Parametric Models Part III: Hidden Markov Models

Selim Aksoy

Department of Computer Engineering Bilkent University saksoy@cs.bilkent.edu.tr

CS 551, Fall 2014

Discrete Markov Processes (Markov Chains)

- ► The goal is to make a sequence of decisions where a particular decision may be influenced by earlier decisions.
- ▶ Consider a system that can be described at any time as being in one of a set of N distinct states w_1, w_2, \ldots, w_N .
- ▶ Let w(t) denote the actual state at time t where t = 1, 2, ...
- ▶ The probability of the system being in state w(t) is P(w(t)|w(t-1),...,w(1)).

First-Order Markov Models

▶ We assume that the state w(t) is conditionally independent of the previous states given the predecessor state w(t-1), i.e.,

$$P(w(t)|w(t-1),...,w(1)) = P(w(t)|w(t-1)).$$

▶ We also assume that the Markov Chain defined by P(w(t)|w(t-1)) is time homogeneous (independent of the time t).

First-Order Markov Models

► A particular *sequence of states* of length *T* is denoted by

$$\mathcal{W}^T = \{w(1), w(2), \dots, w(T)\}.$$

The model for the production of any sequence is described by the transition probabilities

$$a_{ij} = P(w(t) = w_j | w(t-1) = w_i)$$

where $i, j \in \{1, \dots, N\}$, $a_{ij} \geq 0$, and $\sum_{j=1}^{N} a_{ij} = 1, \forall i$.

First-Order Markov Models

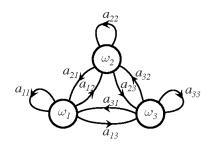
- ► There is no requirement that the transition probabilities are symmetric ($a_{ij} \neq a_{ji}$, in general).
- ▶ Also, a particular state may be visited in succession $(a_{ii} \neq 0$, in general) and not every state need to be visited.
- ► This process is called an *observable Markov model* because the output of the process is the set of states at each instant of time, where each state corresponds to a physical (observable) event.

First-Order Markov Model Examples

- Consider the following 3-state first-order Markov model of the weather in Ankara:
 - $\triangleright w_1$: rain/snow
 - w_2 : cloudy
 - w_3 : sunny

$$\Theta = \{a_{ij}\}\$$

$$= \begin{pmatrix} 0.4 & 0.3 & 0.3 \\ 0.2 & 0.6 & 0.2 \\ 0.1 & 0.1 & 0.8 \end{pmatrix}$$



First-Order Markov Model Examples

- ▶ We can use this model to answer the following: Starting with sunny weather on day 1, what is the probability that the weather for the next seven days will be "sunny-sunny-rainy-rainy-sunny-cloudy-sunny" ($W^8 = \{w_3, w_3, w_3, w_1, w_1, w_3, w_2, w_3\}$)?
- Solution:

$$P(\mathcal{W}^8|\Theta) = P(w_3, w_3, w_3, w_1, w_1, w_3, w_2, w_3)$$

$$= P(w_3)P(w_3|w_3)P(w_3|w_3)P(w_1|w_3)$$

$$P(w_1|w_1)P(w_3|w_1)P(w_2|w_3)P(w_3|w_2)$$

$$= P(w_3) a_{33} a_{33} a_{31} a_{11} a_{13} a_{32} a_{23}$$

$$= 1 \times 0.8 \times 0.8 \times 0.1 \times 0.4 \times 0.3 \times 0.1 \times 0.2$$

$$= 1.536 \times 10^{-4}$$

First-Order Markov Model Examples

- ► Consider another question: Given that the model is in a known state, what is the probability that it stays in that state for exactly *d* days?
- Solution:

$$\mathcal{W}^{d+1} = \{ w(1) = w_i, w(2) = w_i, \dots, w(d) = w_i, w(d+1) = w_j \neq w_i \}$$

$$P(\mathcal{W}^{d+1} | \mathbf{\Theta}, w(1) = w_i) = (a_{ii})^{d-1} (1 - a_{ii})$$

$$E[d|w_i] = \sum_{i=1}^{\infty} d(a_{ii})^{d-1} (1 - a_{ii}) = \frac{1}{1 - a_{ii}}$$

► For example, the expected number of consecutive days of sunny weather is 5, cloudy weather is 2.5, rainy weather is 1.67.

