be equal to ¢
in maximum. If we use Micali and Vazirani’s maximum
matching algorithm [25] with O(|E| \/m ) complexity, run-
ning time of MarkAndPair algorithm will be calculated as
0(?xc?x /¢) = O(c*>), because |V| can be c and |E| can
be % in maximum. Because Micali and Vazirani’s maxi-
mum matching algorithm [25] gives a faster running time,
we will prefer their solution for calculating the complexity.

Because the MarkAndPair algorithm is called O(log ¢)
times in the worst case in Algorithm 5, the overall worst-
case running time of the UniteTrees algorithm will be
O(c*> log ¢) when Micali and Vazirani’s algorithm [25] is
used. Because we form c trees initially and use the same
algorithm as GreedyPMIT in NCCA-N and NCCA-D and
a similar one in BUCA-N and BUCA-D, the time com-
plexity of the tree formation is O(dcn?). Consequently, our
final complexity will be O(c* log ¢ + dcn?).

5. PERFORMANCE EVALUATION

In this section, we present the simulation environment and
the simulation experiments we performed to evaluate our
algorithms (BUCA and NCCA). We compare our algo-
rithms with GreedyPMIT [10] and show the improvements.
At the end of this section, we also analyze the complexity
of our algorithms.

5.1. Simulation environment and scenarios

We coded a custom simulator in Java and ran our sim-
ulations in a Linux machine with an eight-core 64-bit
processor and 4-GB memory. In the simulations, the sink
node (BS) is placed in the middle of the sensing field,
and sensor nodes are placed around it. The nodes are posi-
tioned so that every node has four nodes around it (except
the nodes on the edges and corners), the left, right, top,
and bottom. The distance between these four nodes and
the center node is defined as one unit of distance. The net-
work topology is a grid containing nodes at the intersection
points, as shown in Figure 3. We assume 2.4-GHz ZigBee
channels are used. Hence, the channel model we use is the
same with ZigBee channel model. Low power transmitter,
low bit rate and short range are typical properties of Zig-
Bee channels. We assume power attenuates in proportion
with the square of the separation between transmitter and
receiver. We repeat each simulation experiment 100 times
and take the average of these runs.

In the experiments, we vary the number of nodes, the
communication range, the interference range, and the num-
ber of channels available to evaluate the performance of
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our algorithms. Although we set the communication range
as 1-unit, 1.5-unit, and 2-unit distances, we only demon-
strate the results for 1.5 and 2 units because the results
of our algorithms are mostly the same as GreedyPMIT’s
when we set the communication range to one unit. For
one unit case, because the communication range is low, the
nodes do not have many options when selecting their par-
ents, that is, tree, and therefore, the formed trees in both
algorithms are about the same, which results in a minor
performance difference.

Another important simulation parameter is the interfer-
ence range, which is defined as 1.5 times of the communi-
cation range in GreedyPMIT [10]. For a fair comparison,
we also set our interference range at 1.5 times the commu-
nication range. The other important variable is the number
of nodes in the network. We choose an x x x network and
choose x as an odd number, which locate the BS exactly in
the middle of the network. The variable x is set to odd num-
bers between 11 and 33, inclusively; therefore, the number
of nodes is set to 121, 169, 225, 289, 361, 441, 529, 625,
729, 841, 961, and 1089.

The final variable is the available number of chan-
nels, which is also equal to the number of trees in the
network. Although there are 16 channels in 2.4 GHz in
ZigBee, [10] demonstrates that adjacent channels cause
interference and decrease overall throughput. For that rea-
son, it is better to use non-adjacent channels. That is, a
maximum of eight channels can be used. Although adja-
cent channels can be used if the nodes are separated by a
sufficient distance, by using only non-adjacent channels,
we guarantee that any two different-channel trees will have
no inter-tree interference even if they are close to each
other. Consequently, we choose the number of channels to
be between two and eight inclusively. As expected, net-
work interference increases with fewer channels in our
algorithms and GreedyPMIT. In the performance evalu-
ation, we present the actual interference values and the
performance improvement compared with GreedyPMIT.
The performance improvement is shown with the inter-
ference decrease in percentages in Figures 5 to 9, and
the actual interference values can be seen in Figures 10
to 13. We define interference decrease as the difference
between interference incurred when GreedyPMIT is used
and interference incurred when our algorithm is used.
Therefore, there can be negative interference decrease in
case GreedyPMIT causes lower total interference than our
algorithm. However, this case is rare in our simulations. In
general, our algorithms perform better than GreedyPMIT,
and we have positive interference decrease in most cases.

