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Linear Discriminant Functions

• A classifier that uses discriminant functions assigns a

feature vector x to class wi if

gi(x) > gj(x) ∀j 6= i

where gi(x), i = 1, . . . , c, are the discriminant functions

for c classes.

• A discriminant function that is a linear combination

of the components of x is called a linear discriminant

function and can be written as

g(x) = wTx + w0

where w is the weight vector and w0 is the bias (or

threshold weight).
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The Two-Category Case

• For the two-category case, the decision rule can be

written as

Decide

{
w1 if g(x) > 0

w2 otherwise

• The equation g(x) = 0 defines the decision boundary

that separates points assigned to w1 from points

assigned to w2.

• When g(x) is linear, the decision surface is a hyperplane

whose orientation is determined by the normal vector w
and location is determined by the bias w0.
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The Multicategory Case

• There is more than one way to devise multicategory

classifiers with linear discriminant functions.

• For example, we can pose the problem as c two-class

problems, where the i’th problem is solved by a linear

discriminant that separates points assigned to wi from

those not assigned to wi.

• Alternatively, we can use c(c−1)/2 linear discriminants,

one for every pair of classes.

• Also, we can use c linear discriminants, one for each

class, and assign x to wi if gi(x) > gj(x) for all j 6= i.
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The Multicategory Case

(a) Boundaries separate wi from ¬wi.
(b) Boundaries separate wi from wj.

Figure 1: Linear decision boundaries for a four-class problem devised as four two-
class problems (left figure) and six pairwise problems (right figure). The pink regions
have ambiguous category assignments.
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The Multicategory Case

Figure 2: Linear decision boundaries produced by using one linear discriminant for
each class. wi −wj is the normal vector for the decision boundary that separates
the decision region for class wi from class wj.
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Generalized Linear Discriminant Functions

• The linear discriminant function g(x) can be written as

g(x) = w0 +
d∑

i=1

wixi

where w = (w1, . . . ,wd)T .

• We can obtain the quadratic discriminant function by

adding second-order terms as

g(x) = w0 +
d∑

i=1

wixi +
d∑

i=1

d∑
j=1

wijxixj

which result in more complicated decision boundaries

(hyperquadrics).
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Generalized Linear Discriminant Functions

• Adding higher-order terms gives the generalized linear

discriminant function

g(x) =
d′∑

i=1

aiyi(x) = aTy

where a is a d′-dimensional weight vector and d′

functions yi(x) are arbitrary functions of x.

• The physical interpretation is that the functions yi(x)
map point x in d-dimensional space to point y in d′-

dimensional space.
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Generalized Linear Discriminant Functions

• Then, the discriminant g(x) = aTy separates points

in the transformed space using a hyperplane passing

through the origin.

• This mapping to a higher dimensional space brings

problems and additional requirements for computation

and data.

• However, certain assumptions can make the problem

tractable.
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Generalized Linear Discriminant Functions

Figure 3: Mapping from R2 to R3 where points (x1, x2)T in the original space
become (y1, y2, y3)T = (x2

1,
√

2x1x2, x
2
2)

T in the new space. The planar decision
boundary in the new space corresponds to a non-linear decision boundary in the
original space.
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Generalized Linear Discriminant Functions

Figure 4: Mapping from R2 to R3 where points (x1, x2)T in the original space
become (y1, y2, y3)T = (x1, x2, αx1x2)T in the new space. The decision regions R̂1

and R̂2 are separated by a plane in the new space where the corresponding regions
R1 and R2 in the original space are separated by non-linear boundaries (R1 is also
not connected).
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Support Vector Machines

• We have seen that linear discriminant functions are

optimal if the underlying distributions are Gaussians

having equal covariance for each class.

• In the general case, the problem of finding linear

discriminant functions can be formulated as a problem

of optimizing a criterion function.

