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Importance of neighborhood

= Both zebras and dalmatians have black and white pixels in
similar numbers.

= | he difference between the two is the characteristic

appearance of small group of pixels rather than individual
pixel values.

Adapted from Pinar Duygulu, Bilkent University
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Outline

= We will discuss neighborhood operations that
work with the values of the image pixels in the
neighborhood.

= Spatial domain filtering

= Frequency domain filtering
= Image enhancement

= Finding patterns
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Spatial domain filtering

= What is the value of the

3

3 center pixel?

3

4 = What assumptions are you
3 making to infer the center

value?
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Spatial domain filtering

= Some neighborhood operations work with
» the values of the image pixels in the neighborhood, and

» the corresponding values of a subimage that has the
same dimensions as the neighborhood.

= The subimage is called a filter (or mask, kernel,
template, window).

= The values in a filter subimage are referred to as
coefficients, rather than pixels.
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Spatial domain filtering

= Operation: modify the pixels in an image based on
some function of the pixels in their neighborhood.

= Simplest: linear filtering (replace each pixel by a
linear combination of its neighbors).

= Linear spatial filtering is often referred to as
“convolving a mask with an image”.

s Filter masks are sometimes called convolution
masks (or convolution kernels).
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Spatial domain filtering

= Filtering process:
» Masks operate on a neighborhood of pixels.
» The filter mask is centered on a pixel.

» The mask coefficients are multiplied by the pixel values
in its neighborhood and the products are summed.

k k
Gli,j1= > Y Hlu,v]F[i+ u,j+ v]

u=—kv=-—k%
» The result goes into the corresponding pixel position in
the output image.

= This process is repeated by moving the filter mask from
pixel to pixel in the image.
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Spatial domain filtering

= This is called the cross-correlation operation and is

denoted by G=HQF

H[-1,-1]H[-1,0]{H[-1,1]
F[r,c] G[r,C]

Mask overlaid with H[O,-1]| H[O,0] | H[O,1]
image at [r,c]

H[1,-1]| H[1,0] | H[1,1]

Input image Filter Output image

= Be careful about indices, image borders and
padding during implementation.
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Smoothing spatial filters

= Often, an image is composed of

» some underlying ideal structure, which we want to
detect and describe,

» together with some random noise or artifact, which we
would like to remove.

= Smoothing filters are used for blurring and for
noise reduction.

= Linear smoothing filters are also called averaging
filters.
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Smoothing spatial filters

O |
=

Averaging (mean) filter Weighted average
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Smoothing spatial filters
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Smoothing spatial filters
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Smoothing spatial filters

= Common types of noise:

» Salt-and-pepper noise:
contains random
occurrences of black and
white pixels.

» Impulse noise: contains
random occurrences of
white pixels.

= (Gaussian noise: variations
in intensity drawn from a
Gaussian normal
distribution.

Adapted from Linda Shapiro, U of Washington | -Impulse noise

Gaussian noise
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Adapted from Linda Shapiro,
U of Washington
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Smoothing spatial filters
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FIGURE 3.35 (a) Original image, of size 500 = 300 pixels (b)—{f) Results of smoothing
with square averaging filter masks of sizes n = 3,5,9,15, and 35, respectively. The black
squares at the top are of sizes 3, 5,9, 15,25, 35,45, and 55 pixels, respectively; their bor-
ders are 25 pixels apart. The letters at the bottom range in size from 10 to 24 points, in
increments of 2 points; the large letter at the top is 60 points. The vertical bars are 5 pix-
els wide and 100 pixels high; their separation is 20 pixels. The diameter of the circles is
25 pixels, and their borders are 15 pixels apart; their gray levels range from 0%. to 100%
black in increments of 20%. The background of the image is 109 black. The noisy rec-
tangles are of size 50 = 120 pixels.

Adapted from Gonzales and Woods
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Smoothing spatial filters

a b ¢

FIGURE 3.36 (a) Image from the Hubble Space Telescope. (b) Image processed by a 15 X 15 averaging mask.
(c) Result of thresholding (b). (Original image courtesy of NASA.)

Adapted from Gonzales and Woods
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Smoothing spatial filters

i
e 1L

Figure 5.7: Ideal image of checkerboard (top left) with pixel values of 0 in the black squares
and 255 in the white squares; (top center) image with added (zaussian noise of standard
deviation 30; (top right) pixel values in a horizontal row 100 from the top of the noisy image;
(bottom center) noise averaged using a 5x5 neighborhood centered at each pixel; (bottom
right) pixels across image row 100 from the top. Adapted from Shapiro and Stockman
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Smoothing spatial filters

original
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Smoothing spatial filters

original
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Blurred (filter
applied in both
dimensions).

Adapted from Darrell and Freeman, MIT
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Smoothing spatial filters
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Smoothing spatial filters

S gt T TG (T, y) = v:-;p(_'ﬂ:.fy.)
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A weighted average that
weighs pixels at its center
much more strongly than
its boundaries.

potd.

