Probabilistic Graphical Models
 Part II: Undirected Graphical Models

Selim Aksoy

Department of Computer Engineering
Bilkent University
saksoy@cs.bilkent.edu.tr

CS 551, Fall 2018

Introduction

- We looked at directed graphical models whose structure and parametrization provide a natural representation for many real-world problems.
- Undirected graphical models are useful where one cannot naturally ascribe a directionality to the interaction between the variables.

Introduction

- An example model that satisfies:
- $(A \perp C \mid\{B, D\})$
- $(B \perp D \mid\{A, C\})$
- No other independencies
- These independencies cannot be naturally captured in a Bayesian network.

Figure 1: An example undirected graphical model.

An Example

- Four students are working together in pairs on a homework.
- Alice and Charles cannot stand each other, and Bob and Debbie had a relationship that ended badly.
- Only the following pairs meet: Alice and Bob; Bob and Charles; Charles and Debbie; and Debbie and Alice.
- The professor accidentally misspoke in the class, giving rise to a possible misconception.
- In study pairs, each student transmits her/his understanding of the problem.

An Example

- Four binary random variables are defined, representing whether the student has a misconception or not.
- Assume that for each $X \in\{A, B, C, D\}, x^{1}$ denotes the case where the student has the misconception, and x^{0} denotes the case where she/he does not.
- Alice and Charles never speak to each other directly, so A and C are conditionally independent given B and D.
- Similarly, B and D are conditionally independent given A and C.

An Example

(a)

(b)

(c)

Figure 2: Example models for the misconception example. (a) An undirected graph modeling study pairs over four students. (b) An unsuccessful attempt to model the problem using a Bayesian network. (c) Another unsuccessful attempt.

Parametrization

- How to parametrize this undirected graph?
- We want to capture the affinities between related variables.
- Conditional probability distributions cannot be used because they are not symmetric, and the chain rule need not apply.
- Marginals cannot be used because a product of marginals does not define a consistent joint.
- A general purpose function: factor (also called potential).

Parametrization

- Let D is a set of random variables.
- A factor ϕ is a function from $\operatorname{Val}(\mathbf{D})$ to \mathbb{R}.
- A factor is nonnegative if all its entries are nonnegative.
- The set of variables \mathbf{D} is called the scope of the factor.
- In the example in Figure 2, an example factor is

$$
\phi_{1}(A, B): \operatorname{Val}(A, B) \mapsto \mathbb{R}^{+}
$$

Parametrization

Table 1: Factors for the misconception example.

$\phi_{1}(A, B)$				$\phi_{2}(B, C)$			$\phi_{3}(C, D)$			$\phi_{4}(D, A)$		
a^{0}	b^{0}	30	b^{0}	c^{0}	100	c^{0}	d^{0}	1	d^{0}	a^{0}	100	
a^{0}	b^{1}	5	b^{0}	c^{1}	1	c^{0}	d^{1}	100	d^{0}	a^{1}	1	
a^{1}	b^{0}	1	b^{1}	c^{0}	1	c^{1}	d^{0}	100	d^{1}	a^{0}	1	
a^{1}	b^{1}	10	b^{1}	c^{1}	100	c^{1}	d^{1}	1	d^{1}	a^{1}	100	

Parametrization

- The value associated with a particular assignment a, b denotes the affinity between these two variables: the higher the value $\phi_{1}(a, b)$, the more compatible these two values are.
- For ϕ_{1}, if A and B disagree, there is less weight.
- For ϕ_{3}, if C and D disagree, there is more weight.
- A factor is not normalized, i.e., the entries are not necessarily in $[0,1]$.

Parametrization

- The Markov network defines the local interactions between directly related variables.
- To define a global model, we need to combine these interactions.
- We combine the local models by multiplying them as

$$
P(a, b, c, d)=\phi_{1}(a, b) \phi_{2}(b, c) \phi_{3}(c, d) \phi_{4}(d, a)
$$

Parametrization

- However, there is no guarantee that the result of this process is a normalized joint distribution.
- Thus, it is normalized as

$$
P(a, b, c, d)=\frac{1}{Z} \phi_{1}(a, b) \phi_{2}(b, c) \phi_{3}(c, d) \phi_{4}(d, a)
$$

where

$$
Z=\sum_{a, b, c, d} \phi_{1}(a, b) \phi_{2}(b, c) \phi_{3}(c, d) \phi_{4}(d, a) .
$$

- Z is known as the partition function.

Parametrization

Table 2: Joint distribution for the misconception example.