- We can extend this model to the case where the observation (output) of the system is a probabilistic function of the state.
- ► The resulting model, called a Hidden Markov Model (HMM), has an underlying stochastic process that is not observable (it is hidden), but can only be observed through another set of stochastic processes that produce a sequence of observations.

- ▶ We denote the observation at time t as v(t) and the probability of producing that observation in state w(t) as P(v(t)|w(t)).
- ► There are many possible state-conditioned observation distributions.
- ▶ When the observations are discrete, the distributions

$$b_{jk} = P(v(t) = v_k | w(t) = w_j)$$

are probability mass functions where $j \in \{1, ..., N\}$, $k \in \{1, ..., M\}$, $b_{jk} \geq 0$, and $\sum_{k=1}^{M} b_{jk} = 1, \forall j$.

▶ When the observations are continuous, the distributions are typically specified using a parametric model family where the most common family is the Gaussian mixture

$$b_j(\mathbf{x}) = \sum_{k=1}^{M_j} \alpha_{jk} p(\mathbf{x} | \boldsymbol{\mu_{jk}}, \boldsymbol{\Sigma_{jk}})$$

where $\alpha_{jk} \geq 0$ and $\sum_{k=1}^{M_j} \alpha_{jk} = 1, \forall j$.

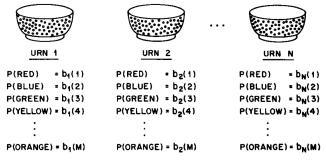
▶ We will restrict ourselves to discrete observations where a particular sequence of visible states of length T is denoted by

$$\mathcal{V}^T = \{v(1), v(2), \dots, v(T)\}.$$

- ► An HMM is characterized by:
 - ▶ *N*, the number of hidden states
 - ▶ M, the number of distinct observation symbols per state
 - $\{a_{ij}\}$, the state transition probability distribution
 - lacksquare $\{b_{jk}\}$, the observation symbol probability distribution
 - $\{\pi_i = P(w(1) = w_i)\}$, the initial state distribution
 - $m{\Theta} = (\{a_{ij}\}, \{b_{jk}\}, \{\pi_i\}),$ the complete parameter set of the model

- Consider the "urn and ball" example (Rabiner, 1989):
 - ▶ There are *N* large urns in the room.
 - ▶ Within each urn, there are a large number of colored balls where the number of distinct colors is *M*.
 - An initial urn is chosen according to some random process, and a ball is chosen at random from it.
 - ► The ball's color is recorded as the observation and it is put back to the urn.
 - ► A new urn is selected according to the random selection process associated with the current urn and the ball selection process is repeated.

- The simplest HMM that corresponds to the urn and ball selection process is the one where
 - each state corresponds to a specific urn,
 - a ball color probability is defined for each state.



O = {GREEN, GREEN, BLUE, RED, YELLOW, RED,, BLUE}

- Let's extend the weather example.
 - Assume that you have a friend who lives in İstanbul and you talk daily about what each of you did that day.
 - Your friend has a list of activities that she/he does every day (such as playing sports, shopping, studying) and the choice of what to do is determined exclusively by the weather on a given day.
 - Assume that Istanbul has a weather state distribution similar to the one in the previous example.
 - You have no information about the weather where your friend lives, but you try to guess what it must have been like according to the activity your friend did.

- This process can be modeled using an HMM where the state of the weather is the hidden variable, and the activity your friend did is the observation.
- Given the model and the activity of your friend, you can make a guess about the weather in Istanbul that day.
- ► For example, if your friend says that she/he played sports on the first day, went shopping on the second day, and studied on the third day of the week, you can answer questions such as:
 - What is the overall probability of this sequence of observations?
 - What is the most likely weather sequence that would explain these observations?

Applications of HMMs

- ► Speech recognition
- Optical character recognition
- Natural language processing (e.g., text summarization)
- Bioinformatics (e.g., protein sequence modeling)
- ► Image time series (e.g., change detection)
- Video analysis (e.g., story segmentation, motion tracking)
- ► Robot planning (e.g., navigation)
- Economics and finance (e.g., time series, customer decisions)

Three Fundamental Problems for HMMs

- ► Evaluation problem: Given the model, compute the probability that a particular output sequence was produced by that model (solved by the forward algorithm).
- ▶ Decoding problem: Given the model, find the most likely sequence of hidden states which could have generated a given output sequence (solved by the Viterbi algorithm).
- ► Learning problem: Given a set of output sequences, find the most likely set of state transition and output probabilities (solved by the Baum-Welch algorithm).

