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Face Recognition

Pose (out-of-plane rotation)

Illumination

Expression

etc.
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Face Presentation Attack Detection

Problem
An unauthorised subject tries to get illegitimate access to a face
recognition system by presenting fake biometrics traits

Typical face presentation attack instruments:

Print

Replay

Mask

etc.
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Points of Attack to a Biometrics System

Scope of ISO/IEC 30107

Data Capture
Signal

Processing
Comparison Decision

Data Storage

Presentation

Attack
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Reference Modification

Sample
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Override
Signal
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Score
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Samples captured by a recognition system

(a) Genuine (bona fide) samples
(b),(c), and (d) Presentation Attacks
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The Conventional approach

Two-Class classification

Collect both bona fide and attack samples and train a binary classifier to
separate attacks from genuine samples

Drawbacks:

High cost of collecting attack samples: deep models!
Poor generalisation

Different imaging conditions
Novel attack types unseen during training!
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Our Approach

One-Class formulation

One-class classifiers can be trained using only positive samples!

Advantages:

Normal access data can be collected with relative ease whereas attack
data is demanding in terms of manpower resource
Learns from genuine data ⇒ not biased towards specific attack types!

S. R. Arashloo, J. Kittler and W. Christmas, “An Anomaly Detection Approach to Face Spoofing Detection: A New Formulation
and Evaluation Protocol,” in IEEE Access, vol. 5, pp. 13868-13882, 2017.
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Client-Specific Modelling

The common approach: Subject-Independent

A single classifier is trained to detect PA w.r.t. all subjects

Our approach:

Deploying client-specific data for model training

Subject-specific score distributions motivate a distinct threshold for
each client

S. Fatemifar, S. R. Arashloo, M. Awais, J. Kittler, “Client-specific anomaly detection for face presentation attack detection,
Pattern Recognition,” Volume 112, 2021, 107696.
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Client-specific vs. client-independent modelling

Dataset Client-Specific Client-Independent
Video-Based Scenario

APCER BPCER HTER APCER BPCER HTER

Replay-Attack 0 0 0 9.54 9.14 8.45

Replay-Mobile 14.32 3.96 8.58 20.98 25.78 17.63

Rose-Youtu 17.33 10.00 8.13 20.00 0 11.48

Frame-Based Scenario
Replay-Attack 1.85 0 1.46 13.23 14.19 12.75

Replay-Mobile 23.78 5.69 13.56 32.11 12.43 17.43

Rose-Youtu 31.25 15.06 14.69 20.60 15.29 17.95
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Fixed-rule Classifier Fusion

J. Kittler, M. Hatef, R. P. W. Duin and J. Matas, “On combining classifiers,” in IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 20, no. 3, pp. 226-239, March 1998.
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Diversity in Representations and Classifiers

Multiple regions

Multiple Deep Features:

GoogleNet

ResNet50

VGG16

Multiple One-Class Learners:

Support Vector Data Description

Mahalanobis distance (MD)

Gaussian mixture model

7(regions)×3(features) ×3(OCCs)

Table: Sum-rule vs. single best classifier
in terms of HTER (%).

Single Best Classifier Sum Rule
Replay-Mobile 13.14 12.19
Replay-Attack 2.49 1.57
Rose-Youtu 11.73 11.21

S. Fatemifar, M. Awais, S. R. Arashloo and J. Kittler, “Combining Multiple one-class Classifiers for Anomaly based Face Spoofing
Attack Detection,” 2019 International Conference on Biometrics (ICB), Crete, Greece, 2019, pp. 1-7.
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One-Class Fisher Discriminant Analysis

The Fisher classifier:

F (β) =
β⊤Σbβ

β⊤Σwβ

Σb: between-class scatter matrix
Σw : within-class scatter matrix
β: Fisher discriminant

Originally developed for two-class
classification but can be adapted to a
one-class setting!
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Regression-Based Formulation

Not convenient to impose regularisation on the discriminant for
improved generalisation performance

