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Abstract Although many applications use battery-pow-

ered sensor nodes, in some applications battery- and mains-

powered nodes coexist. In this paper, we present a distributed

algorithm that considers using mains-powered devices to

increase the lifetime of wireless sensor networks for such

heterogeneous deployment scenarios. In the proposed algo-

rithm, a backbone routing structure composed of mains-

powered nodes, sink, and battery-powered nodes if required,

is constructed to relay data packets to one or more sinks. The

algorithm is fully distributed and can handle dynamic

changes in the network, such as node additions and removals,

as well as link failures. Our extensive ns-2 simulation results

show that the proposed method is able to increase the net-

work lifetime up to 40 % compared to the case in which

battery- and mains-powered nodes are not differentiated.

Keywords Wireless sensor networks � Network lifetime �
Routing � Heterogeneous networks � Backbone � Power-
source-aware � Mains-powered � Energy-efficiency

1 Introduction

Wireless sensor networks (WSNs) are used to monitor

physical and environmental conditions in a wide range of

civilian and military applications. Such applications

include intrusion detection, disaster management,

environment and habitat monitoring, home automation, and

industrial process control and monitoring.

In many application scenarios, sensor nodes are ran-

domly deployed in large quantities using methods such as

aircraft drops for reasons of safety, harsh environmental

conditions, or ease of application. In those cases, all nodes

are battery-powered in general, hence they have a limited

source of energy. Due to this restriction, careful energy use

is vital to maximize WSN lifetime. In other application

scenarios, however, it is possible, preferred, or required to

manually deploy at least some nodes. Moreover, the area

where such a network is deployed may have other energy

sources, such as AC power, as for example, in factories,

office buildings, or houses. In such deployment environ-

ments, some nodes can benefit from the facility’s contin-

uous energy source and therefore can be mains-powered.

Mains-powered nodes are preferred where possible to

reduce maintenance costs, but battery-powered nodes are

used where installing power lines is costly or impractical.

One of themost important issues inWSNs regarding energy

usage is gathering data from sensor nodes and sending them to

the sink node using an energy-efficient routing structure and

algorithm. In a network with heterogeneous energy sources,

the network protocols and algorithms should make use of this

heterogeneity asmuch as possible to prolong the lifetime of the

network. In this paper, we present a distributed power-source-

aware routing algorithm, PSABR (power-source-aware back-

bone-based routing), which increases the lifetime of hetero-

geneous WSNs where battery- and mains-powered nodes

coexist. Although the main focus of the proposed algorithm is

on WSNs with battery- and mains-powered nodes, the algo-

rithm can also be used in heterogeneous WSNs with different

power source types, as discussed in Sect. 2.

The basic approach behind our PSABR algorithm is to

form a backbone routing structure consisting of mains-
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powered nodes and the sink to relay packets between the

sink and the sensor nodes. However, the sink and the

mains-powered sensor nodes might not always form a

connected topology. Therefore, battery-powered nodes are

also used, as needed, to provide a connected backbone for

the rest of the network. PSABR is tree-based and is fully

distributed, operating without requiring any centralized

control. It constructs and maintains a routing tree and

establishes parent-child relationships among nodes. Data

packets are forwarded according to this relationships.

PSABR supports dynamic arrivals and departures of nodes,

and it can adapt to node and link failures.

PSABR exploits the heterogeneous power sources to pro-

longnetwork lifetimeand it canworkwith identical nodes as far

as processing power and communication range are considered.

On the other hand, the nodes without energy constraints (e.g.,

mains-powered nodes) may provide more processing power

and communication range compared to the nodes with such

constraints. PSABR is designed in an asymmetric manner so

that the computation intensive tasks are handled by the mains-

powered nodes. Furthermore, mains-powered nodes with

longer communication range would reduce the number of

battery-powerednodes required to interconnectmains-powered

nodes while constructing the backbone, which in turn further

increases the network lifetime. Hence, PSABR can also benefit

from such kinds of heterogeneity.

We implemented and validated our distributed PSABR

algorithm in the ns-2 environment. We performed exten-

sive ns-2 simulation experiments to evaluate the efficiency

and effectiveness of our algorithm. Our results show that

we can obtain up to 40 % increase in network lifetime

compared to the shortest path routing algorithm where

heterogeneity in power source types is not considered.

Simulation results also show that PSABR increases the

packet delivery ratio and provides a more balanced energy

usage among battery-powered nodes compared to the

shortest path routing algorithm. PSABR is scalable with

respect to network size and it can react to node arrivals

quickly according to the simulation results.

The remainder of this paper is organized as follows: In

the next section, we summarize related previous studies.

We present our basic routing approach in Sect. 3, and a

detailed description of our PSABR algorithm in Sect. 4.

We outline the simulation results presenting our algo-

rithm’s performance in Sect. 5, and in Sect. 6, we conclude

the paper with some suggestions for future work.

2 Related work

In most studies concerning WSNs, nodes are assumed to be

battery-powered, but several studies discuss alternative

energy sources. Fuel-cells, heat engines, energy harvesting

methods, and power distribution techniques (e.g., through

radio frequencies, acoustics, light, etc.) are discussed in

[26, 37], and [17]. Some of these methods provide energy

for a limited time, similar to batteries, whereas others, such

as energy harvesting methods, have the potential to be a

continuous source of energy. Therefore, although PSABR

is originally designed for networks consisting of battery-

and mains-powered nodes, it can be used in similar

heterogeneous deployment cases as far as energy sources

are concerned. Using a technique similar to the one pre-

sented in [23], nodes running PSABR can identify their

power source types and act accordingly.

In recent years, energy harvesting methods to power

WSNs have been covered by many studies (e.g., [4, 11, 28,

32]), because such methods have great potential to decrease

maintenance costs relating to battery replacement and to

greatly extend network lifetimes where replacing batteries

is impractical. In these studies, different energy sources

such as sun, wind, vibration, heat, or electromagnetics are

considered for harvesting. In general, harvesting provides

intermittent energy because of the sources’ unreliable

nature and the varying effectiveness of harvesting. Dif-

ferent approaches can be employed to increase the relia-

bility of this method, such as using multiple sources of

energy as in [24] and [33]. Another approach is to harvest

energy using relatively more reliable ambient energy

sources such as fluorescent lamps in hospitals or factories,

where the lights are always on (as in [13]) or from air flow

near ventilation exhausts (as in [18]). As long as some of

the nodes can be powered by reliable methods, PSABR can

make use of those nodes to increase the network lifetime.

Basically, PSABR exploits the nodes’ heterogeneous

power source, assuming some of the nodes have a contin-

uous power source (e.g., mains electricity) and others do

not (e.g., battery). There are other studies that use the

superior nodes to increase the sensor network lifetime.

Yarvis et al. in [42], show that even a modest number of

mains-powered nodes has a significant impact on network

lifetime. The authors use existing energy-aware routing

protocols and try to find the optimum number of battery-

and mains-powered nodes along with their locations.

Although special placement of nodes can increase network

lifetime, PSABR does not rely on such arrangements.

In [22], Ma et al. present a cluster-based topology for-

mation and update protocol that takes the nodes’ energy

resources into account. Unlike that study, PSABR assumes

that all nodes have a similar communication range, which

means PSABR can work in network installations where all

nodes, regardless of whether they are battery- or mains-

powered, use the same wireless communication technology

(for example, ZigBee). In [15] and [36], the authors con-

sider node heterogeneity as far as their energy harvesting

capabilities are concerned. Kansal et al. [15], propose a
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routing method that uses nodes with a higher harvesting

potential. Voight et al. [36], describe a modified directed

diffusion approach in which solar powered nodes are taken

into account.