Assignment			Unnormalized	Normalized	
a^{0}	b^{0}	c^{0}	d^{0}	300,000	0.04
a^{0}	b^{0}	c^{0}	d^{1}	300,000	0.04
a^{0}	b^{0}	c^{1}	d^{0}	300,000	0.04
a^{0}	b^{0}	c^{1}	d^{1}	30	4.110^{-6}
a^{0}	b^{1}	c^{0}	d^{0}	500	6.910^{-5}
a^{0}	b^{1}	c^{0}	d^{1}	500	6.910^{-5}
a^{0}	b^{1}	c^{1}	d^{0}	$5,000,000$	0.69
a^{0}	b^{1}	c^{1}	d^{1}	500	6.910^{-5}
a^{1}	b^{0}	c^{0}	d^{0}	100	1.410^{-5}
a^{1}	b^{0}	c^{0}	d^{1}	$1,000,000$	0.14
a^{1}	b^{0}	c^{1}	d^{0}	100	1.410^{-5}
a^{1}	b^{0}	c^{1}	d^{1}	100	1.410^{-5}
a^{1}	b^{1}	c^{0}	d^{0}	10	1.410^{-6}
a^{1}	b^{1}	c^{0}	d^{1}	100,000	0.014
a^{1}	b^{1}	c^{1}	d^{0}	100,000	0.014
a^{1}	b^{1}	c^{1}	d^{1}	100,000	0.014

Parametrization

- There is a tight connection between the factorization of the distribution and its independence properties.
- For example, $P \models(\mathbf{X} \perp \mathbf{Y} \mid \mathbf{Z})$ if and only if we can write P in the form $P(\mathcal{X})=\phi_{1}(\mathbf{X}, \mathbf{Z}) \phi_{2}(\mathbf{Y}, \mathbf{Z})$.
- From the example in Figure 2,

$$
P(A, B, C, D)=\frac{1}{Z} \phi_{1}(A, B) \phi_{2}(B, C) \phi_{3}(C, D) \phi_{4}(D, A),
$$

we can infer that

$$
\begin{aligned}
& P \models A \perp C \mid\{B, D\}), \\
& P \models B \perp D \mid\{A, C\}) .
\end{aligned}
$$

Parametrization

- Factors do not correspond to either probabilities or to conditional probabilities.
- It is harder to estimate them from data.
- One idea for parametrization could be to associate parameters directly with the edges in the graph.
- This is not sufficient to parametrize a full distribution.

Parametrization

- A more general representation can be obtained by allowing factors over arbitrary subsets of variables.
- Let \mathbf{X}, \mathbf{Y}, and Z be three disjoint sets of variables, and let $\phi_{1}(\mathbf{X}, \mathbf{Y})$ and $\phi_{2}(\mathbf{Y}, \mathbf{Z})$ be two factors.
- We define the factor product $\phi_{1} \times \phi_{2}$ to be a factor $\psi: \operatorname{Val}(\mathbf{X}, \mathbf{Y}, \mathbf{Z}) \mapsto \mathbb{R}$ as follows:

$$
\psi(\mathbf{X}, \mathbf{Y}, \mathbf{Z})=\phi_{1}(\mathbf{X}, \mathbf{Y}) \phi_{2}(\mathbf{Y}, \mathbf{Z}) .
$$

- The key aspect is the fact that the two factors ϕ_{1} and ϕ_{2} are multiplied in way that matches up the common part Y.

Parametrization

a^{1}	b^{1}	0.5						
a^{1}	b^{2}	0.8						
a^{2}	b^{1}	0.1						
a^{2}	b^{2}	0						
a^{3}	b^{1}	0.3						
a^{3}	b^{2}	0.9	\quad	a^{1}	b^{1}	c^{1}	$0.5 \cdot 0.5=0.25$	
:---:	:---:	:---:	:---:	:---:	:---:			
a^{1}	b^{1}	c^{2}	$0.5 \cdot 0.7=0.35$					
a^{1}	b^{2}	c^{1}	$0.8 \cdot 0.1=0.08$					
b^{1}	c^{2}	0.7						
b^{2}	c^{1}	b^{2}	c^{2}	$0.8 \cdot 0.2=0.16$				
b^{2}	c^{2}	0.2						
a^{2}	b^{1}	c^{1}	$0.1 \cdot 0.5=0.05$					
a^{2}	b^{1}	c^{2}	$0.1 \cdot 0.7=0.07$					
a^{2}	b^{2}	c^{1}	$0 \cdot 0.1=0$					
a^{2}	b^{2}	c^{2}	$0 \cdot 0.2=0$					
a^{3}	b^{1}	c^{1}	$0.3 \cdot 0.5=0.15$					
a^{3}	b^{1}	c^{2}	$0.3 \cdot 0.7=0.21$					
a^{3}	b^{2}	c^{1}	$0.9 \cdot 0.1=0.09$					
a^{3}	b^{2}	c^{2}	$0.9 \cdot 0.2=0.18$					

Figure 3: An example of factor product.

