
Structural and Syntactic Pattern
Recognition

Selim Aksoy

Bilkent University

Department of Computer Engineering

saksoy@cs.bilkent.edu.tr

CS 551, Spring 2006

Introduction

• Statistical pattern recognition attempts to classify patterns based

on a set of extracted features and an underlying statistical model

for the generation of these patterns.

• Ideally, this is achieved with a rather straightforward procedure:

I determine the feature vector,

I train the system,

I classify the patterns.

• Unfortunately, there are also many problems where patterns contain

structural and relational information that are difficult or impossible

to quantify in feature vector form.

CS 551, Spring 2006 1/46

Introduction

• Structural pattern recognition assumes that pattern structure is

quantifiable and extractable so that structural similarity of patterns

can be assessed.

• Typically, these approaches formulate hierarchical descriptions of

complex patterns built up from simpler primitive elements.

• This structure quantification and description are mainly done using:

I Formal grammars,

I Relational descriptions (principally graphs).

• Then, recognition and classification are done using:

I Parsing (for formal grammars),

I Relational graph matching (for relational descriptions).

• We will study strings, grammatical methods, and graph-theoretic

approaches.

CS 551, Spring 2006 2/46

Recognition with Strings

• Suppose the patterns are represented as ordered sequences or

strings of discrete items, as in a sequence of letters in a word or in

DNA bases in a gene sequence.

• Pattern classification methods based on such strings of discrete

symbols differ in a number of ways from the more commonly used

techniques we have discussed earlier.

• Definitions:

I String elements are called characters (or letters, symbols).

I String representation of a pattern is also called a word .

I A particularly long string is denoted text.

I Any contiguous string that is part of another string is called a

factor (or substring, segment) of that string.

CS 551, Spring 2006 3/46

Recognition with Strings

• Important pattern recognition problems that involve computations

on strings include:

I String matching: Given string x and text, determine whether

x is a factor of text, and if so, where it appears.

I String edit distance: Given two strings x and y, compute the

minimum number of basic operations — character insertions,

deletions and exchanges — needed to transform x into y.

I String matching with errors: Given string x and text, find the

locations in text where the “distance” of x to any factor of

text is minimal.

I String matching with the “don’t care” symbol: This is the

same as basic string matching but the special “don’t care”

symbol can match any other symbol.

CS 551, Spring 2006 4/46

String Matching

• The most fundamental and useful operation in string matching is

testing whether a candidate string x is a factor of text.

• The number of characters in text is usually much larger than that

in x, i.e., |text| � |x|, where each discrete character is taken from

an alphabet.

• A shift, s, is an offset needed to align the first character of x with

character number s + 1 in text.

• The basic string matching problem is to find whether there exists

a valid shift, i.e., one where there is a perfect match between each

character in x and the corresponding one in text.

• The general string matching problem is to list all valid shifts.

CS 551, Spring 2006 5/46

String Matching

• The most straightforward approach is to test each possible shift in

turn.

• More sophisticated methods use heuristics to reduce the number

of comparisons.

Figure 1: The general string matching problem is to find all shifts s for which
the pattern x appears in text. Any such shift is called valid. In this example,
x = “bdac′′ is indeed a factor of text, and s = 5 is the only valid shift.

CS 551, Spring 2006 6/46

String Edit Distance

• The fundamental idea underlying pattern recognition

using edit distance is based on the nearest neighbor

algorithm.

• We store a full training set of strings and their associated

category labels.

• During classification, a test string is compared to each

stored string, a “distance” is computed, and the string

is assigned the category label of the nearest string in

the training set.

CS 551, Spring 2006 7/46

String Edit Distance

• Edit distance between x and y describes how many of the following

fundamental operations are required to transform x and y.

I Substitutions: A character in x is replaced by the corresponding

character in y.

I Insertions: A character in y is inserted into x, thereby

increasing the length of x by one character.

I Deletions: A character in x is deleted, thereby decreasing the

length of x by one character.

x excused source string
exhused substitute h for c
exhaused insert a
exhausted insert t

y exhausted target string

Figure 2: Transformation of x = “excused” to y = “exhausted” through one
substitution and two insertions.