Our PSABR algorithm employs a backbone-based

approach to construct a routing tree by using topology con-

trol [19]. As Simplot-Ryl et al. enumerate in [30], backbone-

based approaches for data dissemination and gathering are

well-studied. As in related studies, [30] considers the back-

bone to be either a neighbor- or area-dominating set in a

network. In the former, all nodes are either part of the

backbone or within a one-hop distance, and in the latter, the

whole area is within the sensing range of the nodes consti-

tuting the backbone. Since finding the minimum connected

dominating set (CDS) is NP-complete, approaches in the

literature are based on centralized and distributed heuristics.

Although centralized algorithms can provide bounds on the

size of the CDS, such as in [8], they require global infor-

mation, increasing the messaging overhead. Localized

approaches, inwhich only limited neighborhood information

is shared, are based on either deterministic or probabilistic

algorithms. Span, presented in [5], is an example of proba-

bilistic algorithms. A node either sleeps or takes part in the

backbone randomly, based on its residual energy and the

benefit to its neighbors if it stays awake. In a similar algo-

rithm called EAD [1], Boukerche et al. try to find a spanning

treewithmany leaf nodes. Nodeswith higher residual energy

have a higher chance of not being a leaf node. In another

distributed algorithm, ASCENT [3], nodes participate in

sensing and routing tasks according to packet losses due to a

lack of relay nodes or collisions. Hence, the aim is to keep

only a subset of the nodes alive to preserve energy. Cell-

based approaches, which are also CDS-based, are employed

in [39] and [27]. In both studies, the area is divided into cells

and only a single node in each cell is kept alive for routing.

Themajor drawback of this method is that the node locations

must be known. In the studies mentioned so far, the aim is to

find a CDS. In [7] the authors present different protocols that

ensure the k-connectedness of dominating sets, in favor of

fault tolerance. In another study that takes fault tolerance into

account, Kashyap et al. [16] add relay nodes to the WSN to

provide a k-connected backbone.

In our study, different from the previous studies based on

a backbone, we assume that the sensor nodes are heteroge-

neous as far as their power source types are concerned.

Although studies such as [8] and [5], which take residual

energy into account, can be applied to this case, prior

knowledge of different power source types enables spe-

cialized solutions because the nodes’ energy change in time

but power sources of individual nodes usually do not. Even

if the power source type of a node is altered during the

lifespan of a WSN, its frequency is expected to be low.

Hence proactive solutions are not required to adapt such

changes. In this study, we also adapt the definition of

backbone: in our case, a backbone consists of a connected

set of mains-powered nodes, rather than the CDS of all

nodes. As mentioned earlier, there are both centralized and

localized algorithms for backbone construction, and with

our approach presented here, both are possible. Several

centralized algorithms is discussed in an earlier study [34],

and we present a distributed algorithm in this paper. Our

distributed algorithm is deterministic; if there is a connected

backbone, the proposed approach is able to construct it,

whereas in randomized algorithms backbone connectivity is

highly affected by node density. Our proposed approach can

also take fault tolerance into account, similar to [7] and [16];

different from those studies, however, our approach tries to

increase the number of vertex disjoint paths between pairs of

mains-powered nodes (if it is not possible to connect mains-

powered nodes directly) on the backbone rather than trying

to achieve k-connectedness of the whole backbone. That is

because constructing a k-connected topology in a distributed

manner is unnecessarily complex compared to ensuring

existence of some alternative paths between nodes that are

known to be permanent (i.e., mains-powered nodes). Also

different from [16], we assume that the locations of the

sensor nodes are fixed.

Zeng et al. [43] proposes a routing and scheduling

technique that uses learning approach considering a highly

mobile environment, but it does not optimize the routing

for heterogeneous wireless sensor networks where some

nodes can be mains-powered. We consider a more static

network, but handle node heterogeneity in terms of power

source and energy consumption. Zeng et al. [43] also uses

geographic routing which requires knowledge of node

positions, which is not required for our PSABR algorithm.

Liu et al. [21] also provides a clustering and routing

algorithm for highly mobile environments. It does not

distinguish between battery- and mains-powered nodes. It

constructs multilevel clusters assuming power control is

possible to use the optimal transmission range. In PSABR,

we do not assume power control and we provide a solution

that optimizes for a heterogeneous environment.

We assume, our PSABR algorithm is used in environ-

ments where strict delay or bandwidth guarantees are not

required. Therefore, our algorithm tries to find minimum

cost paths to the sink, similar to EDAL algorithm described

in [40] and [41], but unlike these studies, our algorithm

does not take delay constraints into account.

3 Proposed routing approach

As mentioned earlier, we assume that battery- and mains-

powered sensor nodes coexist in the network, and that the

proposed approach uses mains-powered nodes to decrease
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energy usage of battery-powered nodes, increasing the

overall lifetime of the sensor network. Basically, the pro-

posed approach forms a backbone routing structure that

consists of the sink, all the mains-powered sensor nodes

(which are accessible from the sink) and some of the bat-

tery-powered nodes wherever directly connecting mains-

powered nodes is not possible. Then it uses this backbone

structure to route packets between the sink and the sensor

nodes.

Figure 1 shows a sample network to explain the pro-

posed approach. The sink is located at the center of the

area. In the figures, the battery-powered nodes are denoted

by white circles and the mains-powered nodes are shown as

black circles. Figure 1(a) shows a visibility graph of the

network; if a node is in direct communication range of

another node, there is an edge between the vertices repre-

senting these two nodes. Given this visibility graph, the

approach can extract a backbone similar to the one shown

in Figure 1(d). Connectivity information of the mains-

powered nodes [Figure 1(b)], reduced to a spanning tree

[Figure 1(c)], is used to form the backbone, which is

explained later in this section. Please note that all the

mains-powered nodes take part in the backbone, and in

some cases battery-powered nodes are used to interconnect

them. Finally, Figure 1(e) shows the routing tree formed as

the rest of the nodes connect to the backbone.

The proposed approach can be described in a more

formal manner by the following three-step procedure:

1. Reduce the visibility graph G ¼ ðV ;EÞ to a secondary

graph G0 ¼ ðV 0;E0Þ such that

(a) V 0  fv 2 V | v is mains-poweredg,
(b) 8vi; vj 2 V 0, the edge ðvi; vjÞ 2 E0 () ðvi; vjÞ 2

E or 9 a simple path p ¼ ðv1; v2; . . .; vnÞ between
vi and vj in G s.t. v1; v2; . . .; vn are all battery-

powered and jpj\T , and then

(c) assign a cost value to each edge e0 2 E0.

2. Extract a backbone:

(a) Find a spanning tree on G0,
(b) Map the spanning tree on G0 to a tree on G.

3. Connect the remaining nodes to the backbone.

This procedure is actually a framework for a class of

algorithms rather than a complete description of a single

algorithm because there are several alternatives for some of

its steps. Let us explain the procedure step by step with the

alternatives where necessary.

In the first step, the original network visibility graph is

reduced to a secondary graph in which the vertices are the

mains-powered nodes (Step 1a) and the edges represent the

connectivity of these nodes. Two mains-powered nodes are

assumed to be connected either if they are in direct com-

munication range of each other or if there is a path between

them with a length less than or equal to a threshold T and

consisting of only battery-powered nodes (Step 1b). Fig-

ure 1(b) shows a sample secondary graph based on the vis-

ibility graph given in Fig. 1a and assuming T is 2. In Step 1c,

cost values are assigned to the edges of the secondary graph

to be used in Step 2 of the procedure. Following two alter-

natives are considered for this step, given two vertices rep-

resenting the mains-powered nodes, and an edge between

them: (1) Minimum number of battery-powered nodes that

can interconnect the two mains-powered nodes and

(2) A value inversely proportional to the number of vertex

disjoint paths (shorter than or equal to T and consisting of

only battery-powered nodes) between the two mains-pow-

ered nodes. The first alternative is expected to reduce the

amount of energy consumed by the battery-powered nodes,

whereas the second alternative is considered for fault toler-

ance, that is, if one of the paths between the mains-powered

nodes becomes unusable due to a node failure, another path

can be chosen from the alternatives.