Not straightforward to extend to kernel space

Regularised regression-based reformulation in the kernel space

min
θ

n∑
i=1

(1− θ⊤υ(xi ))
2 + σ ∥θ∥22

Tikhonov regularisation

The dual problem is

max
ω

−ω⊤Kω − σω⊤ω + 2ω⊤1

K: kernel matrix

S. R. Arashloo and J. Kittler, “Robust One-Class Kernel Spectral Regression,” in IEEE Transactions on Neural Networks and
Learning Systems, vol. 32, no. 3, pp. 999-1013, March 2021.
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Kernel Fusion: sum rule

Fusing multiple representations via a sum rule:

K = K1 +K2 + · · ·+KJ

Diversity in the representations:
Multiple Regions

Multiple Deep Features

GoogleNet
ResNet50
VGG16
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Kernel Fusion: Unseen attack evaluation protocol

Comparison on the Replay-Attack dataset in terms of AUC

Method AUC (%)
OCSVM+IMQ [7] 80.76
OCSVM+BSIF [7] 81.94
NN4+LBP [9] 91.26
GMM+LBP [9] 90.06
OCSVM+LBP [9] 87.90
AE+LBP [9] 86.12
DTL [11] 99.80
One-Class MD [10] 99.75
SVDD 97.50
KPCA 100
GP 100

Our work 100

Comparison on the MSU-MFSD dataset in terms of AUC

Method AUC (%)
OCSVM+IMQ [7] 67.77
OCSVM+BSIF [7] 75.64
NN4+LBP [9] 81.59
GMM+LBP [9] 81.34
OCSVM+LBP [9] 84.47
AE+LBP [9] 87.63
DTL [11] 93.00
SVDD 97.5
KPCA 100
GP 100

Our work 100

Comparison on the OULU-NPU dataset protocol IV (%)

Method APCER BPCER ACER
Massy HNU [78] 35.8±55.5 8.3±4.1 22.1±17.6
GRADIANT [78] 5.0±4.5 15.0±7.1 10.0±5.0
FAS-BAS [20] 9.3±5.6 10.4±6.0 9.8±6.0
LBP-SVM [62] 41.67±27.03 55.0±21.21 48.33±6.07
IQM-SVM [62] 34.17±25.89 39.17±23.35 36.67±12.13
DeepPixBiS [62] 36.67±29.67 13.33±16.75 25.0±12.67
the work in [77] 0.9±1.8 4.2±5.3 2.6±2.8
SVDD 25.0±17.32 8.33±6.83 16.67±10.68
KPCA 13.33±14.72 11.67±11.25 12.5±12.94
GP 15.83±16.25 2.5±4.18 9.17±8.76

Our work 11.67±13.66 0.83±2.04 6.25±6.85

Comparison on the Replay-Mobile dataset in terms of HTER

Method HTER (%)
GoogleNet+SVDD [10] 14.34
ResNet50+SVDD [10] 21.76
VGG16+SVDD [10] 18.78
GoogleNet+MD [10] 13.70
ResNet50+MD [10] 21.81
VGG16+MD [10] 19.84
GoogleNet+GMM [10] 14.21
ResNet50+GMM [10] 21.53
VGG16+GMM [10] 18.05
SVDD 16.14
KPCA 17.05
GP 16.36

Our work 11.88

S. R. Arashloo, “Unseen Face Presentation Attack Detection Using Sparse Multiple Kernel Fisher Null-Space,” in IEEE Transactions
on Circuits and Systems for Video Technology, vol. 31, no. 10, pp. 4084-4095, Oct. 2021.

Shervin R. Arashloo Face Spoofing & Deepfake Detection 16 / 28



Multiple Kernel Learning

The idea:
Learn combination weights instead of using fixed equal weights

Objective function

maxω −ω⊤Kω − δω⊤ω + 2ω⊤1

min
β

maxω −ω⊤(
∑
j

βjKj)ω − δω⊤ω + 2ω⊤1

s.t. β ≥ 0,R(β)

kernel weights

Different possibilities for sparsity regularisation R(β):

ℓp-norm ∥β∥pp ≤ 1; p ≥ 1

mixed (r , p)-norm
∥∥∥ββ⊤

∥∥∥
r ,p

≤ 1; r , p ≥ 1

Both regularisations lead to convex optimisation problems!

green: unit ℓp -norm balls
for p ∈ {1, 2, 4, 8};
green&blue: unit
(r, p)-norm balls for
r, p ∈ {1, 2, 4, 8}
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ℓp and (r , p)-norm Evaluation Results

Sample kernel weights for ℓp regularisation.