Parametrization

- Note that the factors are not marginals.
- In the misconception model, the marginal over A, B is

| a^{0} | b^{0} | 0.13 | | | |
| ---: | ---: | ---: | :--- | :--- | :--- | ---: |
| a^{0} | b^{1} | 0.69 | | | |
| a^{1} | b^{0} | 0.14 | | | |
| a^{1} | b^{1} | 0.04 | but the factor is | a^{0} b^{0}
 a^{0} b^{1}
 a^{1} b^{0} | 30 |
| | a^{1} | b^{1} | 10 | | |

- A factor is only one contribution to the overall joint distribution.
- The distribution as a whole has to take into consideration the contributions from all of the factors involved.

Gibbs Distributions

- We can use the more general notion of factor product to define an undirected parametrization of a distribution.
- A distribution P_{Φ} is a Gibbs distribution parametrized by a set of factors $\Phi=\left\{\phi_{1}\left(\mathbf{D}_{1}\right), \ldots, \phi_{K}\left(\mathbf{D}_{K}\right)\right\}$ if it is defined as follows:

$$
P_{\Phi}\left(X_{1}, \ldots, X_{n}\right)=\frac{1}{Z} \phi_{1}\left(\mathbf{D}_{1}\right) \times \ldots \times \phi_{K}\left(\mathbf{D}_{K}\right)
$$

where

$$
Z=\sum_{X_{1}, \ldots, X_{n}} \phi_{1}\left(\mathbf{D}_{1}\right) \times \ldots \times \phi_{K}\left(\mathbf{D}_{K}\right)
$$

is the partition function.

- The D_{i} are the scopes of the factors.

Gibbs Distributions

- If our parametrization contains a factor whose scope contains both X and Y, we would like the associated Markov network structure \mathcal{H} to contain an edge between X and Y.
- We say that a distribution P_{Φ} with
$\Phi=\left\{\phi_{1}\left(\mathbf{D}_{1}\right), \ldots, \phi_{K}\left(\mathbf{D}_{K}\right)\right\}$ factorizes over a Markov network \mathcal{H} if each $\mathbf{D}_{k}, k=1, \ldots, K$, is a complete subgraph of \mathcal{H}.
- The factors that parametrize a Markov network are often called clique potentials.

Reduced Markov Networks

- If we observe some values, $\mathbf{U}=\mathbf{u}$, in the factor value table, we can eliminate the entries which are inconsistent with $\mathrm{U}=\mathbf{u}$.
- Let \mathcal{H} be a Markov network over X and $\mathrm{U}=\mathrm{u}$ a context. The reduced Markov network $\mathcal{H}[\mathbf{u}]$ is a Markov network over the nodes $\mathbf{W}=\mathbf{X}-\mathbf{U}$, where we have an edge $X-Y$ if there is an edge $X-Y$ in \mathcal{H}.

Reduced Markov Networks

(a)

(b)

(c)

Figure 4: A reduced Markov network example. (a) Original set of factors. (b) Reduced to the context $G=g$. (c) Reduced to the context $G=g, S=s$.

Reduced Markov Networks

- Conditioning on a context U in Markov networks eliminates edges from the graph.
- In a Bayesian network, conditioning on evidence can create new dependencies.

Markov Network Independencies

- Let \mathcal{H} be a Markov network and let $X_{1} — \ldots-X_{k}$ be a path in \mathcal{H}.
- Let $\mathrm{Z} \subseteq \mathcal{X}$ be a set of observed variables.
- The path $X_{1}-\ldots-X_{k}$ is active given Z if none of the X_{i} 's, $i=1, \ldots, k$, is in \mathbf{Z}.
- A set of nodes Z separates X and Y in \mathcal{H}, denoted $\operatorname{sep}_{\mathcal{H}}(\mathbf{X} ; \mathbf{Y} \mid \mathbf{Z})$, if there is no active path between any node $X \in \mathbf{X}$ and $Y \in \mathbf{Y}$ given \mathbf{Z}.
- We define the global independencies associated with \mathcal{H} to be

$$
\mathcal{I}(\mathcal{H})=\left\{(\mathbf{X} \perp \mathbf{Y} \mid \mathbf{Z}): \operatorname{sep}_{\mathcal{H}}(\mathbf{X} ; \mathbf{Y} \mid \mathbf{Z})\right\}
$$

Learning Undirected Models

- Like in Bayesian networks, once the joint distribution is generated, any kind of question can be answered using conditional probabilities and marginalization.
- However, a key distinction between Markov networks and Bayesian networks is normalization.
- Markov networks use a global normalization constant called the partition function.
- Bayesian networks involve local normalization within each conditional probability distribution.

Learning Undirected Models

- The global factor couples all of the parameters across the network, preventing us from decomposing the problem and estimating local groups of parameters separately.
- The global parameter coupling has significant computational ramifications.
- Even the simple maximum likelihood parameter estimation with complete data cannot be solved in closed form.

Learning Undirected Models

- We generally have to resort to iterative methods such as gradient ascent.
- The good news is that the likelihood objective is concave, so the methods are guaranteed to converge to the global optimum.
- The bad news is that each of the steps in the iterative algorithm requires that we run inference on the network, making even simple parameter estimation a fairly expensive process.