In the second step of the procedure the backbone is

formed. First a spanning tree on the secondary graph is

found (Step 2a), similar to the one in Fig. 1(c). This span-

ning tree is used as the basis of the backbone on the actual

network. A minimum spanning tree (MST) and shortest path

tree (SPT) routed at the sink are considered as alternatives.

Although theMST is expected to give a better network-wide

result than the SPT, the latter has a less-complex distributed

implementation. The backbone is yielded by mapping the

spanning tree on the secondary graph back to a tree on the

(a) (b) (c) (d) (e)

Fig. 1 a Visibility graph, b secondary graph, c spanning tree on the secondary graph, d mapping to the original graph, and e routing tree
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original graph (Step 2b), which corresponds to mapping

each edge of the secondary graph to a path (therefore bat-

tery-powered nodes constituting that path) between the

endpoints of that edge (therefore mains-powered nodes).

The mapping can be seen in Figures 1(c, d).

Finally, in the last step of the procedure, disconnected

(battery-powered) nodes are connected to the nodes that are

part of the backbone (Step 3), either directly or over

multiple hops. The final routing tree is similar to the one in

Fig. 1 (e). Several centralized algorithms based on the

proposed approach were discussed in [34] previously. In

this paper we propose a distributed algorithm and it is

described in detail next.

4 Our distributed routing algorithm

In this section we propose a power-source aware routing

algorithm, PSABR, that can generate a WSN routing tree

based on the approach presented in the previous sec-

tion. PSABR is a fully distributed routing algorithmconsisting

of a number of sub-algorithms described in detail below.

Let us first define some of the terms that we use in our

PSABR algorithm description. Two nodes are neighbors if

they are within communication range. The peer of a mains-

powered node is another mains-powered node (which

might be the sink) that is reachable through less than

T battery-powered nodes. Battery- and mains-powered

nodes send their data to their parents in the data gathering

process. The parent of a mains-powered node is one of its

peers, whereas the parent of a battery-powered node is one

of its neighbors. Each node has an associated cost value.

Cost of the sink is 0 and cost of any other node is the sum

of its parent’s cost and the cost to reach its parent.

In PSABR, battery- and mains-powered nodes have dif-

ferent behaviors. Mains-powered nodes maintain a list of

peers, along with the possible paths to each peer. To achieve

this, each mains-powered node stores a partial view of the

global visibility graph, which contains nodes at most T hops

away.Mains-powered nodes also gather the cost information

of their peers. With this information, a mains-powered node

chooses one of its peers as its parent and a path to reach that

parent. The backbone consists of the mains-powered nodes

as well as the battery-powered nodes chosen by the mains-

powered nodes to reach their parents. Mains-powered nodes

have an active role; they try to maintain the partial visibility

graph and determine their parents, and in turn the backbone,

in a distributed manner. Battery-powered nodes, on the other

hand, are mostly passive. In the backbone construction and

maintenance process, they mainly forward control messages

sent by the mains-powered nodes.

PSABR provides means, for mains-powered nodes, to

discover the peer nodes along with their cost values and to

obtain their up to date cost values. Having the current

information each mains-powered node tries to minimize its

own cost continually by choosing the most appropriate

parent. Therefore, given a cost metric, PSABR guarantees

that all the mains-powered nodes on the backbone have the

least cost values.

PSABR can handle node arrivals and departures,

therefore, it does not require a network-wide construction

phase. As battery- and mains-powered nodes are added or

removed, the algorithm constructs and maintains efficient

backbone and routing paths. Our algorithm is also designed

to work with any number of sinks. Similar to sensor nodes,

sink nodes can be added at a later time.

The control messages used by PSABR are transferred by

either broadcast or source routing [10]. The route informa-

tion in a source-routed packet is extracted from the partial

visibility graph maintained by the nodes. Data messages

between amains-powered node and its parent are transferred

by table-driven routing. The intermediate battery-powered

nodes on the backbone construct routing tables using the

information extracted from the control messages they for-

ward. We assume all nodes have periodic data to send to the

sink. PSABR can work regardless of data aggregation [9, 20,

38] takes place. If data aggregation is applied, mains-pow-

ered nodes aggregate their own data with the data received

from their child nodes and send the aggregated messages to

their parents, battery-powered nodes that are on the back-

bone aggregate their data with the data they forward, and

battery-powered nodes that are not on the backbone send the

data packets to their parents which are one hop away. If data

aggregation is not possible, mains-powered nodes and bat-

tery-powered nodes that are not on the backbone send their

data to their parents whenever new data is available, and

battery-powered nodes that are on the backbone send their

data to any next-hop node that resides their routing table.

In the following subsections, we describe how mains-

powered nodes maintain the partial visibility graph and

how nodes choose their parent in a distributed manner. In

Sect. 4.1, we present the control messages used to gather

information and form the parent-child relations (i.e., the

backbone). We show how the messages are used on a

sample scenario, in Sect. 4.2. In Sect. 4.3, we describe the

node behavior at different events, including when receiving

the control messages. Finally, in Sect. 4.4, we discuss the

messaging overhead of PSABR.

4.1 Messages

MDM (MP-node discovery message)AnMDM is initiated to

discovermains-powered nodes that are either direct neighbors

or accessible through battery-powered nodes. The number of

battery-powered nodes connecting mains-powered nodes is

restricted by a threshold number T. MDM is transferred by
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broadcast. An MDM(s, r, ps) contains the originator s of the

message; the path r, which consists of battery-powered nodes,

followed until the packet reaches its current receiver; and the

power-source type ps of the originator.

MIM (MP-node information message) An MIM is initi-

ated either by a mains-powered node as a response to an

MDM or by a battery-powered node while joining the net-

work. AnMIM is transferred by unicast using source routing.

An MIM(s, d, r, V, E, I) contains the originator s and the

destination d of themessage; the path r that the packet should

follow; the node set V containing source, destination, and the

nodes connecting them; the edge set E representing the one-

hop connectivity of the nodes in V; and the tuple set I con-

taining the mains-powered node and cost pairs.

MUM (MP-node update message) An MUM is initiated

by a mains-powered node to inform peers when its cost to

reach the sink has changed. An MUM is transferred by

unicast using source routing. An MUM(s, d, r, c) contains

the originator s and the destination d of the message, the

path r that the packet should follow, and the cost c of the

originator. Note that the cost of a node is the number of

battery-powered nodes between that node and the sink in

the current routing settings.

BCM (backbone construction message) A BCM is ini-

tiated by a mains-powered node to establish a path to

another mains-powered node, possibly through battery-

powered nodes. A BCM is transferred by unicast using

source routing. A BCM(s, d, r) contains the originator s,

the destination d of the message, and the path r that the

packet should follow. Each BCM should be replied by a

BCMACK(s, d, r), in order to acknowledge a peer node’s

backbone (i.e., parent-child relation) construction request.

A BCMACK is transferred by unicast using source routing

and contains the same fields as a BCM.

LFM (link failure message) An LFM is initiated by a bat-

tery-powered node to inform the originator of a data or control

message that could not be transferred to the next node about

the link failure (i.e, the next intermediate battery-powered

node is unreachable). An LFM can be caused by messages

routed either by source routing or by table-driven routing. The

LFM’s routing method matches the routing method of the

message that caused it. Hence, an LFMtdr is generated for

messages that are routed by table-driven mechanisms and an

LFMsr is generated for messages that are source routed. An

LFMtdr(d, un, up) contains the destination d of the message,

the unreachable battery-powered node un, and the unreach-

able mains-powered node up due to link failure. An

LFMsr(d, r, un, up) contains the path r that the packet should

follow, in addition to the information that an LFMtdr contains.

NDM (neighbor discovery message) An NDM is initi-

ated by a battery-powered node to discover its immediate

neighbors. An NDM is transferred by broadcast. An

NDM(s) contains the originator s of the message.

