Bayesian Decision Theory

Selim Aksoy

Department of Computer Engineering
Bilkent University
saksoy@cs.bilkent.edu.tr

CS 551, Fall 2014

Bayesian Decision Theory

- Bayesian Decision Theory is a fundamental statistical approach that quantifies the tradeoffs between various decisions using probabilities and costs that accompany such decisions.
- First, we will assume that all probabilities are known.
- Then, we will study the cases where the probabilistic structure is not completely known.

Fish Sorting Example Revisited

- State of nature is a random variable.
- Define w as the type of fish we observe (state of nature, class) where
- $w=w_{1}$ for sea bass,
- $w=w_{2}$ for salmon.
- $P\left(w_{1}\right)$ is the a priori probability that the next fish is a sea bass.
- $P\left(w_{2}\right)$ is the a priori probability that the next fish is a salmon.

Prior Probabilities

- Prior probabilities reflect our knowledge of how likely each type of fish will appear before we actually see it.
- How can we choose $P\left(w_{1}\right)$ and $P\left(w_{2}\right)$?
- Set $P\left(w_{1}\right)=P\left(w_{2}\right)$ if they are equiprobable (uniform priors).
- May use different values depending on the fishing area, time of the year, etc.
- Assume there are no other types of fish

$$
P\left(w_{1}\right)+P\left(w_{2}\right)=1
$$

(exclusivity and exhaustivity).

Making a Decision

- How can we make a decision with only the prior information?

$$
\text { Decide } \begin{cases}w_{1} & \text { if } P\left(w_{1}\right)>P\left(w_{2}\right) \\ w_{2} & \text { otherwise }\end{cases}
$$

-What is the probability of error for this decision?

$$
P(\text { error })=\min \left\{P\left(w_{1}\right), P\left(w_{2}\right)\right\}
$$

Class-Conditional Probabilities

- Let's try to improve the decision using the lightness measurement x.
- Let x be a continuous random variable.
- Define $p\left(x \mid w_{j}\right)$ as the class-conditional probability density (probability of x given that the state of nature is w_{j} for $j=1,2$).
- $p\left(x \mid w_{1}\right)$ and $p\left(x \mid w_{2}\right)$ describe the difference in lightness between populations of sea bass and salmon.

Class-Conditional Probabilities

Figure 1: Hypothetical class-conditional probability density functions for two classes.

Posterior Probabilities

- Suppose we know $P\left(w_{j}\right)$ and $p\left(x \mid w_{j}\right)$ for $j=1,2$, and measure the lightness of a fish as the value x.
- Define $P\left(w_{j} \mid x\right)$ as the a posteriori probability (probability of the state of nature being w_{j} given the measurement of feature value x).
- We can use the Bayes formula to convert the prior probability to the posterior probability

$$
P\left(w_{j} \mid x\right)=\frac{p\left(x \mid w_{j}\right) P\left(w_{j}\right)}{p(x)}
$$

where $p(x)=\sum_{j=1}^{2} p\left(x \mid w_{j}\right) P\left(w_{j}\right)$.

Making a Decision

- $p\left(x \mid w_{j}\right)$ is called the likelihood and $p(x)$ is called the evidence.
- How can we make a decision after observing the value of x ?

$$
\text { Decide } \begin{cases}w_{1} & \text { if } P\left(w_{1} \mid x\right)>P\left(w_{2} \mid x\right) \\ w_{2} & \text { otherwise }\end{cases}
$$

- Rewriting the rule gives

$$
\text { Decide } \begin{cases}w_{1} & \text { if } \frac{p\left(x \mid w_{1}\right)}{p\left(x \mid w_{2}\right)}>\frac{P\left(w_{2}\right)}{P\left(w_{1}\right)} \\ w_{2} & \text { otherwise }\end{cases}
$$

- Note that, at every $x, P\left(w_{1} \mid x\right)+P\left(w_{2} \mid x\right)=1$.

