Probabilistic Graphical Models Part II: Undirected Graphical Models

Selim Aksoy

Department of Computer Engineering Bilkent University saksoy@cs.bilkent.edu.tr

CS 551, Fall 2018

Introduction

- We looked at directed graphical models whose structure and parametrization provide a natural representation for many real-world problems.
- Undirected graphical models are useful where one cannot naturally ascribe a directionality to the interaction between the variables.

Introduction

- ► An example model that satisfies:
 - \blacktriangleright $(A \perp C | \{B, D\})$
 - \blacktriangleright $(B \perp D | \{A, C\})$
 - No other independencies
- These independencies cannot be naturally captured in a Bayesian network.

Figure 1: An example undirected graphical model.

An Example

- Four students are working together in pairs on a homework.
- ► Alice and Charles cannot stand each other, and Bob and Debbie had a relationship that ended badly.
- Only the following pairs meet: Alice and Bob; Bob and Charles; Charles and Debbie; and Debbie and Alice.
- ► The professor accidentally misspoke in the class, giving rise to a possible misconception.
- In study pairs, each student transmits her/his understanding of the problem.

An Example

- ► Four binary random variables are defined, representing whether the student has a misconception or not.
- Assume that for each $X \in \{A, B, C, D\}$, x^1 denotes the case where the student has the misconception, and x^0 denotes the case where she/he does not.
- ► Alice and Charles never speak to each other directly, so A and C are conditionally independent given B and D.
- Similarly, B and D are conditionally independent given A and C.

An Example

Figure 2: Example models for the misconception example. (a) An undirected graph modeling study pairs over four students. (b) An unsuccessful attempt to model the problem using a Bayesian network. (c) Another unsuccessful attempt.

6 / 27

- ▶ How to parametrize this undirected graph?
- ▶ We want to capture the affinities between related variables.
- Conditional probability distributions cannot be used because they are not symmetric, and the chain rule need not apply.
- Marginals cannot be used because a product of marginals does not define a consistent joint.
- ► A general purpose function: factor (also called potential).

- ▶ Let D is a set of random variables.
 - ▶ A factor ϕ is a function from Val(**D**) to \mathbb{R} .
 - A factor is nonnegative if all its entries are nonnegative.
 - ► The set of variables D is called the scope of the factor.
- ▶ In the example in Figure 2, an example factor is

$$\phi_1(A,B): \mathsf{Val}(A,B) \mapsto \mathbb{R}^+.$$

Table 1: Factors for the misconception example.

$\phi_1(A,B)$						$\phi_3(C,D)$					
a^0	b^0	30	b^0	c^0	100	c^0	d^0	1	d^0	a^0	100
a^0	b^1	5	b^0	c^1	1	c^0	d^1	100	d^0	a^1	1
a^1	b^0	1	b^1	c^0	1	c^1	d^0	100	d^1	a^0	1
a^1	b^1	10	b^1	c^1	100	c^1	d^1	1	d^1	a^1	100

- ▶ The value associated with a particular assignment a,b denotes the affinity between these two variables: the higher the value $\phi_1(a,b)$, the more compatible these two values are.
- ▶ For ϕ_1 , if A and B disagree, there is less weight.
- ▶ For ϕ_3 , if C and D disagree, there is more weight.
- ► A factor is not normalized, i.e., the entries are not necessarily in [0,1].

- ► The Markov network defines the local interactions between directly related variables.
- ➤ To define a global model, we need to combine these interactions.
- ▶ We combine the local models by multiplying them as

$$P(a, b, c, d) = \phi_1(a, b)\phi_2(b, c)\phi_3(c, d)\phi_4(d, a).$$

- ► However, there is no guarantee that the result of this process is a normalized joint distribution.
- ► Thus, it is normalized as

$$P(a, b, c, d) = \frac{1}{Z}\phi_1(a, b)\phi_2(b, c)\phi_3(c, d)\phi_4(d, a)$$

where

$$Z = \sum_{a,b,c,d} \phi_1(a,b)\phi_2(b,c)\phi_3(c,d)\phi_4(d,a).$$

ightharpoonup Z is known as the partition function.

Table 2: Joint distribution for the misconception example.

	Assigi			Unnormalized	Normalized		
a^0	b^0	c^0	d^0	300,000	0.04		
a^0	b^0	c^0	d^1	300,000	0.04		
a^0	b^0	c^1	d^0	300,000	0.04		
a^0	b^0	c^1	d^1	30	4.110^{-6}		
a^0	b^1	c^0	d^0	500	6.910^{-5}		
a^0	b^1	c^0	d^1	500	6.910^{-5}		
a^0	b^1	c^1	d^0	5,000,000	0.69		
a^0	b^1	c^1	d^1	500	6.910^{-5}		
a^1	b^0	c^0	d^0	100	1.410^{-5}		
a^1	b^0	c^0	d^1	1,000,000	0.14		
a^1	b^0	c^1	d^0	100	1.410^{-5}		
a^1	b^0	c^1	d^1	100	1.410^{-5}		
a^1	b^1	c^0	d^0	10	1.410^{-6}		
a^1	b^1	c^0	d^1	100,000	0.014		
a^1	b^1	c^1	d^0	100,000	0.014		
a^1	b^1	c^1	d^1	100,000	0.014		

- There is a tight connection between the factorization of the distribution and its independence properties.
- ► For example, $P \models (\mathbf{X} \perp \mathbf{Y} | \mathbf{Z})$ if and only if we can write P in the form $P(\mathcal{X}) = \phi_1(\mathbf{X}, \mathbf{Z})\phi_2(\mathbf{Y}, \mathbf{Z})$.
- ► From the example in Figure 2,

$$P(A, B, C, D) = \frac{1}{Z}\phi_1(A, B)\phi_2(B, C)\phi_3(C, D)\phi_4(D, A),$$

we can infer that

$$P \models A \perp C | \{B, D\}),$$

$$P \models B \perp D | \{A, C\}).$$

- ► Factors do not correspond to either probabilities or to conditional probabilities.
- It is harder to estimate them from data.
- ► One idea for parametrization could be to associate parameters directly with the edges in the graph.
- ► This is not sufficient to parametrize a full distribution.