2D Gaussian filter

Adapted from Martial Hebert, CMU
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Smoothing spatial filters

= If ois small: smoothing
will have little effect.

Effectol o

0.4

035 |

s If ois larger: neighboring
pixels will have larger wal
weights resulting in
consensus of the
neighbors.

0.2r

015 F
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= If ois very large: details
will disappear along with
the noise.

Adapted from Martial Hebert, CMU
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Smoothing spatial filters

Result of blurring

using a uniform

Result of
local model.

blurring using a
Gaussian filter.
Produces a set of

narrow horizontal

and vertical bars —
ringing effect.

Adapted from David Forsyth, UC Berkeley
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Smoothing spatial filters

Image
Noise

Idef‘-l Image  Noise process Gaussian 1.i.d. ( "white” ) noise:
)= flz,y) + nlz,y) n(z,y) ~N(u, o)

Adapted from Martial Hebert, CMU
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Smoothing spatial filters

Mo smoothing G=7 c=4
Adapted from Martial Hebert, CMU
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Order-statistic filters

= Order-statistic filters are nonlinear spatial filters
whose response is based on

» ordering (ranking) the pixels contained in the image
area encompassed by the filter, and then

» replacing the value of the center pixel with the value
determined by the ranking result.
= The best-known example is the median filter.

= It is particularly effective in the presence of
impulse or salt-and-pepper noise, with
considerably less blurring than linear smoothing
filters.

CS 484, Spring 2007 ©2007, Selim Aksoy
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Order-statistic filters
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Order-statistic filters
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Salt-and-pepper noise

X7

Adapted from Linda Shapiro,
U of Washington
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Order-statistic filters

FIGURE 3.37 (a) X-ray image of circuit board corrupted by salt-and-pepper noise. (b) Noise reduction with a
3 X 3 averaging mask. (¢) Noise reduction with a 3 X 3 median filter. (Original image courtesy of Mr. Joseph
E. Pascente, Lixi, Inc.)

Adapted from Gonzales and Woods
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Order-statistic filters

Figure 5.8: (Left) Noisy checkerboard image; (center) result of setting output pixel to the
median value of a Hx5 neighborhood centered at the pixel; (right) display of pixels across
image row 100 from the top; compare to Figure 5.7.

Adapted from Shapiro and Stockman
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Order-statistic filters

Effect of median filter on salt and pepper noise
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Sharpening spatial filters

= Objective of sharpening is to highlight or enhance
fine detail in an image.

= Since smoothing (averaging) is analogous to
integration, sharpening can be accomplished by
spatial differentiation.

= First-order derivative of 1D function f(x)
f(x+1) — f(x).

= Second-order derivative of 1D function f(x)
f(x+1) — 2f(x) + f(x-1).
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Sharpening spatial filters
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Sharpening spatial filters

s Observations:

» First-order derivatives generally produce thicker edges
in an image.

» Second-order derivatives have a stronger response to
fine detail (such as thin lines or isolated points).

= First-order derivatives generally have a stronger
response to a gray level step.

» Second-order derivatives produce a double response at
step changes in gray level.
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Sharpening spatial filters

e Laplacian of a function (image) f(x,y) of two variables

r and y : :
ox? Oy’
IS a second-order derivative operator.

ab
0 1 0 1 i 1 c d
FIGURE 3.39
(a) Filter mask
) 4 ) | 8 1 used to

implement the
digital Laplacian,
as defined in

0 1 0 1 1 1 Eq. (3.7-4).

(b) Mask used to
implement an
extension of this

0 -1 0 -1 -1 -1 equation that
includes the
diagonal

-1 4 -1 1 g 1 neighbors. (¢) and

(d) Two other
implementations
of the Laplacian.

0 -1 0 -1 -1 -1
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Sharpening spatial filters

ab
c d

FIGURE 3.40

(a) Image of the
Narth Pole of the
moon.

(b) Laplacian-
filtered image.
(c) Laplacian
image scaled for
display purposes.
(d) Image
enhanced by
using Eq. (3.7-3).
(Original image
courtesy of
NASA.)

Adapted from Gonzales and Woods
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Sharpening spatial filters

e For a function f(z,y), the gradient at (x,y) is defined

das
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where 1ts magnitude can be used to implement first-
order derivatives.
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Robert’s cross-gradient operators

Sobel gradient operators
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Sharpening spatial filters

2.0

Sharpened

original -
original

High-boost filtering

Adapted from Darrell and Freeman, MIT
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Sharpening spatial filters

Adapted from Darrell and Freeman, MIT
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Sharpening spatial filters

hetore after

Adapted from Darrell and Freeman, MIT
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Combining spatial enhancement methods
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FIGURE 3 46

(b). (d) Sob
(a).
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IGURE 3.46
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