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Non-Bayesian Classifiers

I We have been using Bayesian classifiers that make
decisions according to the posterior probabilities.

I We have discussed parametric and non-parametric
methods for learning classifiers by estimating the
probabilities using training data.

I We will study new techniques that use training data to learn
the classifiers directly without estimating any probabilistic
structure.

I In particular, we will study the k-nearest neighbor classifier,
linear discriminant functions, and support vector machines.
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The Nearest Neighbor Classifier

I Given the training data D = {x1, . . . ,xn} as a set of n
labeled examples, the nearest neighbor classifier assigns a
test point x the label associated with its closest neighbor in
D.

I Closeness is defined using a distance function.

I Given the distance function, the nearest neighbor classifier
partitions the feature space into cells consisting of all points
closer to a given training point than to any other training
points.
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The Nearest Neighbor Classifier

I All points in such a cell are labeled by the class of the
training point, forming a Voronoi tesselation of the feature
space.

Figure 1: In two dimensions, the nearest neighbor algorithm leads to a
partitioning of the input space into Voronoi cells, each labeled by the class of
the training point it contains. In three dimensions, the cells are
three-dimensional, and the decision boundary resembles the surface of a
crystal.
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The k-Nearest Neighbor Classifier

I The k-nearest neighbor classifier classifies x by assigning it
the label most frequently represented among the k nearest
samples.

I In other words, a decision is made by examining the labels
on the k-nearest neighbors and taking a vote.

Figure 2: The k-nearest neighbor query forms a spherical region around the
test point x until it encloses k training samples, and it labels the test point by
a majority vote of these samples. In the case for k = 5, the test point will be
labeled as black.
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The k-Nearest Neighbor Classifier

I The computational complexity of the nearest neighbor
algorithm — both in space (storage) and time (search) —
has received a great deal of analysis.

I In the most straightforward approach, we inspect each
stored training point one by one, calculate its distance to x,
and keep a list of the k closest ones.

I There are some parallel implementations and algorithmic
techniques for reducing the computational load in nearest
neighbor searches.

CS 551, Fall 2018 c©2018, Selim Aksoy (Bilkent University) 6 / 13



The k-Nearest Neighbor Classifier

I Examples of algorithmic techniques include
I computing partial distances using a subset of dimensions,

and eliminating the points with partial distances greater than
the full distance of the current closest points,

I using search trees that are hierarchically structured so that
only a subset of the training points are considered during
search,

I editing the training set by eliminating the points that are
surrounded by other training points with the same class
label.
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Distance Functions

I The nearest neighbor classifier relies on a metric or a
distance function between points.

I For all points x, y and z, a metric D(·, ·) must satisfy the
following properties:

I Nonnegativity: D(x,y) ≥ 0.
I Reflexivity: D(x,y) = 0 if and only if x = y.
I Symmetry: D(x,y) = D(y,x).
I Triangle inequality: D(x,y) +D(y, z) ≥ D(x, z).

I If the second property is not satisfied, D(·, ·) is called a
pseudometric.
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Distance Functions

I A general class of metrics for d-dimensional patterns is the
Minkowski metric

Lp(x,y) =

(
d∑

i=1

|xi − yi|p
)1/p

also referred to as the Lp norm.

I The Euclidean distance is the L2 norm

L2(x,y) =

(
d∑

i=1

|xi − yi|2
)1/2

.

I The Manhattan or city block distance is the L1 norm

L1(x,y) =

d∑
i=1

|xi − yi|.
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Distance Functions

I The L∞ norm is the maximum of the distances along
individual coordinate axes

L∞(x,y) =
d

max
i=1
|xi − yi|.

Figure 3: Each colored shape consists of points at a distance 1.0 from the
origin, measured using different values of p in the Minkowski Lp metric.
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Feature Normalization

I We should be careful about scaling of the coordinate axes
when we compute these metrics.

I When there is great difference in the range of the data
along different axes in a multidimensional space, these
metrics implicitly assign more weighting to features with
large ranges than those with small ranges.

I Feature normalization can be used to approximately
equalize ranges of the features and make them have
approximately the same effect in the distance computation.

I The following methods can be used to independently
normalize each feature.
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Feature Normalization

I Linear scaling to unit range:
Given a lower bound l and an upper bound u for a feature x ∈ R,

x̃ =
x− l
u− l

results in x̃ being in the [0, 1] range.

I Linear scaling to unit variance:
A feature x ∈ R can be transformed to a random variable with
zero mean and unit variance as

x̃ =
x− µ
σ

where µ and σ are the sample mean and the sample standard
deviation of that feature, respectively.

CS 551, Fall 2018 c©2018, Selim Aksoy (Bilkent University) 12 / 13



Feature Normalization

I Normalization using the cumulative distribution function:
Given a random variable x ∈ R with cumulative distribution
function Fx(x), the random variable x̃ resulting from the
transformation x̃ = Fx(x) will be uniformly distributed in [0, 1].

I Rank normalization:
Given the sample for a feature as x1, . . . , xn ∈ R, first we find the
order statistics x(1), . . . , x(n) and then replace each pattern’s
feature value by its corresponding normalized rank as

x̃i =
rank

x1,...,xn

(xi)− 1

n− 1

where xi is the feature value for the i’th pattern. This procedure
uniformly maps all feature values to the [0, 1] range.
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