▶ A particular sequence of observations of length T is denoted by

$$\mathcal{V}^T = \{v(1), v(2), \dots, v(T)\}.$$

► The probability of observing this sequence can be computed by enumerating every possible state sequence of length T as

$$\begin{split} P(\mathcal{V}^T|\Theta) &= \sum_{\text{all } \mathcal{W}^T} P(\mathcal{V}^T, \mathcal{W}^T|\Theta) \\ &= \sum_{\text{all } \mathcal{W}^T} P(\mathcal{V}^T|\mathcal{W}^T, \Theta) P(\mathcal{W}^T|\Theta). \end{split}$$

ightharpoonup This summation includes N^T terms in the form

$$\begin{split} P(\mathcal{V}^T | \mathcal{W}^T) P(\mathcal{W}^T) &= \left(\prod_{t=1}^T P(v(t) | w(t)) \right) \left(\prod_{t=1}^T P(w(t) | w(t-1)) \right) \\ &= \prod_{t=1}^T P(v(t) | w(t)) P(w(t) | w(t-1)) \end{split}$$

where P(w(t)|w(t-1)) for t=1 is P(w(1)).

- It is unfeasible with computational complexity $O(N^TT)$.
- ► However, a computationally simpler algorithm called the *forward algorithm* computes $P(V^T|\Theta)$ recursively.

▶ Define $\alpha_j(t)$ as the probability that the HMM is in state w_j at time t having generated the first t observations in \mathcal{V}^T

$$\alpha_j(t) = P(v(1), v(2), \dots, v(t), w(t) = w_j | \mathbf{\Theta}).$$

• $\alpha_j(t), j = 1, \dots, N$ can be computed as

$$\alpha_{j}(t) = \begin{cases} \pi_{j} b_{jv(1)} & t = 1\\ \left(\sum_{i=1}^{N} \alpha_{i}(t-1)a_{ij}\right) b_{jv(t)} & t = 2, \dots, T. \end{cases}$$

▶ Then, $P(\mathcal{V}^T|\Theta) = \sum_{i=1}^N \alpha_i(T)$.

► Similarly, we can define a backward algorithm where

$$\beta_i(t) = P(v(t+1), v(t+2), \dots, v(T) | w(t) = w_i, \Theta)$$

is the probability that the HMM will generate the observations from t+1 to T in \mathcal{V}^T given that it is in state w_i at time t.

• $\beta_i(t), i = 1, \dots, N$ can be computed as

$$\beta_i(t) = \begin{cases} 1 & t = T \\ \sum_{j=1}^{N} \beta_j(t+1) a_{ij} b_{jv(t+1)} & t = T - 1, \dots, 1. \end{cases}$$

▶ Then, $P(\mathcal{V}^T|\Theta) = \sum_{i=1}^N \beta_i(1)\pi_i b_{iv(1)}$.

- ▶ The computations of both $\alpha_i(t)$ and $\beta_i(t)$ have complexity $O(N^2T)$.
- For classification, we can compute the posterior probabilities

$$P(\mathbf{\Theta}|\mathcal{V}^T) = \frac{P(\mathcal{V}^T|\mathbf{\Theta})P(\mathbf{\Theta})}{P(\mathcal{V}^T)}$$

where $P(\Theta)$ is the prior for a particular class, and $P(\mathcal{V}^T|\Theta)$ is computed using the forward algorithm with the HMM for that class.

▶ Then, we can select the class with the highest posterior.

HMM Decoding Problem

- ▶ Given a sequence of observations \mathcal{V}^T , we would like to find the most probable sequence of hidden states.
- ▶ One possible solution is to enumerate every possible hidden state sequence and calculate the probability of the observed sequence with $O(N^TT)$ complexity.
- We can also define the problem of finding the optimal state sequence as finding the one that includes the states that are individually most likely.
- This also corresponds to maximizing the expected number of correct individual states.