As a reminder, the interference value of a tree is defined
as the interference value of the non-leaf node with the
maximum interference value.

5.2. Simulation results

We perform two sets of simulations to compare our algo-
rithms with GreedyPMIT. In the first set of simulations,
we compare maximum interference value of the network,
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Figure 5. Comparison of GreedyPMIT-N and bottom-up channel

assignment-N when communication range is equal to 1.5 units.

The y-axis is the interference decrease, that is, performance
improvement, of our algorithms against GreedyPMIT.

which is described before. Additionally, packet drop rates
using SINR metric are compared in the second set of sim-
ulations. Because our algorithms are independent of the
MAC protocol, we thought that a custom simulator is suf-
ficient to simulate the network for finding the maximum
interference values of the nodes according to the neighbor
counts and distances and calculating packet drop rates con-
sidering SINR threshold. In this way, we focused better on
topology and distance effects in the overall sensor network.

5.2.1. Simulations with maximum
interference value.

In this section, we present and discuss our simulation
results. We interpret our results based on the value of the
communication range variable and also based on the value
of the interference range indirectly. We also compare our
six algorithms with respect to the distance-based interfer-
ence metric, which we think it is more accurate than the
node-count metric.

The first part of the simulation results (Figures 5 and 6)
is for the case where the communication range is set to
be 1.5 units. As explained earlier, the interference range
is fixed and set as 1.5 times of communication range.
Hence, it is set to 2.25 units. When we set the communi-
cation range as 1.5 units, a node can have at most eight
nodes in its one-hop communication range and 20 nodes
in its interference range. This situation can be observed
in Figure 2, where the inner dashed circle denotes the
node’s communication disk and the outer dashed circle
denotes its interference disk. With a 1.5-unit communi-
cation range, the BS’s number of neighbors, that is, the
value of ¢, will also be at most eight. As explained in the
previous section, we examine our four algorithms against
GreedyPMIT-N and GreedyPMIT-D while changing the
number of available channels to between two and eight
inclusively.

Figure 5 demonstrates the comparison between
GreedyPMIT-N and our algorithm BUCA-N when the
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Figure 6. Comparison of GreedyPMIT-N and neighbor count-
based channel assignment-N when communication range is
equal to 1.5 units.

communication range is set to 1.5 units. The performance
increase in the figure can be observed from the y-axis,
which is the interference decrease in percentage when
compared with GreedyPMIT-N. This figure shows that
(except for the case where the channel count is two) when
the number of channels increases, the performance for
smaller networks decreases because the number of union
operations decreases. For example, the number of union
operations will be five for the three-channel case and only
one for the seven-channel case. Further, there will be no
union operation when the number of channels is eight
when communication range is equal to 1.5 units. These
results show that the union operation plays a big role
in performance of our algorithms. When the number of
nodes increases, the performance depending on channel
count will be nearly equal and will diverge to 0, that is, a
similar performance to GreedyPMIT. The reason for the
performance decrease when channel count is two is likely
due to the high interference. With two available channels,
we have only two trees; therefore, interference may not
improve much.

In Figure 6, we present the performance improvement
of Algorithm NCCA-N against GreedyPMIT-N when the
communication range is 1.5 units. First, we notice that
the eight-channel case shows no improvement compared
with GreedyPMIT-N because for the 1.5-unit communi-
cation range, the BS will have eight neighbors, that is,
¢ = 8, and our algorithms form c trees in the same way
as GreedyPMIT-N. Then our algorithms unite the trees to
decrease the number of trees to k. In the eight-channel sce-
nario, both ¢ and k are equal to eight; consequently, there
will be no union operation, and the interference value of
the network will be the same as GreedyPMIT.

As stated before, using two channels in BUCA-N
(Figure 5) does not show much improvement, although
it has more union operations than the others, that is, six
operations. This property is also seen in Figure 6.

The other similarity between BUCA-N and NCCA-N is
that networks with fewer channels (three, four, and five)
perform better when we compare them with six-channel,
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Figure 7. Comparison of GreedyPMIT-N and bottom-up channel
assignment-N when communication range is equal to two units.

seven-channel, and eight-channel cases. The latter cases
have two, one, and zero union operations, and the former
cases have five, four, and three union operations, respec-
tively. A difference between BUCA-N and NCCA-N is
that, except for the two-channel case, the performance
increase in NCCA-N is higher in smaller sized networks;
however, performance decreases faster when network size
increases, and reaches 0 when node size is equal to 729. In
these simulations, the performance improvement can be as
much as 30% compared with GreedyPMIT.