Probability of Error

-What is the probability of error for this decision?

$$
P(\text { error } \mid x)= \begin{cases}P\left(w_{1} \mid x\right) & \text { if we decide } w_{2} \\ P\left(w_{2} \mid x\right) & \text { if we decide } w_{1}\end{cases}
$$

- What is the average probability of error?

$$
P(\text { error })=\int_{-\infty}^{\infty} p(\text { error }, x) d x=\int_{-\infty}^{\infty} P(\text { error } \mid x) p(x) d x
$$

- Bayes decision rule minimizes this error because

$$
P(\text { error } \mid x)=\min \left\{P\left(w_{1} \mid x\right), P\left(w_{2} \mid x\right)\right\} .
$$

Bayesian Decision Theory

- How can we generalize to
- more than one feature?
- replace the scalar x by the feature vector x
- more than two states of nature?
- just a difference in notation
- allowing actions other than just decisions?
- allow the possibility of rejection
- different risks in the decision?
- define how costly each action is

Bayesian Decision Theory

- Let $\left\{w_{1}, \ldots, w_{c}\right\}$ be the finite set of c states of nature (classes, categories).
- Let $\left\{\alpha_{1}, \ldots, \alpha_{a}\right\}$ be the finite set of a possible actions.
- Let $\lambda\left(\alpha_{i} \mid w_{j}\right)$ be the loss incurred for taking action α_{i} when the state of nature is w_{j}.
- Let x be the d-component vector-valued random variable called the feature vector.

Bayesian Decision Theory

- $p\left(\mathbf{x} \mid w_{j}\right)$ is the class-conditional probability density function.
- $P\left(w_{j}\right)$ is the prior probability that nature is in state w_{j}.
- The posterior probability can be computed as

$$
P\left(w_{j} \mid \mathbf{x}\right)=\frac{p\left(\mathbf{x} \mid w_{j}\right) P\left(w_{j}\right)}{p(\mathbf{x})}
$$

where $p(\mathbf{x})=\sum_{j=1}^{c} p\left(\mathbf{x} \mid w_{j}\right) P\left(w_{j}\right)$.

Conditional Risk

- Suppose we observe x and take action α_{i}.
- If the true state of nature is w_{j}, we incur the loss $\lambda\left(\alpha_{i} \mid w_{j}\right)$.
- The expected loss with taking action α_{i} is

$$
R\left(\alpha_{i} \mid \mathbf{x}\right)=\sum_{j=1}^{c} \lambda\left(\alpha_{i} \mid w_{j}\right) P\left(w_{j} \mid \mathbf{x}\right)
$$

which is also called the conditional risk.

Minimum-Risk Classification

- The general decision rule $\alpha(\mathrm{x})$ tells us which action to take for observation x.
- We want to find the decision rule that minimizes the overall risk

$$
R=\int R(\alpha(\mathbf{x}) \mid \mathbf{x}) p(\mathbf{x}) d \mathbf{x}
$$

- Bayes decision rule minimizes the overall risk by selecting the action α_{i} for which $R\left(\alpha_{i} \mid \mathbf{x}\right)$ is minimum.
- The resulting minimum overall risk is called the Bayes risk and is the best performance that can be achieved.

Two-Category Classification

- Define
- α_{1} : deciding w_{1},
- α_{2} : deciding w_{2},
- $\lambda_{i j}=\lambda\left(\alpha_{i} \mid w_{j}\right)$.
- Conditional risks can be written as

$$
\begin{aligned}
& R\left(\alpha_{1} \mid \mathbf{x}\right)=\lambda_{11} P\left(w_{1} \mid \mathbf{x}\right)+\lambda_{12} P\left(w_{2} \mid \mathbf{x}\right), \\
& R\left(\alpha_{2} \mid \mathbf{x}\right)=\lambda_{21} P\left(w_{1} \mid \mathbf{x}\right)+\lambda_{22} P\left(w_{2} \mid \mathbf{x}\right) .
\end{aligned}
$$