NIM (neighbor information message) An NIM is initi-

ated by either a battery- or mains-powered node as the

response to an NDM. An NIM is transferred by unicast. An

NIM(s, d, ps, c) contains the originator s, the destination

d of the message, the power-source type ps, and the cost

c of the originator.

4.2 Sample backbone construction

In this section, we explain how the messages described in

Sect. 4.1 are used to construct a backbone using a sample

scenario shown in Fig. 2.

In Fig. 2, battery-powered nodes are shown with small

circles and labeled with lower-case letters from a to h,

whereas mains-powered nodes are shown with larger cir-

cles and labeled with upper-case letters K, L, M, N, P, and

S. There is a line between nodes if they are in the com-

munication range of each other. Parent-child relations are

shown with solid lines. S is the sink of the sample network,

hence its cost is 0. In this sample network, we assume T is

3, that is, peers can be at most 3 hops away.

We assume, initially the mains-powered nodes reachable

from the sink are L,M, andN, as shown in Figure 2(a).K, on

the other hand, is not reachable from the sink, therefore its

cost is infinity. Assume that a new mains-powered node P

joins to the network as shown in Fig. 2(b). As soon as the

node joins it broadcasts anMDM.As shown in the figure, the

MDM contains the originator P and the list of battery-pow-

ered nodes that the message has visited, which is initially

empty (£). Note that the power source field is omitted in this

example. Since MDM is a broadcast message, it is received

by all the one-hop neighbors of P (i.e., b, d, g, and h). As

shown in Fig. 2(c), all the battery-powered receivers add

themselves to the list of battery-powered nodes field and

rebroadcast the message. Similarly, as the two-hop battery-

powered neighbors of P receive the MDMs, they update the

messages adequately and rebroadcast them as shown in

Fig. 2d. Note that, c receives two MDMs originated by P. It

rebroadcasts both of them by adding itself to the message

because the goal is to discover all paths between P and its

potential peers (K,L, andM in this case).Another pointworth

mentioning here is, b and d receive the MDMs sent by a and

c, but they do not rebroadcast these messages since they are

already included in the list of battery-powered nodes of the

MDMs. On the other hand, as shown in Fig. 2(e), e drops the

MDMs sent by c, since T is 3. Battery-powered nodes check

the length of the list of battery-powered nodes in MDMs to

decide whether to rebroadcast or to drop these messages.

K, L, and M know all the possible paths to P by

receiving all the MDMs originated from it. For example,

L has received three MDMs from P, more specifically the

following messages: MDM(P,[b,a]), MDM(P,[b,c]), and

MDM(P,[d,c]). Using these messages, L updates its partial
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visibility graph to include the following edges: (P, b),

(b, a), (a, L), (b, c), (c, L), (P, d), and (d, c). Once the

peers of P receive all the MDMs, they reply using MIM as

shown in Fig. 2(e). MIMs contain the newly discovered

paths between the peers, as well as the cost of the dis-

covered peers. In the figure, only the contents of MIM sent

by K is shown completely due to space limits, in the others

the discovered nodes and edges are denoted by (V, E).

As P receives the MIMs from K, L, and M, it checks

whether there is a parent candidate among the newly dis-

covered peers. Here, both L and M have cost less than

infinity: L’s cost is 0, and M’s cost is 1. But shortest path

length between P and L is 2, whereas it is 1 between P and

M, meaning that cost of P will be 2 independent of its parent

choice. We assume P chooses L as its parent candidate and

sends a BCM to form a new path in the backbone as shown

in Fig. 2(f). L replies with a BCMACK to confirm the

backbone path construction (not shown in the figures).

Once P becomes part of the backbone and its cost

changes from infinity to 2, it sends MUMs to its peers as

shown in Fig. 2(g). MUMs contain the updated cost

information of P. As K receives the MUM from P, it sends

BCM to P to become part of the backbone [Fig. 2(h)]. The

final topology, after P and K exchange BCM and

BCMACK, is depicted in Figure 2(i). Note that, although

not shown in the figures, nodes also broadcast NIMs as

their costs change, so that battery-powered nodes can

update their parent if they are not on the backbone.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 2 Backbone construction
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4.3 Behavior

Node behavior, described in the form of finite state

machines (FSM) are depicted in Figs. 3 and 4, and the

algorithms are presented in Algorithms 1–8. The list of

algorithms is given in Table 1. Each type of node has a

different reaction to an external event depending on its

current state. Since battery- and mains-powered nodes

have different behaviors, they have separate FSMs and

separate sets of algorithms. We explain the variables and

the expressions used in the algorithms in Table 2.

The FSM of a mains-powered node is depicted in Fig. 3.

Initially, a mains-powered node is in the Idle state. With the

Start event, it transits into the BroadcastMDM state. Start is

Fig. 3 Finite state machine for mains-powered nodes

Table 1 Algorithms

Alg Title

1 MP On power-up

2 MP On entry of NoParent

3 MP On entry of HasParent

4 MP On message receive (1 of 2)

5 MP On message receive (2 of 2)

6 BP On power-up

7 BP On entry of HasParent

8 BP On message receive

Table 2 Variables and expressions

var./expr. Usage

self Address of the node executing the algorithm

peers Set of peers of a mains-powered node, which is

initially empty (i.e., ;)
neighbors Set of neighbors of a battery-powered node, which

is initially empty (i.e., ;)
parent A node that is used to reach to the sink, which is

initially undefined (i.e., ?). The parent of a

mains-powered node is one of its peers and

parent of a battery-powered node is one of its

neighbors

cost Number of intermediate battery-powered nodes

traversed to reach the sink, which is initially

infinity (i.e., 1)

pathToParent The path used by a mains-powered node to reach

its current parent

peers½p�:costpeer Cost of the peer p

peers[p].cost Cost of the node if the sink is reached through peer

p

jrj Length of path r

SP(s, d, V, E) The shortest path between s and d given a vertex

set V and an edge set E

Fig. 4 Finite state machine for battery-powered nodes
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fired when the node is powered up, as shown in Algorithm 1.

In BroadcastMDM state, a mains-powered node broadcasts

an MDM and transits directly intoWaitMIMTimeout state in

which it starts a timer, tmim, for corresponding MIMs. Each

MIM received restarts the timer, as shown in Algorithm 4,

line 2b. As tmim expires, aMIMTimeout event is fired, which

means that a certain amount of time has passed since the last

MIM, and the node transits into the NoParent state.

Algorithm 1 On Power-up (MP-Node)
1: peers ← ∅
2: parent ←⊥, cost ← ∞
3: V ← {self}, E ← ∅
4: fire Start

From the Idle state to the NoParent state, a mains-pow-

ered node discovers all other mains-powered nodes that are

accessible through less than T battery-powered nodes, and

alternative paths to them. As an MDM is received by a

battery-powered node, it adds itself to the path that the

packet has followed thus far and rebroadcasts it (if less than

T � 1 battery-powered nodes have been traversed), as

shown in Algorithm 8. Therefore, as anMDM is received by

a mains-powered node, a path from the originator to that

node is discovered, and when all MDMs originating from

the same mains-powered node are received, all possible

paths (bounded by length T) between these two mains-

powered nodes are known. When a mains-powered node

receives all the MDMs originating from a mains-powered

node, it replies with an MIM, which contains all the alter-

native paths to that node, as shown in Algorithm 4. Finally,

as a mains-powered node receives all the MIMs corre-

sponding to the MDM it has sent, discovery of its peers and

possible paths to them is completed. Through this process,

the node has a partial view of the global visibility graph.

Note that an existing mains-power node discovers a

newly joined mains-powered node (and possible paths to it)

by the MDMs originating from the new node and following

different paths. On the other hand, a newly joined mains-

powered node discovers existing mains-powered nodes by

the MIMs, which are replies to the MDM it has sent. A

third method of discovery of new peers or new paths to

known peers is presented later in this section.