We also did simulation experiments with a commu-
nication range of two units (Figures 7 to 9). In these
experiments, there were 12 other nodes in a node’s one-
hop vicinity; therefore, the BS has 12 neighbors. Further,
the number of nodes in a node’s interference range is 28,
with an interference range equal to 2 x 1.5 = 3 units. On
the other hand, the number of nodes in the communication
range and the interference range is 8 and 20, respectively,
for a communication range of 1.5 units. Consequently, a
higher communication range causes an increase in inter-
ference because of the increase in the number of nodes
in the interference range. In the following set of simula-
tion results, we observe the performance of our algorithms
when the communication range is two units.

Figure 7 compares the performance between
GreedyPMIT-N and BUCA-N when the communication
range is two units. This figure shows a very different result
than Figure 5, which represents the comparison between
the same algorithms when the communication range is
1.5 units. In Figure 5, performance decreases when the
number of nodes increases; however, in Figure 7, where
the communication range is two units, we observe the
opposite result, where an increase in the number of nodes
results in an increase in performance. The number of
nodes in one node’s interference range is more than in the
previous scenario, and this number plays an important role
in the interference, because it seems that it is an overhead
for smaller networks. However, when the number of nodes
increases, the effect of that overhead also decreases, and
BUCA-N starts to perform better than GreedyPMIT-N.
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based channel assignment-D when communication range is
equal to two units.

As evident in the figure, except for the eight-channel
case, our algorithm performs better than GreedyPMIT
when the number of nodes is greater than or equal to 361;
eight-channel case starts to perform better in larger net-
works. If we omit the two-channel case again, the higher
performance with fewer channels (three, four, and five) is
evident. Although larger networks show no improvement
in performance for the 1.5-unit communication range,
our algorithms achieve remarkable improvements with a
two-unit communication range: an up to 36% performance.

Figure 8 compares the performance between NCCA-
N and GreedyPMIT-N when the communication range is
two units. Generally, Figure 8 shows better results than
Figure 7 for smaller and larger networks alike. First, there
is no negative result, except for in a two-channel case
with 121 nodes. In other cases, our algorithm performs
better than GreedyPMIT and achieves as much as a 40%
performance increase.

Figure 9 compares the performance of GreedyPMIT-D
with NCCA-D when the communication range is two units,
which is similar to Figure 8. We can state that NCCA-D
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performs generally better than GreedyPMIT by achieving
a positive interference decrease. Similar to the comparison
of GreedyPMIT-N with NCCA-N with a communication
range of two units, the two-channel and six-channel to
eight-channel cases show more stable results when com-
pared with the three-channel to five-channel cases, where
performance increases when network size increases. And
again, the two-channel case does not show much per-
formance improvement because of the high interference
caused by two physically close trees. The simulations
with a communication range of two units (Figures 7 to 9)
generally perform better than GreedyPMIT. We think the
fluctuations in the results are due to the increased number
of the same tree nodes in a node’s vicinity, which is caused
by increased communication range.

Next, we present simulation experiments when a
distance-based interference metric is used for calculating
the final interference (Figures 10 to 13). Because we take
GreedyPMIT as our base algorithm, algorithms with a suf-
fix -N use the number of nodes in the interference disk,
which is the default interference metric of GreedyPMIT.
Although using this metric is plausible and easy for imple-
mentation, the distance between the nodes in the interfer-
ence disk is also important in the real world, which is why
we propose the distance-based interference metric. There-
fore, we compare the interferences of the final trees formed
from all six algorithms, where four are new algorithms
proposed by us, using the distance-based interference met-
ric, regardless of their tree formation metrics. Although
the algorithms with suffix -N use the number of nodes as
their interference metric, their final performance will be
compared by using the distance-based interference met-
ric, to simulate the real world, where not only the number
of nodes but also the distance between them are signifi-
cant. Unlike the previous figures in this section, now, we
show the actual interference values in the network instead
of the performance increase. For the actual interference
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Figure 10. Comparison of all algorithms, when the final inter

ference is calculated using the distance-based interference

metric, where kK = 4 and communication range is equal to 1.5

units. BUCA, bottom-up channel assignment; NCCA, neighbor
count-based channel assignment.
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values, the performance is higher if the interference value
is lower.

Figure 10 shows the final maximum interferences of
the networks with different numbers of nodes when the
final interference is calculated using the distance-based
interference metric, regardless of the metric used in the
tree formations. In this figure, the communication range
is 1.5 units, and the available number of channels, that
is, k, is 4. The results are very similar for channel counts
between two and eight, inclusively, when the communica-
tion range is 1.5 units. Therefore, we show only the results
of the four-channel case, where the difference between
each algorithm is more evident. Because we show that our
proposed algorithms (BUCA and NCCA) generally per-
form better than GreedyPMIT, the interference values of
GreedyPMIT-N are higher than BUCA-N and NCCA-N,
and the interference values of GreedyPMIT-D are higher
than BUCA-D and NCCA-D, as shown in Figure 10, where
higher interference indicates lower performance. As shown
in Figures 5 and 6, there is no performance improvement
for larger networks when the communication range is 1.5
units; therefore, the interference values for larger networks
are similar to each other in this figure.