Two-Category Classification

- The minimum-risk decision rule becomes

$$
\text { Decide } \begin{cases}w_{1} & \text { if }\left(\lambda_{21}-\lambda_{11}\right) P\left(w_{1} \mid \mathbf{x}\right)>\left(\lambda_{12}-\lambda_{22}\right) P\left(w_{2} \mid \mathbf{x}\right) \\ w_{2} & \text { otherwise }\end{cases}
$$

- This corresponds to deciding w_{1} if

$$
\frac{p\left(\mathbf{x} \mid w_{1}\right)}{p\left(\mathbf{x} \mid w_{2}\right)}>\frac{\left(\lambda_{12}-\lambda_{22}\right)}{\left(\lambda_{21}-\lambda_{11}\right)} \frac{P\left(w_{2}\right)}{P\left(w_{1}\right)}
$$

\Rightarrow comparing the likelihood ratio to a threshold that is independent of the observation x .

Minimum-Error-Rate Classification

- Actions are decisions on classes (α_{i} is deciding w_{i}).
- If action α_{i} is taken and the true state of nature is w_{j}, then the decision is correct if $i=j$ and in error if $i \neq j$.
- We want to find a decision rule that minimizes the probability of error.

Minimum-Error-Rate Classification

- Define the zero-one loss function

$$
\lambda\left(\alpha_{i} \mid w_{j}\right)=\left\{\begin{array}{ll}
0 & \text { if } i=j \\
1 & \text { if } i \neq j
\end{array} \quad i, j=1, \ldots, c\right.
$$

(all errors are equally costly).

- Conditional risk becomes

$$
\begin{aligned}
R\left(\alpha_{i} \mid \mathbf{x}\right) & =\sum_{j=1}^{c} \lambda\left(\alpha_{i} \mid w_{j}\right) P\left(w_{j} \mid \mathbf{x}\right) \\
& =\sum_{j \neq i} P\left(w_{j} \mid \mathbf{x}\right) \\
& =1-P\left(w_{i} \mid \mathbf{x}\right)
\end{aligned}
$$

Minimum-Error-Rate Classification

- Minimizing the risk requires maximizing $P\left(w_{i} \mid \mathbf{x}\right)$ and results in the minimum-error decision rule

$$
\text { Decide } w_{i} \text { if } P\left(w_{i} \mid \mathbf{x}\right)>P\left(w_{j} \mid \mathbf{x}\right) \quad \forall j \neq i
$$

- The resulting error is called the Bayes error and is the best performance that can be achieved.

Minimum-Error-Rate Classification

Figure 2: The likelihood ratio $p\left(\mathbf{x} \mid w_{1}\right) / p\left(\mathbf{x} \mid w_{2}\right)$. The threshold θ_{a} is computed using the priors $P\left(w_{1}\right)=2 / 3$ and $P\left(w_{2}\right)=1 / 3$, and a zero-one loss function. If we penalize mistakes in classifying w_{2} patterns as w_{1} more than the converse, we should increase the threshold to θ_{b}.

Discriminant Functions

- A useful way of representing classifiers is through discriminant functions $g_{i}(\mathbf{x}), i=1, \ldots, c$, where the classifier assigns a feature vector x to class w_{i} if

$$
g_{i}(\mathbf{x})>g_{j}(\mathbf{x}) \quad \forall j \neq i .
$$

- For the classifier that minimizes conditional risk

$$
g_{i}(\mathbf{x})=-R\left(\alpha_{i} \mid \mathbf{x}\right) .
$$

- For the classifier that minimizes error

$$
g_{i}(\mathbf{x})=P\left(w_{i} \mid \mathbf{x}\right) .
$$

Discriminant Functions

- These functions divide the feature space into c decision regions ($\mathcal{R}_{1}, \ldots, \mathcal{R}_{c}$), separated by decision boundaries.
- Note that the results do not change even if we replace every $g_{i}(\mathbf{x})$ by $f\left(g_{i}(\mathbf{x})\right)$ where $f(\cdot)$ is a monotonically increasing function (e.g., logarithm).
- This may lead to significant analytical and computational simplifications.