Algorithm 2 On Entry of NoParent
1: candidate ← p s.t. peers[p].cost is minimum
2: if candidate =⊥ then
3: path ←SP(self, candidate, V, E)
4: send BCM(self, candidate, path)
5: schedule tbcmack

6: fire BCMSent
7: end if

Although MDMs are broadcast messages, they not

flooded to the whole network since they are not rebroadcast

by mains-powered nodes (Algorithm 4) and they are

broadcast by the battery-powered nodes only if the packet

is rebroadcast less than ðT � 1Þ times and the current node

is not already included in the path that the message tra-

versed so far (Algorithm 8, line 1a).

Algorithm 3 On Entry of HasParent (MP-Node)
1: if cost < ∞ then
2: if parent ∈ peers then
3: if peers[parent].cost > cost then
4: if peers[parent].cost < ∞ then
5: cost ← peers[parent].cost
6: else
7: parent ←⊥, cost ← ∞
8: end if
9: fire CostIncrease

10: else
11: if ∃p ∈ peers s.t. peers[p].cost < peers[parent].cost

then
12: fire ParentUpdate
13: else
14: if pathToParent still exists then
15: if cost = peers[parent].cost then
16: cost ← peers[parent].cost
17: send MUM to peers
18: end if
19: else
20: fire PathUpdate
21: end if
22: end if
23: end if
24: else
25: parent ←⊥, cost ← ∞
26: send MUM to peers
27: fire CostIncrease
28: end if
29: else
30: send MUM to peers
31: fire CostIncrease
32: end if

As the entry action of the NoParent state, the node tries to

find a parent candidate and sends a BCM to the best parent

candidate to establish a parent-child relation with that node.

With theBCMSent event,which is firedwhen aBCMis sent to

a parent candidate, the node transits into the WaitBCMACK

state. As the BCM is sent, a timer, tbcmack, is also started. If

tbcmack expires before the corresponding BCMACK message

is received (which fires a BCMACKTimeout event) the node

returns to the NoParent state. If the BCMACK is received on

time (which fires a BCMACKReceived event) it transits into

theHasParent state. The entry action of the NoParent state is

given in Algorithm 2.

If the parent role is acknowledged by the parent candidate

using BCMACK, the mains-powered node transits into the

HasParent state. The BCM/BCMACK messages allow
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construction of part of the backbone also by informing the

battery-powered nodes (see Algorithm 8) between the parent

and childmains-powered nodes.On the entry to theHasParent

state, the node checks whether it can still access its current

parent, whether the path to the current parent has changed and

whether the cost of the current parent has changed. Then, if

required, it takes the appropriate action among the following:

starts updating the parent, starts updating the path to its current

parent, or starts disseminating the cost change to its peers. The

exact procedure is given in Algorithm 3.

Algorithm 4 On Message Receive (MP-Node) - 1 of 2
When MDM(s, r, ps) arrives:
1a: if s = self then
2a: if first MDM from s then
3a: Vs ← {self, s}, Es ← ∅
4a: end if
5a: for all nodes n1, n2, ..., nk on path r do
6a: Vs ← Vs ∪ {ni}
7a: end for
8a: Es ← Es ∪ {(self, n1)}
9a: for i = 1 to k − 1 do
10a: Es ← Es ∪ {(ni, ni+1)}
11a: end for
12a: Es ← Es ∪ {(nk, s)}
13a: if first MDM from s then
14a: Schedule timer ts for s

15a: else
16a: Reschedule ts

17a: end if
18a: Wait until ts expires
19a: send MIM(self, s, SP(self, s, Vs, Es), Vs, Es, {(self, cost)})
20a: if ps = MP then
21a: peers ← peers ∪ {s}
22a: peers[s].costpeer ← ∞
23a: V ← V ∪ Vs, E ← E ∪ Es

24a: fire InfoUpdated
25a: end if
26a: end if

When MIM(s, d, r, V , E , I) arrives:
1b: if |I| = 1 then
2b: Reschedule tmim

3b: end if
4b: V ← V ∪ V ,E ← E ∪ E

5b: update V and E s.t. ∀ v ∈ V, SP(self, v, V, E) ≤ T
6b: for all (i0, i1) ∈ I do
7b: if i0 ∈ V then
8b: peers ← peers ∪ {i0}
9b: peers[s].costpeer ← i1

10b: peers[s].cost ← i1 + |SP(self, i0, V,E)|
11b: end if
12b: end for
13b: if |I| > 1 then
14b: fire InfoUpdated
15b: end if

If a parent candidate that leads the node to a lower cost

value is found in the HasParent state (Algorithm 3,

line 11), a ParentUpdate event is fired and the node transits

into the ParentUpdate state. On entry to the ParentUpdate

state, the node sends a BCM to the best parent candidate to

establish a parent-child relation with, starts a timer, and

fires a BCMSent event. When the corresponding BCMACK

is received (i.e., BCMACKReceived event) or the timer

expires (i.e., BCMACKTimeout event), the node returns to

the HasParent state, with its parent updated, or preserves

its previous parent.

Algorithm 5 On Message Receive (MP-Node) - 2 of 2
When MUM(s, d, r, c) arrives:
1c: peers[s].costpeer ← c

2c: peers[s].cost ← c + |SP(self, s, V, E)|
3c: fire InfoUpdated
When LFM(∗, un, up) arrives:
1d: if un = up then
2d: for all e ∈ E do
3d: if e is incident to un then
4d: E ← E − {e}
5d: end if
6d: end for
7d: for all v ∈ V do
8d: if a path between self and v in G(V,E) or ∀ path

p between self and v in G(V,E), ∃ a mains-powered
vertex v on p then

9d: V ← V − {v}
10d: end if
11d: end for
12d: for all p ∈ peers do
13d: if p ∈ V then
14d: peers[p].cost ← peers[p].costpeer + |SP(self, p, V, E)|
15d: else
16d: peers ← peers − {p}
17d: end if
18d: end for
19d: else
20d: V ← V − {up}
21d: for all e ∈ E do
22d: if e is incident to up then
23d: E ← E − {e}
24d: end if
25d: end for
26d: peers ← peers − {up}
27d: end if
28d: fire InfoUpdated
When BCM(s, d, r) arrives:
1e: send BCMACK(self, s,reverse(r))
When BCMACK(s, d, r) arrives:
1f: parent ← s

2f: cost ← peers[s].cost
3f: for all p ∈ peers do
4f: send MUM(self, p,SP(self, p, V, E), cost)
5f: end for
6f: broadcast NIM(self, ∗, MP, cost)
When NDM(s) arrives:
1g: send NIM(self, s, MP, cost)

If the path to the current parent needs updating due to a

link failure on the current path, in the HasParent state, a

PathUpdate event is fired (Algorithm 3, line 20) and the

node goes into the PathUpdate state. On entry to the

ParentUpdate state, the node sends a BCM to the current

parent to update the path to that node and then transits into

the PathUpdateBCM state. If a BCMACK is not received
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on time, the node transits into the HasParent state without

a successful path update process. Otherwise (i.e., that is the

corresponding BCMACK is received), the node goes to the

WaitCostPropagation state or back to the HasParent state,

depending on the current and previous cost values.

The node cost increases in the following two cases: the

parent cost increases (Algorithm 3, line 3) or the current

parent becomes unreachable (Algorithm 3, line 24), both

of which lead to the HasParent ! WaitForCostPropaga-

tion state transition; or a higher-cost path to its parent needs

to be established, which leads to HasParent ! PathUp-

date ! PathUpdateBCM ! WaitForCostPropagation

state transitions. In these cases, the node needs to advertise

the new cost and wait for the information to disseminate

before attempting to find a better-cost parent; otherwise

parent-child loops will occur, if a node connects with one

of its descendants. When the timer for disseminating the

increased cost information expires, a Timeout event is fired

and the node transits into the HasParent state if the cost of

its parent is less than infinity and it can still reach its

parent; otherwise it transits into the NoParent state.