HMM Decoding Problem

▶ Define $\gamma_i(t)$ as the probability that the HMM is in state w_i at time t given the observation sequence \mathcal{V}^T

$$\gamma_i(t) = P(w(t) = w_i | \mathcal{V}^T, \mathbf{\Theta})$$

$$= \frac{\alpha_i(t)\beta_i(t)}{P(\mathcal{V}^T | \mathbf{\Theta})} = \frac{\alpha_i(t)\beta_i(t)}{\sum_{j=1}^N \alpha_j(t)\beta_j(t)}$$

where $\sum_{i=1}^{N} \gamma_i(t) = 1$.

▶ Then, the individually most likely state w(t) at time t becomes

$$w(t) = w_{i'}$$
 where $i' = \arg\max_{i=1,\dots,N} \gamma_i(t)$.

HMM Decoding Problem

- ▶ One problem is that the resulting sequence may not be consistent with the underlying model because it may include transitions with zero probability $(a_{ij} = 0 \text{ for some } i \text{ and } j)$.
- ▶ One possible solution is the *Viterbi algorithm* that finds the single best state sequence \mathcal{W}^T by maximizing $P(\mathcal{W}^T|\mathcal{V}^T, \Theta)$ (or equivalently $P(\mathcal{W}^T, \mathcal{V}^T|\Theta)$).
- ➤ This algorithm recursively computes the state sequence with the highest probability at time t and keeps track of the states that form the sequence with the highest probability at time T (see Rabiner (1989) for details).

- ▶ The goal is to determine the model parameters $\{a_{ij}\}$, $\{b_{jk}\}$ and $\{\pi_i\}$ from a collection of training samples.
- ▶ Define $\xi_{ij}(t)$ as the probability that the HMM is in state w_i at time t-1 and state w_j at time t given the observation sequence \mathcal{V}^T

$$\begin{split} \xi_{ij}(t) &= P(w(t-1) = w_i, w(t) = w_j | \mathcal{V}^T, \mathbf{\Theta}) \\ &= \frac{\alpha_i(t-1) \, a_{ij} \, b_{jv(t)} \, \beta_j(t)}{P(\mathcal{V}^T | \mathbf{\Theta})} \\ &= \frac{\alpha_i(t-1) \, a_{ij} \, b_{jv(t)} \, \beta_j(t)}{\sum_{i=1}^N \sum_{j=1}^N \alpha_i(t-1) \, a_{ij} \, b_{jv(t)} \, \beta_j(t)}. \end{split}$$

 $ightharpoonup \gamma_i(t)$ defined in the decoding problem and $\xi_{ij}(t)$ defined here can be related as

$$\gamma_i(t-1) = \sum_{j=1}^N \xi_{ij}(t).$$

▶ Then, \hat{a}_{ij} , the estimate of the probability of a transition from w_i at t-1 to w_j at t, can be computed as

$$\begin{split} \hat{a}_{ij} &= \frac{\text{expected number of transitions from } w_i \text{ to } w_j}{\text{expected total number of transitions away from } w_i} \\ &= \frac{\sum_{t=2}^T \xi_{ij}(t)}{\sum_{t=2}^T \gamma_i(t-1)}. \end{split}$$

▶ Similarly, \hat{b}_{jk} , the estimate of the probability of observing the symbol v_k while in state w_j , can be computed as

$$\hat{b}_{jk} = \frac{\text{expected number of times observing symbol } v_k \text{ in state } w_j}{\text{expected total number of times in } w_j}$$

$$\sum_{k=1}^{T} \delta_{v(t)} v_k \gamma_j(t)$$

$$= \frac{\sum_{t=1}^{T} \delta_{v(t),v_k} \gamma_j(t)}{\sum_{t=1}^{T} \gamma_j(t)}$$

where $\delta_{v(t),v_k}$ is the Kronecker delta which is 1 only when $v(t)=v_k$.

Finally, $\hat{\pi}_i$, the estimate for the initial state distribution, can be computed as $\hat{\pi}_i = \gamma_i(1)$ which is the expected number of times in state w_i at time t=1.

- ► These are called the Baum-Welch equations (also called the EM estimates for HMMs or the forward-backward algorithm) that can be computed iteratively until some convergence criterion is met (e.g., sufficiently small changes in the estimated values in subsequent iterations).
- See (Bilmes, 1998) for the estimates $\hat{b}_j(\mathbf{x})$ when the observations are continuous and their distributions are modeled using Gaussian mixtures.