The Gaussian Density

- Gaussian can be considered as a model where the feature vectors for a given class are continuous-valued, randomly corrupted versions of a single typical or prototype vector.
- Some properties of the Gaussian:
- Analytically tractable.
- Completely specified by the 1st and 2nd moments.
- Has the maximum entropy of all distributions with a given mean and variance.
- Many processes are asymptotically Gaussian (Central Limit Theorem).
- Linear transformations of a Gaussian are also Gaussian.
- Uncorrelatedness implies independence.

Univariate Gaussian

- For $x \in \mathbb{R}$:

$$
\begin{aligned}
p(x) & =N\left(\mu, \sigma^{2}\right) \\
& =\frac{1}{\sqrt{2 \pi} \sigma} \exp \left[-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^{2}\right]
\end{aligned}
$$

where

$$
\begin{aligned}
\mu & =E[x]=\int_{-\infty}^{\infty} x p(x) d x \\
\sigma^{2} & =E\left[(x-\mu)^{2}\right]=\int_{-\infty}^{\infty}(x-\mu)^{2} p(x) d x
\end{aligned}
$$

Univariate Gaussian

Figure 3: A univariate Gaussian distribution has roughly 95\% of its area in the range $|x-\mu| \leq 2 \sigma$.

Multivariate Gaussian

- For $\mathrm{x} \in \mathbb{R}^{d}$:

$$
\begin{aligned}
p(\mathbf{x}) & =N(\boldsymbol{\mu}, \boldsymbol{\Sigma}) \\
& =\frac{1}{(2 \pi)^{d / 2}|\boldsymbol{\Sigma}|^{1 / 2}} \exp \left[-\frac{1}{2}(\mathbf{x}-\boldsymbol{\mu})^{T} \boldsymbol{\Sigma}^{-1}(\mathbf{x}-\boldsymbol{\mu})\right]
\end{aligned}
$$

where

$$
\begin{aligned}
\boldsymbol{\mu} & =E[\mathbf{x}]=\int \mathbf{x} p(\mathbf{x}) d \mathbf{x} \\
\boldsymbol{\Sigma} & =E\left[(\mathbf{x}-\boldsymbol{\mu})(\mathbf{x}-\boldsymbol{\mu})^{T}\right]=\int(\mathbf{x}-\boldsymbol{\mu})(\mathbf{x}-\boldsymbol{\mu})^{T} p(\mathbf{x}) d \mathbf{x}
\end{aligned}
$$

Multivariate Gaussian

Figure 4: Samples drawn from a two-dimensional Gaussian lie in a cloud centered on the mean μ. The loci of points of constant density are the ellipses for which $(\mathbf{x}-\boldsymbol{\mu})^{T} \boldsymbol{\Sigma}^{-1}(\mathbf{x}-\boldsymbol{\mu})$ is constant, where the eigenvectors of Σ determine the direction and the corresponding eigenvalues determine the length of the principal axes. The quantity $r^{2}=(\mathbf{x}-\boldsymbol{\mu})^{T} \boldsymbol{\Sigma}^{-1}(\mathbf{x}-\boldsymbol{\mu})$ is called the squared Mahalanobis distance from x to μ.