When node information such as set of peers, cost of

peers, paths to peers, etc. changes (see algorithms 4 and 5

for such cases), an InfoUpdated event is fired. Note that

this event causes self-transitions in NoParent and

HasParent states, so the node can check for a parent can-

didate (Algorithm 2) or the validity of the current parent

(Algorithm 3), respectively.

The FSM of a battery-powered node is depicted in Fig. 4.

Initially, a battery-powered node is in the Idle state. With the

Start event, it transits into the BroadcastMDM state. A Start

event is fired when the node is powered up, as shown in

Algorithm 6. In BroadcastMDM state, a battery-powered

node broadcasts MDM and transits directly into

WaitMIMTimeout state in which it starts a timer, tmim, for

correspondingMIMs. EachMIM received restarts the timer.

As tmim expires, a MIMTimeout event is fired, which means

that a certain amount of time has passed since the last MIM,

and the node transits into the NotAssociated state.

Algorithm 6 On Power-up (BP-Node)
1: neighbors ← ∅
2: parent ←⊥, cost ← ∞
3: V ← {self}, E ← ∅, I ← ∅
4: fire Start

A battery-powered node discovers nearby mains-pow-

ered nodes by broadcasting an MDM and receiving cor-

responding MIMs (Algorithm 8, line 4b), which is a

similar process to the initial peer discovery of mains-

powered nodes. But here, this information (i.e., a partial

graph obtained as in Algorithm 8, line 6b) is not consumed

by the battery-powered node but is distributed back to the

mains-powered nodes when tmim expires. Therefore, mains-

powered nodes can discover new peers or new paths to

their existing peers with the help of newly joined battery-

powered nodes.

On entry to the NotAssociated state, the node tries to

determine its parent. If it has one or more neighbors whose

cost is less than infinity, it sets the one with the minimum

cost as its parent and fires a HasParent event, which makes

it transit into the HasParent state.

Algorithm 7 On Entry of HasParent (BP-Node)
1: if parent ∈ neighbors then
2: if neighbors[parent].cost > cost then
3: if neighbors[parent].cost = ∞ then
4: parent ←⊥, cost ← ∞
5: else
6: cost ← neighbors[parent].cost + 1
7: end if
8: broadcast NIM(self, ∗, BP, cost)
9: fire CostIncrease

10: else
11: if ∃n ∈ neighbors s.t. neighbors[n].cost < (cost − 1)

then
12: parent ← n, cost ← neighbors[n].cost + 1
13: broadcast NIM(self, ∗, BP, cost)
14: end if
15: end if
16: else
17: parent ←⊥, cost ← ∞
18: broadcast NIM(self, ∗, BP, cost)
19: fire CostIncrease
20: end if

On entry to the HasParent state, the node checks whe-

ther it can still access its current parent (Algorithm 7,

line 1), whether the cost of the current parent has changed

(Algorithm 7, line 2), and whether there is a parent can-

didate with a better cost (Algorithm 7, line 11) and takes

the appropriate action among the following: updates its

parent, starts disseminating the cost change, or fires a

CostIncrease event.

If, in the NotAssociated or HasParent states, a node

receives a BCMACK message (which indicates that it is

now on the backbone), a BCMACKReceived event is fired

(Algorithm 8, line 3g) and the node transits into the

PartOfBackbone state. As shown in Algorithm 8, when a

battery-powered node receives BCM and BCMACK mes-

sages, it establishes backward and forward routing entries.

As long as a battery-powered node is part of the backbone,

it forwards data packets from one mains-powered node to

another using table-driven routing. Unused entries expire

and are removed from the table.
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If, when in the PartOfBackbone state, the routing table

of a node becomes empty (i.e., no data packet is forwarded

recently) and therefore the node realizes that it is no longer

on the backbone (which results in a TableEmpty event), or,

when it is in the HasParent state because its cost has

increased (which results in a CostIncrease event), it transits

into the WaitCostPropagation state. When the timer

expires and a CostPropagationTimeout event is fired, the

node transits into the HasParent state if it still has a parent

(i.e., its cost is less than infinity) or transits into the

NotAssociated state otherwise.

When information such as a set of neighbors, cost of

neighbors, etc. changes, an InfoUpdated event is fired. Note

that this event causes self-transitions in NotAssociated and

HasParent states; therefore the node can check for a parent

or the validity of the current parent.

4.4 Analysis

This section analyzes PSABR messaging overhead. In the

analysis, n is the total number of nodes in the network, r is

the communication range of each node, and R is the

diameter of the deployment area, assuming that it is cir-

cular. Furthermore, m is the mains-powered node ratio,

where 0�m� 1. Hence, there are mn mains-powered

nodes and ð1� mÞn battery-powered nodes.

Assuming the nodes are deployed uniformly, the

expected number of t-hop neighbors, kt, of a node is given

in Eq. 1. It is the total number of nodes multiplied by the

ratio of the area of the ring, whose inner and outer radii are

ðt � 1Þr and tr, to the whole area.

kt ¼ n
p½ðtrÞ2 � ððt � 1ÞrÞ2�

pR2

 !
¼ nð2t � 1Þ r

R

� �2
ð1Þ

The most expensive operation in PSABR is mains-pow-

ered node discovery, which involves transmitting MDMs

and MIMs. Once an MDM is broadcast by the originator, it

is rebroadcast by the battery-powered nodes until time to

live (TTL) expires, and replied by themains-powered nodes,

using MIM. Assuming that a mains-powered node is

allowed to have peers at most T hops away (i.e., TTL is T),

an upper bound for the expected number of packets trans-

mitted due to a mains-powered node discovery, Cdiscover , is

given in Eq. 2. The left operand of the addition is the total

number of MDMs transmitted. It is the summation of total

number of messages transmitted after each rebroadcast.

Since the MDMs are dropped by the Tth battery-powered

nodes, the summation is from 1 to ðT � 1Þ. The right

operand of the addition is the summation of number of

mains-powered nodes for each hop count multiplied by the

hop count (i.e., the number transmission required for a MIM

to reach from a mains-powered node to the originator of the

MDM). As mentioned earlier, a battery-powered powered

node does not rebroadcast an MDM if it is already included

in the path that the message traversed so far. Eq. 2 provides

an upper bound, since it does not take this behavior into

account. Cdiscover is the number of messages due to the

mains-powered node discovery process of a single node,

therefore nCdiscover gives the maximum number of messages

sent in the network for this purpose.

Cdiscover �
XT�1
t¼1

k1ð1� mÞ½ �tþ
XT
t¼1

ktmt ð2Þ

Although mains-powered node discovery is a rather

expensive operation, because it is performed only once by

each node (upon joining the network) its cost is amortized

by the benefits it provides, as shown in simulation results,

in Sect. 5. In the same section, we also compare Eqs. 1 and

2 with the simulation results.

Assuming parent-child relations are formed once

between mains-powered nodes, the upper bound for the total

number of messages in the network required for this purpose

is 2 nmT. This value is the total number of BCM/BCM-ACK

messages exchanged by the mains-powered nodes that are at

most T hops away. Contrary to the assumption, parent-child

relations might be established several times for each mains-

powered node, due to battery-powered node deaths or dis-

covery of lower-cost paths to the sink. Therefore, it is hard to

present an equation for the number of messages required for

establishing parent-child relations (i.e., forming the back-

bone) for the duration of the network.

From time to time, mains-powered nodes need to

advertise changes in their cost values. The expected number

of MUMs sent for this purpose, Cadvertise, is given in Eq. 3,

and is basically the number of transmissions required to send

MUMs to each of the peers, that is summation of the number

of peers at each level multiplied by the distance to the peers.