Unseen face PAD results on protocol IV of the Oulu-NPU
dataset.

Method ACER (mean ± std) %
Product-FN 4.5 ± 5.3
Average-FN 5.0 ± 3.9
Product-GP 5.8 ± 6.4
Average-GP 6.2 ± 4.4
Product-KPCA 4.5 ± 5.3
Average-KPCA 5.4 ± 3.6
MK-SVDD 7.1 ± 6.2
MK-OCSVM 7.9 ± 6.4
Slim-MK-SVDD 6.2 ± 4.4
Slim-MK-OCSVM 6.2 ± 4.4
SAPLC [45] 9.3 ± 4.4
OCA-FAS [46] 4.1 ± 2.7
The work in [47] 3.7 ± 2.1
The work in [48] 9.8 ± 4.2

ℓp MK-FN 3.3 ± 3.4

(r, p)-norm MK-FN 2.5 ± 2.2

- S. R. Arashloo, “Matrix-Regularized One-Class Multiple Kernel Learning for Unseen Face Presentation Attack Detection,” in
IEEE Transactions on Information Forensics and Security, vol. 16, pp. 4635-4647, 2021.
- S. R. Arashloo, “One-Class Classification Using ℓp-Norm Multiple Kernel Fisher Null Approach,” in IEEE Transactions on Image
Processing, vol. 32, pp. 1843-1856, 2023.
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Face Manipulation (Deepfake) Detection

Entirely or partially modified photorealistic face images.

Conventional face recognition systems are vulnerable to Deepfakes and
may confuse Deepfakes with genuine images!
Deepfakes may have harmful impacts on

Politics
Economy
Erosion of public trust
etc.

H. Dang, F. Liu, J. Stehouwer, X. Liu and A. K. Jain, “On the Detection of Digital Face Manipulation,” in 2020 IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 2020, pp. 5780-5789
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Real or Fake?
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One-Class Classification for Deepfake Detection

Genuine samples considered as
“normal” samples

Deepfakes as “anomalies” deviating
from normality

One-Class Classification may be
deployed to learn the support of
normal observations

Support Vector Data Description (SVDD)

min
r,C,ε

E(r , C, ε) = r2 + c1
∑
i

εi + c2
∑
l

εl

s.t. ∥oi − C∥22 ≤ r2 + εi , , εi ≥ 0,∀i

∥ol − C∥22 ≥ r2 − εl , εl ≥ 0, ∀l

Radius
++

+ ++
++

+ ++
+ +

−
−
− − − −

−
−

−
−

− − −
−

−
+

–

error

error

Tax, D.M., Duin, R.P., “Support Vector Data Description,” Machine Learning 54, 45-66, 2004
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Our approach: Large-margin ℓp-SVDD

Primal:

min
r ,C,ε,ρ

E = r2 + c1
∑
i

εpi + c2
∑
l

εpl −νρ2

s.t. ∥oi − C∥22 ≤ r2−ρ2 + εi , ∥ol − C∥22 ≥ r2+ρ2 − εl ,

εi ≥ 0, εl ≥ 0, ∀i , l

Dual:

min
β

c̄1 ∥β ⊙ (1+ t)∥qq + c̄2 ∥β ⊙ (1− t)∥qq +(β ⊙ t)⊤K(β ⊙ t)

s.t. β ≥ 0, 1⊤β = ν, t⊤β = 1

Optimised by applying a new Frank-Wolfe-based approach to the dual
problem

Probability of misclassification shown to be theoretically reduced based on
Rademacher complexities
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Our approach: Large-margin ℓp-SVDD

++
++

++

+

+

-

+

-
---

-

-
-

-

--

-

Margin
Margin

Violating the margin

Violating the margin

Violating the decision boundary

Violating the decision boundary

Why large-margin?