- A more general representation can be obtained by allowing factors over arbitrary subsets of variables.
- ▶ Let X, Y, and Z be three disjoint sets of variables, and let $\phi_1(X, Y)$ and $\phi_2(Y, Z)$ be two factors.
- We define the factor product $\phi_1 \times \phi_2$ to be a factor $\psi : \text{Val}(\mathbf{X}, \mathbf{Y}, \mathbf{Z}) \mapsto \mathbb{R}$ as follows:

$$\psi(\mathbf{X}, \mathbf{Y}, \mathbf{Z}) = \phi_1(\mathbf{X}, \mathbf{Y})\phi_2(\mathbf{Y}, \mathbf{Z}).$$

▶ The key aspect is the fact that the two factors ϕ_1 and ϕ_2 are multiplied in way that matches up the common part \mathbf{Y} .

Figure 3: An example of factor product.

- Note that the factors are not marginals.
- ightharpoonup In the misconception model, the marginal over A,B is

- A factor is only one contribution to the overall joint distribution.
- ► The distribution as a whole has to take into consideration the contributions from all of the factors involved.

Gibbs Distributions

- ► We can use the more general notion of factor product to define an undirected parametrization of a distribution.
- A distribution P_{Φ} is a *Gibbs distribution* parametrized by a set of factors $\Phi = \{\phi_1(\mathbf{D}_1), \dots, \phi_K(\mathbf{D}_K)\}$ if it is defined as follows:

$$P_{\Phi}(X_1,\ldots,X_n) = \frac{1}{Z}\phi_1(\mathbf{D}_1)\times\ldots\times\phi_K(\mathbf{D}_K)$$

where

$$Z = \sum_{X_1, \dots, X_n} \phi_1(\mathbf{D}_1) \times \dots \times \phi_K(\mathbf{D}_K)$$

is the partition function.

▶ The D_i are the scopes of the factors.

Gibbs Distributions

- If our parametrization contains a factor whose scope contains both X and Y, we would like the associated Markov network structure ℋ to contain an edge between X and Y.
- We say that a distribution P_{Φ} with $\Phi = \{\phi_1(\mathbf{D}_1), \dots, \phi_K(\mathbf{D}_K)\}$ factorizes over a Markov network \mathcal{H} if each $\mathbf{D}_k, k = 1, \dots, K$, is a *complete subgraph* of \mathcal{H} .
- The factors that parametrize a Markov network are often called clique potentials.

Reduced Markov Networks

- ▶ If we observe some values, U = u, in the factor value table, we can eliminate the entries which are inconsistent with U = u.
- Let \mathcal{H} be a Markov network over \mathbf{X} and $\mathbf{U} = \mathbf{u}$ a context. The reduced Markov network $\mathcal{H}[\mathbf{u}]$ is a Markov network over the nodes $\mathbf{W} = \mathbf{X} - \mathbf{U}$, where we have an edge X - Y if there is an edge X - Y in \mathcal{H} .

Reduced Markov Networks

Figure 4: A reduced Markov network example. (a) Original set of factors. (b) Reduced to the context G=g. (c) Reduced to the context G=g. S=s.

22 / 27

Reduced Markov Networks

- ► Conditioning on a context U in Markov networks eliminates edges from the graph.
- ▶ In a Bayesian network, conditioning on evidence can create new dependencies.

Markov Network Independencies

- ▶ Let \mathcal{H} be a Markov network and let X_1 —...— X_k be a path in \mathcal{H} .
- ▶ Let $Z \subseteq \mathcal{X}$ be a set of observed variables.
- ▶ The path X_1 —...— X_k is active given **Z** if none of the X_i 's, i = 1, ..., k, is in **Z**.
- ▶ A set of nodes \mathbf{Z} separates \mathbf{X} and \mathbf{Y} in \mathcal{H} , denoted $\operatorname{sep}_{\mathcal{H}}(\mathbf{X}; \mathbf{Y} | \mathbf{Z})$, if there is no active path between any node $X \in \mathbf{X}$ and $Y \in \mathbf{Y}$ given \mathbf{Z} .
- \blacktriangleright We define the global independencies associated with ${\cal H}$ to be

$$\mathcal{I}(\mathcal{H}) = \{(\mathbf{X} \perp \mathbf{Y} | \mathbf{Z}) : \text{sep}_{\mathcal{H}}(\mathbf{X}; \mathbf{Y} | \mathbf{Z})\}.$$

Learning Undirected Models

- ► Like in Bayesian networks, once the joint distribution is generated, any kind of question can be answered using conditional probabilities and marginalization.
- However, a key distinction between Markov networks and Bayesian networks is normalization.
- Markov networks use a global normalization constant called the partition function.
- Bayesian networks involve local normalization within each conditional probability distribution.

Learning Undirected Models

- ► The global factor couples all of the parameters across the network, preventing us from decomposing the problem and estimating local groups of parameters separately.
- The global parameter coupling has significant computational ramifications.
- Even the simple maximum likelihood parameter estimation with complete data cannot be solved in closed form.

Learning Undirected Models

- We generally have to resort to iterative methods such as gradient ascent.
- ► The good news is that the likelihood objective is concave, so the methods are guaranteed to converge to the global optimum.
- ► The bad news is that each of the steps in the iterative algorithm requires that we run inference on the network, making even simple parameter estimation a fairly expensive process.