Similar to the case in the total cost of backbone construction,

it is hard to predict the total number of cost changes during

the network lifetime. But note that, the cost change of a

mains-powered node causes cost changes in all of its

descendants. Furthermore, if the cost has decreased, non-

child peers might chose the node as a parent, causing cost

updates in other mains-powered nodes.

Cadvertise ¼
XT
t¼1

ktmt ð3Þ
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Algorithm 8 On Message Receive (BP-Node)
When MDM(s, r, ps) arrives:
1a: if (|r| < (T − 1)) and (self r) then
2a: r ← r + self

3a: broadcast MDM(s, r , ps)
4a: end if

When MIM(s, d, r, V , E , I ) arrives:
1b: if s = self then
2b: i ← index of self in list r

3b: send MIM(s, d, r, V, E, I) to r[i+ 1]
4b: else
5b: Reschedule tmim

6b: V ← V ∪ V ,E ← E ∪ E , I ← I ∪ I

7b: end if

When MUM(s, d, r, c) arrives:
1c: i ← index of self in list r

2c: send MUM(s, d, r, c) to r[i+ 1]

When LFMtdr(d, un, up) arrives:
1d: send LFMtdr(d, un, up) to next-hop[d]
When LFMsr(d, r, un, up) arrives:
1e: i ← index of self in list r

2e: send LFMsr(d, r, un, up) to r[i+ 1]

When BCM(s, d, r) arrives:
1f: i ← index of self in list r

2f: if i = 0 then
3f: next-hop[s] ← s

4f: else
5f: next-hop[s] ← r[i − 1]
6f: end if
7f: if i = (|r| − 1) then
8f: next-hop[d] ← d

9f: else
10f: next-hop[d] ← r[i+ 1]
11f: end if
12f: send BCMACK(s, d, r) to next-hop[d]
When BCMACK(s, d, r) arrives:
1g: same as the lines [1f,11f]
2g: send BCMACK(s, d, r) to next-hop[d]
3g: fire BCMACKReceived
When NDM(s) arrives:
1h: send NIM(self, s, BP, cost)
When NIM(s, d, ps, c) arrives:
1i: neighbors ← neighbors ∪ {s}
2i: neighbors[s].cost ← c

3i: fire InfoUpdated

5 Performance evaluation

We implemented and simulated our proposed routing

algorithm as a network layer protocol in the ns-2 [35]

(version 2.34) simulation environment. IEEE 802.15.4

[14], which is already available in ns-2, is used as the

underlying MAC and physical layer protocol. Packet loss

model implemented in ns-2 is used to better reflect real life

behavior of PSABR. To compare PSABR’s performance,

we use a shortest-path routing implementation. In the

shortest-path routing, packets are forwarded from a node to

the sink through the path with the minimum-hop distance

among all possible paths.

We use several parameters in the simulations to observe

the impact of different conditions on the algorithm’s per-

formance (Table 3). These parameters include network

size, n, battery-powered node ratio, m, node density, q, and
number of sinks, r. The value of a data point is obtained by

averaging the results across 20 simulation runs, unless

otherwise stated. In each simulation run, the locations of

the nodes are determined pseudo-randomly, based on the

approach described in [2]. Node arrival times are also

determined randomly, keeping all the aforementioned

parameters intact.

E ¼ PtxTtx þ PrxTrx ð4Þ

In the simulations, we used the energy consumption

model already available in ns-2 as shown in Eq. 4. In the

equation, E, P, and T denote energy, power, and time,

whereas subscripts tx and rx denote transmission and

reception, respectively. Power values used for transmission

and reception are based on [25]. According to [25], nodes

consume 0.0807 W as they transmit and 0.0801 W as they

receive. The initial energy of battery-powered nodes is 3 J.

Although this value is known to be rather low for a battery,

our experiments with different initial energy values show

that factor does not proportionally affect performance, so we

kept it low to obtain the simulation results in a reasonable

time.We assume each node has periodic data to send and the

data is aggregated as it is routed to the sink. In the simulations

each node sends a packet with a 32-byte payload every 60 s.

We consider a node to be reachable if the algorithm

establishes a routing path between the node and the sink.

Even if a node is alive, unless there is a routing path to the

sink, it cannot contribute to the sensor network. Therefore,

we think a reachable-node count better reflects the algo-

rithms’ performance compared to an alive-node count. We

assume the network terminates when half the nodes

become unreachable, and we run the simulations accord-

ingly, unless otherwise noted.

Figure 5 presents the change in the reachable-node

count over time. The figure is given for a certain node

count and mains-powered node ratio, but the algorithm

exhibits similar behavior for other values of the node count

and mains-powered node ratio. While PSABR is hesitant to

use battery-powered nodes as forwarding nodes, the

shortest-path routing does not distinguish between battery-

and mains-powered nodes. Therefore, in PSABR, the

reachable-node count remains mostly flat with sudden
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drops, whereas in the shortest-path routing, it decreases

almost linearly over time.

Figure 6 presents a more detailed look into the algo-

rithm behavior. As mentioned earlier, PSABR’s basic

approach is to eliminate battery-powered nodes on the

routing paths; they are pushed down to the leaves of the

routing tree. Figure 6(a) shows how the average in-degree

of battery-powered nodes changes over time. Note that an

average in-degree of 0 means that none of the battery-

powered nodes forwards data packets. The average in-de-

gree is below 0.2 for PSABR and remains rather stable

until the end of the network, which shows PSABR is rather

successful in its basic approach. On the other hand, the in-

degree for the shortest-path routing is around 0.9 at the

beginning (meaning that on the average almost every bat-

tery-powered node is an intermediate node on a routing

path) and it decreases to around 0.3 linearly as time passes.

This behavior of shortest-path routing is primarily due to a

decrease in the battery-powered node ratio because of

battery depletion.

In Fig. 6(b, c), we show the experimental results related

to energy usage. Figure 6(b) shows that the total energy

usage of battery-powered nodes for different time frames is

rather stable for PSABR, which is a direct result of the stable

average in-degree value for the battery-powered nodes.

Earlier time frames show almost twice as much energy

usage by battery-powered nodes for the shortest-path rout-

ing, but this decreases linearly according to the decrease in

the average in-degree of the battery-powered nodes and the

battery-powered node count. Figure 6(c) depicts the total

residual energy of the battery-powered nodes, which

decreases almost linearly in both algorithms, but the

decrease in the shortest-path routing has a steeper slope.

The number of packets transmitted in the network is

shown in Fig. 6 (d), as is a breakdown for control traffic and

actual data traffic. Initially, PSABR exchanges a relatively

higher number of control packets for network construction,

and from time to time it requires some control packets for

self-organization due to node deaths. In general, however, a

higher number of data packets are delivered to the sink in

PSABR compared to shortest-path routing, since earlier

battery-powered node deaths reduces the number of packets

sent and forwarded in shortest-path routing.

Figure 7 shows how PSABR reacts to new node arrivals.

The figure depicts the number of battery- and mains-pow-

ered nodes (dark and light gray areas, respectively) over

time, and the number of reachable nodes (solid line). Note

that number of battery- and mains-powered nodes are

plotted as a stacked chart, hence they sum up to the total

number of nodes. Values are taken from a single simulation

run, i.e., not averaged over multiple runs, in order to visu-

alize the algorithm’s reactions in more detail. 300 nodes

arrive in about 600 s, with uniformly distributed random

arrival times. As evident from the figure, the number of

reachable nodes is close to the total number of nodes, with

sudden decreases followed by increases, from time to time.

These fluctuations are due to switches to better routing

paths, which become possible as new nodes arrive.