In Figure 10, for the algorithms other than BUCA-N and
BUCA-D, networks with more than or exactly 841 nodes
reach an 8.6 interference value, which is the maximum
interference that can be achieved when the communication
range is set as 1.5 units and when all the nodes in the inter-
ference disk are the same tree nodes for at least one node
in the network. This is the worst-case tree formation, and it
apparently cannot be avoided for larger networks.

An interesting result for Figure 10 shows that although
NCCA-N and GreedyPMIT-N do not form trees according
to a distance-based interference metric, their interference
values are lower than their distance-based interference met-
ric versions NCCA-D and GreedyPMIT-D, respectively, in
smaller networks. Although this result was not expected,
it can be explained with the greedy property of the algo-
rithms, where the best parent of a node for a level is
chosen when the trees are formed, and cannot be changed
in subsequent levels.

In three parts, we demonstrate the results of the simula-
tion experiments, where the communication range is equal
to two units, because the results in that case are not similar
at different k values, unlike in the previous case (commu-
nication range = 1.5 units). This case is examined in three
channel cases, where k=3, 5, and 7, and in increasing order
so as to better observe the effect of the number of channels
on the algorithms’ performances. We start with the results
of the three-channel case.

Figure 11 shows the final maximum interferences of the
networks when the final interference is calculated using the
distance-based interference metric when £ = 3 and the
communication range is equal to two units. GreedyPMIT-
N and GreedyPMIT-D again have the highest interfer-
ence values. Contrary to Figure 10, Figure 11 shows that
the algorithms with the distance-based interference met-
ric, suffix -D, exhibit better or equal performances when
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where k = 5 and communication range is equal to two

units. BUCA, bottom-up channel assignment; NCCA, neighbor
count-based channel assignment.

compared with the same-named algorithms with suffix -N,
as expected. Also, only GreedyPMIT algorithms can reach
interference values close to the maximum interference,
which is approximately 9.55, when the communication
range is two units. The performance increase can be better
observed in this figure because the interference differ-
ences between GreedyPMIT algorithms and our algorithms
are greater.

Figure 12 shows the final maximum interferences of
the networks when the final interference is calculated
using the distance-based interference metric, when k = 5
and the communication range is equal to two units. We
can observe the actual interference differences between
the three-channel and five-channel cases by examining
Figures 11 and 12, respectively. As expected, the interfer-
ence values in a five-channel case are lower than those in
the three-channel case because the network is divided into

1708

C. Terzi and |. Korpeoglu

e L
/ a

w T e
o o

L0 X

" e o-Algorithms

w7 e GreedyPMIT-N ——

o GreedyPMIT-D -~ 1
BU

Maximum Interference in the Network

CA-N -
BUCA-D = |
NCCA-N = |
NCCAD =

100 200 300 400 500 600 700 800 900 1000 1100
Number of Nodes

Figure 13. Comparison of all algorithms, when the final interfer

ence is calculated using the distance-based interference metric,

where k = 7 and communication range is equal to two

units. BUCA, bottom-up channel assignment; NCCA, neighbor
count-based channel assignment.

more trees in the former case, and consequently, the num-
ber of nodes per tree decreases, which lower interference
values than in the three-channel case. Because we have
more trees in this figure, the maximum interference values
in the network do not reach the exact maximum interfer-
ence value. We also observe that the performance of the
BUCA algorithms is lower than that of the NCCA-D algo-
rithm when the number of available channels increases.

Figure 13 shows the final maximum interferences of
the networks when the final interference is calculated
using the distance-based interference metric, when k = 7
and the communication range is equal to two units. The
decrease in interference values according to the increase in
the available number of channels can be clearly observed
in Figures 11 to 13. Also notable are the performance
decrease of the BUCA algorithms and the performance
increase of GreedyPMIT-D when the number of available
channels increases.