Linear Transformations

- Recall that, given $\mathbf{x} \in \mathbb{R}^{d}, \mathbf{A} \in \mathbb{R}^{d \times k}, \mathbf{y}=\mathbf{A}^{T} \mathbf{x} \in \mathbb{R}^{k}$, if $x \sim N(\boldsymbol{\mu}, \boldsymbol{\Sigma})$, then $y \sim N\left(\mathbf{A}^{T} \boldsymbol{\mu}, \mathbf{A}^{T} \boldsymbol{\Sigma} \mathbf{A}\right)$.
- As a special case, the whitening transform

$$
\mathbf{A}_{\mathbf{w}}=\boldsymbol{\Phi} \boldsymbol{\Lambda}^{-1 / 2}
$$

where

- Φ is the matrix whose columns are the orthonormal eigenvectors of Σ,
- $\boldsymbol{\Lambda}$ is the diagonal matrix of the corresponding eigenvalues, gives a covariance matrix equal to the identity matrix I.

Discriminant Functions for the Gaussian

Density

- Discriminant functions for minimum-error-rate classification can be written as

$$
g_{i}(\mathbf{x})=\ln p\left(\mathbf{x} \mid w_{i}\right)+\ln P\left(w_{i}\right)
$$

- For $p\left(\mathbf{x} \mid w_{i}\right)=N\left(\boldsymbol{\mu}_{\boldsymbol{i}}, \boldsymbol{\Sigma}_{\boldsymbol{i}}\right)$

$$
g_{i}(\mathbf{x})=-\frac{1}{2}\left(\mathbf{x}-\boldsymbol{\mu}_{\boldsymbol{i}}\right)^{T} \boldsymbol{\Sigma}_{\boldsymbol{i}}^{-1}\left(\mathbf{x}-\boldsymbol{\mu}_{\boldsymbol{i}}\right)-\frac{d}{2} \ln 2 \pi-\frac{1}{2} \ln \left|\boldsymbol{\Sigma}_{\boldsymbol{i}}\right|+\ln P\left(w_{i}\right) .
$$

Case 1: $\boldsymbol{\Sigma}_{i}=\sigma^{2} \mathbf{I}$

- Discriminant functions are

$$
\left.g_{i}(\mathbf{x})=\mathbf{w}_{i}^{T} \mathbf{x}+w_{i 0} \quad \text { (linear discriminant }\right)
$$

where

$$
\begin{aligned}
\mathbf{w}_{\boldsymbol{i}} & =\frac{1}{\sigma^{2}} \boldsymbol{\mu}_{\boldsymbol{i}} \\
w_{i 0} & =-\frac{1}{2 \sigma^{2}} \boldsymbol{\mu}_{\boldsymbol{i}}^{T} \boldsymbol{\mu}_{\boldsymbol{i}}+\ln P\left(w_{i}\right)
\end{aligned}
$$

($w_{i 0}$ is the threshold or bias for the i 'th category).

Case 1: $\boldsymbol{\Sigma}_{i}=\sigma^{2} \mathbf{I}$

- Decision boundaries are the hyperplanes $g_{i}(\mathbf{x})=g_{j}(\mathbf{x})$, and can be written as

$$
\mathbf{w}^{T}\left(\mathbf{x}-\mathbf{x}_{\mathbf{0}}\right)=0
$$

where

$$
\begin{aligned}
\mathrm{w} & =\boldsymbol{\mu}_{i}-\boldsymbol{\mu}_{\boldsymbol{j}} \\
\mathrm{x}_{0} & =\frac{1}{2}\left(\boldsymbol{\mu}_{i}+\boldsymbol{\mu}_{\boldsymbol{j}}\right)-\frac{\sigma^{2}}{\left\|\boldsymbol{\mu}_{i}-\boldsymbol{\mu}_{\boldsymbol{j}}\right\|^{2}} \ln \frac{P\left(w_{i}\right)}{P\left(w_{j}\right)}\left(\boldsymbol{\mu}_{i}-\boldsymbol{\mu}_{\boldsymbol{j}}\right) .
\end{aligned}
$$

- Hyperplane separating \mathcal{R}_{i} and \mathcal{R}_{j} passes through the point x_{0} and is orthogonal to the vector w .