Figure 8 depicts network lifetime under different con-

ditions, with Fig. 8a showing the algorithm’s performance

with respect to the total node count. In general, the per-

formance is unaffected by node count. Algorithm perfor-

mance with respect to the mains-powered node ratio is

shown in Fig. 8(b), and as evident, PSABR performs better

than the shortest-path routing overall, but it achieves the

best results in the 15–25 % range. For lower ratios, the

mains-powered nodes do not confer significant advantage

to PSABR. For higher ratios, coincidental exploitation of

the mains-powered nodes is high enough for the shortest-

path routing to achieve results similar to PSABR. Fig-

ure 8(c) shows the effect of node density on network

lifetime. In the other experiments, node density is around 1

node per 44 unit2 (note that the communication range is

around 20 units). Here, the lifetime is given for different

density values relative to the usual case, ranging from 60 %

Fig. 5 Number of reachable nodes over time (n ¼ 150, m ¼ 20%)

Table 3 Simulation parameters

Abbr. Parameter Value

n Node count 100, 150,..., 300

m Mains-powered node ratio 10, 15,...,40 %

q Node density 60, 80,...,140 %

r Sink count 1, 2, 4

T Max. hops between peers 3

Transmit power 0.0807 W

Receive power 0.0801 W

Initial energy 3 J

Data packet payload size 32 bytes

Data packet interval 60 s
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(approx. 1 node per 73 unit2) to 140 % (approx. 1 node per

31 unit2). As the density increases, the lifetime of the

network also increases because it is possible to eliminate

more battery-powered nodes on the paths to the sink.

Figure 8 also shows the experimental upper bound.

Given the simulation parameters (i.e., 32-byte packets

transmitted every 60 s, 0.0807 W transmission energy, and

3 J initial energy), the bound is the time required until the

energy of a battery-powered device drains completely,

assuming that it does not exchange control packets or

forward others’ data but only transmits its own data

packets. Note that the bound is not tight for cases where

battery-powered devices are required to forward data

(a) (b)

(c) (d)

Fig. 6 a Average in-degree of battery-powered nodes, b energy consumption of battery-powered nodes, c total residual energy of battery-

powered nodes, and d number of packets transmitted over time (n ¼ 150, m ¼ 20%)

Fig. 7 Node counts as new nodes arrive and the network is

constructed by PSABR (n ¼ 300, m ¼ 25%)

(a) (b) (c)

Fig. 8 Network lifetime (assuming lifetime is the time passed until half of the nodes become unreachable from the sink) depending on a node

count (m ¼ 20%; q ¼ 100%), b mains-powered node ratio (n ¼ 150; q ¼ 100%), and c density (n ¼ 150;m ¼ 20%)
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packets, such as with low node density or a low mains-

powered node ratio.

For the simulation results given in Fig. 8, we assume the

lifetime is the time passed until the half of the nodes

become unreachable as mentioned earlier. In Fig. 9, we

give the corresponding results if the lifetime is defined as

the time passed until the energy of a node depletes com-

pletely (first node death). Compared to the previous results

PSABR in this case exhibits similar behavior, that is, node

count does not have significant effect on the algorithm

performance but as the mains-powered node ratio or the

density increases, PSABR performs better. Shortest-path

routing, on the other hand, is mostly unaffected by the

change in node count, mains-powered node ratio and

density. Note that the lifetime values for this case are much

less than the upper bound. This is because for the given

parameters it is hard to achieve the case in which none of

the battery-powered nodes forwards any data. Still, in first

node death case, PSABR performs much better than the

shortest-path routing, as shown in the figures.

The number of control packets required to construct the

initial routing tree with respect to network size is presented

in Fig. 10. As shown in the figure, PSABR requires three to

five times more control packets for construction. This

scenario is expected because PSABR has a more compli-

cated control messaging scheme compared to shortest-path

routing. Regardless, the simulation results show that

PSABR increases the network lifetime (Fig. 8). It is nota-

ble that the increase in the control packet count is linear in

PSABR as well as in shortest-path routing, showing that

the algorithms are scalable for different network sizes.

The proposed algorithm is designed to run with an arbi-

trary number of sinks, and Fig. 11 presents how the algo-

rithms perform for various values of sink counts. As the

number of sinks increases, network lifetime increases for

both algorithms, as expected, but the performance difference

in PSABR is not obvious because it performs close to the

experimental upper bound even for the single-sink case. On

the other hand, the average path length between the nodes

and the sink almost halves as the number of sinks increases

from one to four. If fast delivery of data packets is important,

using multiple sink can still be considered.

In Fig. 12, we compare the number of messages

required for a mains-powered node to discover all of its

peers found by analysis as given in Sect. 4.4, with the

simulation results. In the comparison, we fixed the total

number of nodes to 300 and the mains-powered node ratio

to 20 % and we gave the results for different node densi-

ties, which are obtained by changing the size of the

deployment area. As shown in the figure, the values com-

puted according the equations are very close to the values

obtained from the simulations. The computed values are

higher, since the Eq. 2 is an upper bound on the expected

number of messages required for mains-powered node

discovery. Note that, these values are for a single mains-

powered node discovery, if all the nodes exist in the net-

work. But if the nodes join to the network gradually, as in

the rest of the simulations, earlier discoveries require less

number of messages, due to lower node density. Hence the

(a) (b) (c)

Fig. 9 Network lifetime (assuming lifetime is the time passed until the first node death) depending on a node count (m ¼ 20%;q ¼ 100%),

b mains-powered node ratio (n ¼ 150; q ¼ 100%), and c density (n ¼ 150;m ¼ 20%)

Fig. 10 Number of control packets required to construct the network

(m ¼ 20%)
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total number of messages required for mains-powered node

discovery would be much less than nCdiscover , given in

Sect. 4.4.

6 Conclusions

In this paper, we described a routing approach and pro-

posed a distributed routing algorithm (PSABR) based on

this approach, which is able to increase the lifetime of

WSNs where different power-source types for nodes exist.

Our PSABR algorithm first forms a backbone in a dis-

tributed fashion to relay the data packets. The backbone

consists of mains-powered nodes that are assumed to

coexist with battery-powered nodes.

In addition to the theoretical analysis of PSABR, we

also presented the simulation results. As the results show,

distinguishing between sensor nodes according to their

power source types increases network lifetime by as much

as 40 %. This result is achieved mainly by eliminating

battery-powered nodes as forwarding nodes. Although

PSABR has a higher control message overhead, we showed

that it is scalable with network size and is still more energy

efficient than a conventional routing approach that does not

distinguish between power-source types. Simulation results

also revealed that PSABR is able to react to node additions

rather quickly. We also presented the effects of node count,

mains-powered node ratio, density, and sink count, on

PSABR performance. In most cases, PSABR performs

close to the theoretical upper bound and much better than

conventional shortest-path routing, as far as the network

lifetime is concerned.

Currently, PSABR uses the number of battery-powered

nodes as the cost metric while forming the backbone. As

shown in Sect. 3, other cost metrics are possible, such as

the number of vertex disjoint paths, which is expected to

favor reliability. The effect of such cost metrics can be

explored in a future study.

In the proposed algorithm, all nodes are kept in idle

mode and the simulation results are obtained accordingly.

Putting non-backbone nodes into sleep mode could further

extend network lifetime [12, 29] and the benefits of such a

scheme could also be analyzed in a future study.

As described in Sect. 4, an intermediate battery-pow-

ered node is assumed to be dead if packet loss occurs and

an alternative route is established. On the other hand, a

packet loss does not always indicate a node failure but

might occur due to congestion. In a future study, distin-

guishing node failures and congestion, as in [6], can be

studied for the sake of better resource utilization.

Fig. 11 Lifetime and average

path length to sink for different

sink counts (n ¼ 150,

m ¼ 20%)

Fig. 12 Number of messages (MDM and MIM) required to discover

a peer (n ¼ 300, m ¼ 20%)

Wireless Netw

123



In its current form, PSABR establishes routing paths for a

given set of battery- and mains-powered nodes with fixed

locations. In [31], a method for using additional nodes to

cope with minimal exposure problem is proposed. A similar

approach, to reduce the burden on battery-powered nodes

can be employed in PSABR context, as a future work.
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