Our algorithms NCCA and BUCA perform better than
GreedyPMIT and achieve performance increase up to 40%.
However, which one is better depends on other parame-
ters and conditions. For communication range of two units
(Figures 7 to 9), both NCCA and BUCA perform similar
results. For 1.5-unit communication range (Figures 5 and
6), NCCA has better results for smaller networks; how-
ever, BUCA performs better when network size increases.
As stated before, BUCA has some improvements to the
GreedyPMIT and directly to the NCCA. Besides the tree
formation order (bottom-up versus top-down), BUCA also
considers the children count of possible parent nodes and
distance between of a node and its possible parents. We can
observe the positive effect of these improvements for larger
networks. When the number of nodes increases, the impor-
tance of the child—parent distance and the nodes’ children
count emerges.
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5.2.2. Simulations with
signal-to-interference-plus-noise ratio metric.

In addition, we propose a SINR metric that is similar to
the distance metric (algorithms with suffix -D). The dif-
ference between the distance and SINR metrics is that the
latter one considers SINR values of all same tree nodes
in the network, not only the nodes within an interference
disk as considered in the former one. We simulate this
case, and the results are presented in Figures 14 and 15.
It is evident in these figures that our algorithms perform
better than GreedyPMIT in most cases. Our algorithms
provide performance increase up to 22% when compared
with GreedyPMIT.

To analyze our algorithms better and compare it with
GreedyPMIT, we compare the packet drop rates of these
algorithms (Figures 16 and 17) as well. For these simu-
lations, we set the number of nodes as 121 and commu-
nication range as 1.5 units. For analyzing drop rates, we
consider SINR, which affects the success probabilities of
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Figure 14. Comparison of GreedyPMIT with bottom-up channel
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when communication range is equal to 1.5 units.
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packets. We consider packets received with SINR value
lower than a threshold as dropped.

Figures 16 and 17 show that our algorithms are generally
better than GreedyPMIT when drop rates are compared. In
these figures, the decrease in the drop rates is evident when
the number of channels increases. Because the channels are
orthogonal, this is an expected result. Another result is the
lower drop rates of BUCA when compared with NCCA
and GreedyPMIT.

5.3. Complexity analysis

Also, we compare the time complexities of our algorithms
and GreedyPMIT. For comparison, we calculate the results
of the functions inside Big-O notations, that is, dkn? for
GreedyPMIT and max(c*? log ¢, den?) for our algorithms.
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Although ¢*?loge complexity seems to be high, den?
had a higher result for each ¢ and n values in our sim-
ulations. Because ¢ only depends on the communication
range, our algorithms have the same complexity result for a
communication range value, independent from the number
of available channels, k. Then, the complexity compar-
ison between our algorithms and GreedyPMIT becomes
O(dcn?) versus O(dkn?), respectively, according to our
simulation parameters. Figures 18-21 show the results of
O(f(x)) values for complexities of our algorithms and
GreedyPMIT. As described before, ¢ can be 12 in max-
imum in our simulations, and k can be 2 in minimum;
therefore, GreedyPMIT runs six times faster than our algo-
rithms in worst case, when comparing the results of the
functions inside Big-O notations. In best case, our algo-
rithms and GreedyPMIT have the same running time, as
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Figure 18. Complexity comparison of our algorithms versus
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available channels, ¢ = 8 and ¢ = 12 denote our algorithms with
communication range is equal to 1.5 and 2 units, respectively.
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seen from Figures 20 and 21 , when k = 8 and com-
munication range is equal to 1.5, that is, ¢ = 8. Tree
formation is carried out once at the beginning, and the
same tree formation will be used for a long time. Also, our
algorithms provide performance increase up to 40% when
compared with GreedyPMIT; therefore, our algorithms can
be preferred for assigning channels, although GreedyPMIT
runs faster.

6. CONCLUSIONS

In this paper, we propose static channel assignment algo-
rithms that can be used to decrease interference in multi-
channel wireless sensor networks. In this way, we aim to
increase the network throughput and reduce packet col-
lisions and packet corruptions. We propose two greedy
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tree-based channel assignment algorithms (BUCA and
NCCA) with two versions each. We use a tree-based
approach as in [10] and partition the network into trees,
where each node is connected to a tree and a channel is
assigned to each tree. By assigning each tree the same
channel, the only interference in the network can be intra-
tree interference, and we decrease this by carefully uniting
the initially formed trees. We also propose a distance-
based interference metric to use in making channel
assignment decisions.

To evaluate the performance of our algorithms, we per-
formed extensive simulation experiments for various val-
ues of the number of channels, transmission range, and
the number of nodes in the network. We also compare
packet drop rates and complexities of our algorithms with
GreedyPMIT. The results show that our algorithms can
decrease interference and packet drop rates and, also, they
can provide better network performance. Hence, they are
good candidates for static channel assignments for wire-
less sensor networks capable of using multiple channels.
We also analyzed under which condition performance can
be improved.
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