• Among all hyperplanes separating the data, there exists

a unique one yielding the maximum margin of separation

between the classes.
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Support Vector Machines

• Given a set of training patterns and class labels as

(x1, y1), . . . , (xn, yn) ∈ Rd × {±1}, the goal is to find a

classifier function f : Rd → {±1} such that f(x) = y

will correctly classify new patterns.

• Support vector machines are based on the class of

hyperplanes

(w · x) + b = 0, w ∈ Rd, b ∈ R

corresponding to decision functions

f(x) = sign((w · x) + b)
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Support Vector Machines

( c©IEEE)

Figure 5: A binary classification problem of separating balls from diamonds. The
optimal hyperplane is orthogonal to the shortest line connecting the convex hulls
of the two classes (dotted), and intersects it half way between the two classes.
There is a weight vector w and a threshold b such that the points closest to the
hyperplane satisfy |(w · xi) + b| = 1 corresponding to yi((w · xi) + b) ≥ 1. The
margin, measured perpendicularly to the hyperplane, equals 2/‖w‖.
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Support Vector Machines

• To construct the optimal hyperplane, we can define the

following optimization problem:

minimize
1
2
‖w‖2

subject to yi((w · xi) + b) ≥ 1, i = 1, . . . , n

• This constrained optimization problem is solved using

Lagrange multipliers αi ≥ 0 and the Lagrangian

L(w, b,α) =
1
2
‖w‖2 −

n∑
i=1

αi(yi((w · xi) + b)− 1)

where L has to be minimized w.r.t the prime variables

w and b, and maximized w.r.t. the dual variables αi.
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Support Vector Machines

• The solution can be obtained using quadratic

programming techniques where the solution vector

w =
n∑

i=1

αi yi xi

is the summation of a subset of the training patterns,

called the support vectors, whose αi are non-zero.

• The support vectors lie on the margin and carry all

relevant information about the classification problem

(the remaining patterns are irrelevant).
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Support Vector Machines

• Both the quadratic programming problem and the final

decision function

f(x) = sign

(
n∑

i=1

αi yi (x · xi) + b

)
depend only on the dot products between patterns.

• We can generalize this result to the non-linear case by

mapping the original input space into some other space

F using a non-linear map Φ : Rd → F and perform the

linear algorithm in the F space which only requires the

dot products

k(x,y) = Φ(x)Φ(y)
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Support Vector Machines

• Even though F may be high-dimensional, a simple

kernel k(x,y) such as the following can be computed

efficiently.
Table 1: Common kernel functions.

Polynomial k(x,y) = (x · y)p

Sigmoidal k(x,y) = tanh(κ(x · y) + θ)
Radial basis function k(x,y) = exp(−‖x− y‖2/(2σ2))

• Once a kernel function is chosen, we can substitute

Φ(xi) for each training example xi, and perform the

optimal hyperplane algorithm in F .
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Support Vector Machines

• This results in the non-linear decision function of the

form

f(x) = sign

(
n∑

i=1

αi yi k(x,xi) + b

)
where the parameters αi are computed as the solution

of the quadratic programming problem.

• In the original input space, the hyperplane corresponds

to a non-linear decision function whose form is

determined by the kernel.
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Support Vector Machines

• SVMs are quite popular because of their intuitive

formulation using computational learning theory and

their high performances in practical applications.

• However, we must be careful about certain issues such

as the following during implementation.

• Choice of kernel functions: We can use training data

to find the best performing kernel.

• Computational requirements of the quadratic program:
Several algorithms exist for speeding up the optimization

problem (see references).
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Support Vector Machines

• Extension to multiple classes: We can train a separate

SVM for each class, compute the output value using

each SVM, and select the class that assigns the unknown

pattern the furthest into the positive region.

• Converting the output of an SVM to a posterior
probability for post-processing: We can fit a sigmoid

model to the posterior probability P (y = 1|f(x)) as

P (y = 1|f(x)) =
1

1 + exp(a f(x) + b)
where the parameters a and b are learned using

maximum likelihood estimation from a training set.
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