Case 1: $\boldsymbol{\Sigma}_{i}=\sigma^{2} \mathbf{I}$

Figure 5: If the covariance matrices of two distributions are equal and proportional to the identity matrix, then the distributions are spherical in d dimensions, and the boundary is a generalized hyperplane of $d-1$ dimensions, perpendicular to the line separating the means. The decision boundary shifts as the priors are changed.

Case 1: $\boldsymbol{\Sigma}_{i}=\sigma^{2} \mathbf{I}$

- Special case when $P\left(w_{i}\right)$ are the same for $i=1, \ldots, c$ is the minimum-distance classifier that uses the decision rule

$$
\operatorname{assign} \mathbf{x} \text { to } w_{i^{*}} \text { where } i^{*}=\arg \min _{i=1, . ., c}\left\|\mathbf{x}-\boldsymbol{\mu}_{\boldsymbol{i}}\right\|
$$

Case 2: $\boldsymbol{\Sigma}_{i}=\boldsymbol{\Sigma}$

- Discriminant functions are

$$
\left.g_{i}(\mathbf{x})=\mathbf{w}_{i}^{T} \mathbf{x}+w_{i 0} \quad \text { (linear discriminant }\right)
$$

where

$$
\begin{aligned}
\mathbf{w}_{\boldsymbol{i}} & =\boldsymbol{\Sigma}^{-1} \boldsymbol{\mu}_{\boldsymbol{i}} \\
w_{i 0} & =-\frac{1}{2} \boldsymbol{\mu}_{\boldsymbol{i}}^{T} \boldsymbol{\Sigma}^{-1} \boldsymbol{\mu}_{\boldsymbol{i}}+\ln P\left(w_{i}\right)
\end{aligned}
$$

Case 2: $\boldsymbol{\Sigma}_{i}=\boldsymbol{\Sigma}$

- Decision boundaries can be written as

$$
\mathbf{w}^{T}\left(\mathbf{x}-\mathbf{x}_{\mathbf{0}}\right)=0
$$

where

$$
\begin{aligned}
\mathrm{w} & =\boldsymbol{\Sigma}^{-1}\left(\boldsymbol{\mu}_{\boldsymbol{i}}-\boldsymbol{\mu}_{\boldsymbol{j}}\right) \\
\mathbf{x}_{0} & =\frac{1}{2}\left(\boldsymbol{\mu}_{\boldsymbol{i}}+\boldsymbol{\mu}_{\boldsymbol{j}}\right)-\frac{\ln \left(P\left(w_{i}\right) / P\left(w_{j}\right)\right)}{\left(\boldsymbol{\mu}_{\boldsymbol{i}}-\boldsymbol{\mu}_{\boldsymbol{j}}\right)^{T} \boldsymbol{\Sigma}^{-1}\left(\boldsymbol{\mu}_{\boldsymbol{i}}-\boldsymbol{\mu}_{\boldsymbol{j}}\right)}\left(\boldsymbol{\mu}_{\boldsymbol{i}}-\boldsymbol{\mu}_{\boldsymbol{j}}\right) .
\end{aligned}
$$

- Hyperplane passes through x_{0} but is not necessarily orthogonal to the line between the means.

Case 2: $\boldsymbol{\Sigma}_{i}=\boldsymbol{\Sigma}$

Figure 6: Probability densities with equal but asymmetric Gaussian distributions. The decision hyperplanes are not necessarily perpendicular to the line connecting the means.