Feels safest

Decreased probability of
misclassification

Empirically better performance

Why ℓp?
∥x∥p = (|x1|p + |x2|p + · · ·+ |xd |p)1/p

Penalise errors non-linearly

Free parameter for penalising errors
of different magnitudes

S.R. Arashloo, “Large-margin multiple kernel ℓp-SVDD using Frank–Wolfe algorithm for novelty detection,” Pattern Recognition,
Volume 148, 2024, 110189.
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Learning Classifier Fusion Weights Subject to Sparsity

f1(x) f2(x) · · · fR(x)

Ensemble Training

h(x) =
∑
i

wi fi (x)
min
w

∑
i

max(0, 1− yi f
⊤
i w)

s.t. ∥w∥p ≤ 1w

One-Class Classification

Normal Outlier

Key parameter: p

S. Nourmohammadi, S. R. Arashloo, J. Kittler, “ℓp-norm constrained one-class classifier combination,” Information Fusion, Vol.
114, 2025, 102700.
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Sparsity-Induced Classifier Fusion: Insights

Opinions of multiple experts combined without a careful manual
pre-selection of base learners!

Special cases:

p → ∞ yields a uniform weight vector that corresponds to the sum
rule for classifier fusion

p → 1+ chooses only the most confident classifier, i.e. the one with
the maximum average margin

p = 2 yields the conventional soft-margin linear SVM

Varying p in (1,∞) sweeps the entire spectrum of base learners,
starting with the single most confident one to the case of uniformly
weighting all classifiers
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FaceForensics++ dataset

The data has been gathered from Youtube and all videos contain a
trackable mostly frontal face without occlusions

1000 original video sequences, manipulated with 4 automated face
manipulation methods: Deepfakes, Face2Face, FaceSwap and
NeuralTextures

binary masks are available so the data can be used for image and
video classification as well as segmentation

A. Rössler et al., “FaceForensics++: Learning to Detect Manipulated Facial Images”, International Conference on Computer
Vision (ICCV), 2019.
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Representations & Classifiers

Multiple regions

Filtered Fourier spectrums

Features: 3 pre-trained CNNs (AlexNet, Inception-v3 and DarkNet-19) ⇒ 9 sets of features

Base classifiers: SVDD, GP, KPCA, GMM

In total 36 classifiers!

C. Miao, Z. Tan, Q. Chu, N. Yu and G. Guo, “Hierarchical Frequency-Assisted Interactive Networks for Face Manipulation
Detection,” in IEEE Transactions on Information Forensics and Security, vol. 17, pp. 3008-3021, 2022.
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FaceForensics++ dataset: leave-one-type-out detection
results

Video-level unknown/unseen face manipulation detection on the FaceForensics++ dataset (C23 quality) (AUC %)

Dataset DF FF FS NT
LTW 92.70 80.20 64.00 77.30
UIA-ViT 96.70 94.20 70.70 82.80

F2-Trans-B 98.92 94.08 – –
3D Decom. & Comp. 99.45 94.64 83.67 79.22

FD2Net 98.51 89.01 68.60 71.11

Large-margin 100 96.60 99.80 97.50

Classifier fusion 99.90 96.20 99.90 97.90

Video-level unknown/unseen face manipulation detection on the FaceForensics++ dataset (C40 quality) (AUC %)

Dataset DF FF FS NT
LTW 75.60 72.40 68.10 60.80

F2-Trans-B 88.77 77.73 – –
HFI-Net 86.80 73.01 55.00 –
Constr. learning 81.80 72.50 69.90 62.60
Trans. & adaptation 81.80 68.60 71.00 58.20

Large-margin 99.00 87.70 99.40 91.70

Classifier fusion 99.20 73.80 97.20 74.20

Both methods outperform existing approaches with the large-margin method
demonstrating an edge on low-quality videos!

Shervin R. Arashloo Face Spoofing & Deepfake Detection 28 / 28


	Face Presentation Attack Detection
	Two-Class vs. One-Class Formulation
	Client-Specific Modelling
	Classifier Fusion
	Kernel Fusion

	Face Manipulation (Deepfake) Detection
	One-Class Classification for Deepfake Detection
	Large-margin Classification
	Sparsity-Induced Classifier Fusion