Case 3 : $\Sigma_{i}=$ arbitrary

- Discriminant functions are

$$
g_{i}(\mathbf{x})=\mathbf{x}^{T} \mathbf{W}_{i} \mathbf{x}+\mathbf{w}_{i}^{T} \mathbf{x}+w_{i 0} \quad \text { (quadratic discriminant) }
$$

where

$$
\begin{aligned}
\mathbf{W}_{i} & =-\frac{1}{2} \boldsymbol{\Sigma}_{i}^{-1} \\
\mathbf{w}_{i} & =\boldsymbol{\Sigma}_{i}^{-1} \boldsymbol{\mu}_{\boldsymbol{i}} \\
w_{i 0} & =-\frac{1}{2} \boldsymbol{\mu}_{i}^{T} \boldsymbol{\Sigma}_{i}^{-1} \boldsymbol{\mu}_{\boldsymbol{i}}-\frac{1}{2} \ln \left|\boldsymbol{\Sigma}_{i}\right|+\ln P\left(w_{i}\right) .
\end{aligned}
$$

- Decision boundaries are hyperquadrics.

Case 3: $\Sigma_{i}=$ arbitrary

Figure 7: Arbitrary Gaussian distributions lead to Bayes decision boundaries that are general hyperquadrics.

Case 3: $\Sigma_{i}=$ arbitrary

Figure 8: Arbitrary Gaussian distributions lead to Bayes decision boundaries that are general hyperquadrics.

Error Probabilities and Integrals

- For the two-category case

$$
\begin{aligned}
P(\text { error }) & =P\left(\mathbf{x} \in \mathcal{R}_{2}, w_{1}\right)+P\left(\mathbf{x} \in \mathcal{R}_{1}, w_{2}\right) \\
& =P\left(\mathbf{x} \in \mathcal{R}_{2} \mid w_{1}\right) P\left(w_{1}\right)+P\left(\mathbf{x} \in \mathcal{R}_{1} \mid w_{2}\right) P\left(w_{2}\right) \\
& =\int_{\mathcal{R}_{2}} p\left(\mathbf{x} \mid w_{1}\right) P\left(w_{1}\right) d \mathbf{x}+\int_{\mathcal{R}_{1}} p\left(\mathbf{x} \mid w_{2}\right) P\left(w_{2}\right) d \mathbf{x}
\end{aligned}
$$

Error Probabilities and Integrals

- For the multicategory case

$$
\begin{aligned}
P(\text { error }) & =1-P(\text { correct }) \\
& =1-\sum_{i=1}^{c} P\left(\mathbf{x} \in \mathcal{R}_{i}, w_{i}\right) \\
& =1-\sum_{i=1}^{c} P\left(\mathbf{x} \in \mathcal{R}_{i} \mid w_{i}\right) P\left(w_{i}\right) \\
& =1-\sum_{i=1}^{c} \int_{\mathcal{R}_{i}} p\left(\mathbf{x} \mid w_{i}\right) P\left(w_{i}\right) d \mathbf{x} .
\end{aligned}
$$

Error Probabilities and Integrals

Figure 9: Components of the probability of error for equal priors and the non-optimal decision point x^{*}. The optimal point x_{B} minimizes the total shaded area and gives the Bayes error rate.

Receiver Operating Characteristics

- Consider the two-category case and define
- w_{1} : target is present,
- w_{2} : target is not present.

Table 1: Confusion matrix.

		Assigned	
		w_{1}	
True	w_{1}	correct detection	
	w_{2}	false alarm	
	correct rejection		

- Mis-detection is also called false negative or Type II error.
- False alarm is also called false positive or Type I error.

Receiver Operating Characteristics

- If we use a parameter (e.g., a threshold) in our decision, the plot of these rates for different values of the parameter is called the receiver operating characteristic (ROC) curve.

Figure 10: Example receiver operating characteristic (ROC) curves for different settings of the system

Summary

- To minimize the overall risk, choose the action that minimizes the conditional risk $R(\alpha \mid \mathbf{x})$.
- To minimize the probability of error, choose the class that maximizes the posterior probability $P\left(w_{j} \mid \mathbf{x}\right)$.
- If there are different penalties for misclassifying patterns from different classes, the posteriors must be weighted according to such penalties before taking action.
- Do not forget that these decisions are the optimal ones under the assumption that the "true" values of the probabilities are known.