CS 551, Spring 2006 8/46

String Matching with Errors

• Given a pattern x and text, string matching with errors algorithm

finds the shift for which the edit distance between x and a factor

of text is minimum.

• The algorithm for the string matching with errors problem is very

similar to that for edit distance but some additional heuristics can

reduce the computational burden.

Figure 3: Finding the shift s for which the edit distance between x and an
aligned factor of text is minimum. In this figure, the minimum edit distance is 1,
corresponding to the character exchange u → i, and the shift s = 11 is the location.
CS 551, Spring 2006 9/46

String Matching with “Don’t Care”

• String matching with the “don’t care” symbol, ∅, is formally the

same as basic string matching, but the ∅ in either x or text is said

to match any character.

• The straightforward approach is to modify the string matching

algorithm to include a condition for matching the “don’t care”

symbol.

Figure 4: The problem of string matching with the “don’t care” symbol is the same
as the basic string matching except that the ∅ symbol can match any character.
The figure shows the only valid shift.

CS 551, Spring 2006 10/46

Grammatical Methods

• Grammars provide detailed models that underlie the

generation of the sequence of characters in strings.

• For example, strings representing telephone numbers

conform to a strict structure.

• Similarly, optical character recognition systems that

recognize and interpret mathematical equations can use

rules that constrain the arrangement of the symbols.

• In pattern recognition, we are given a sentence (a string

generated by a set of rules) and a grammar (the set of

rules), and seek to determine whether the sentence was

generated by this grammar.

CS 551, Spring 2006 11/46

Grammatical Methods

• Formally, a grammar consists of four components:

I Symbols: Every sentence consists of a string of characters (or

primitive symbols, terminal symbols) taken from an alphabet.

I Variables: These are called the nonterminal symbols (or

intermediate symbols, internal symbols).

I Root symbol: It is a special variable, the source from which all

sequences are derived.

I Productions: The set of production rules (or rewrite rules)

specify how to transform a set of variables and symbols into

other variables and symbols.

• For example, if A is a variable and c a terminal symbol, the rewrite

rule cA → cc means that any time the segment cA appears in a

string, it can be replaced by cc.

CS 551, Spring 2006 12/46

Grammatical Methods

• The language L(G) generated by a grammar G is the set of all

strings (possibly infinite in number) that can be generated by G.

Figure 5: The derivation tree illustrates how a portion of English grammar can
transform the root symbol into a particular sentence.

CS 551, Spring 2006 13/46

Types of String Grammars

• Type 0: Free or Unrestricted: Free grammars have no restrictions

on the rewrite rules, and thus they provide no constraints or

structure on the strings they can produce.

• Type 1: Context-Sensitive: A grammar is called context-sensitive

if every rewrite rule is of the form

αIβ → αxβ

where α and β are any strings made up of intermediate and terminal

symbols, I is an intermediate symbol, and x is an intermediate or

terminal symbol, i.e., I can be rewritten as x in the context of α

on the left and β on the right.

CS 551, Spring 2006 14/46

Types of String Grammars

• Type 2: Context-Free: A grammar is called context-free if every

production rule is of the form

I → x

where I is an intermediate symbol, and x is an intermediate or

terminal symbol, i.e., there is no need for a context for the rewriting

of I by x.

• Type 3: Finite State or Regular: A grammar is called regular if

every rewrite rule is of the form

α → zβ or α → z

where α and β are made up of intermediate symbols and z is a

terminal symbol.

• The class of grammars of type i includes all grammars of type i+1.

CS 551, Spring 2006 15/46

Recognition Using Grammars

• Suppose we are given a test sentence x that was

generated by one of c different grammars G1, G2, . . . , Gc

which can be considered as different models or classes.

• The test sentence x is classified according to which

grammar could have produced it, or equivalently, the

language L(Gi) of which x is a member.

• Parsing is the inverse process that, given a particular x,

finds a derivation in G that leads to x.

CS 551, Spring 2006 16/46

Recognition Using Grammars

• Bottom-up parsing starts with the test sentence x, and

seeks to simplify it, so as to represent it as the root

symbol.

• The basic approach is to use candidate productions

backwards, i.e., find rewrite rules whose right hand side

matches part of the current string, and replace that part

with a segment that could have produced it.

CS 551, Spring 2006 17/46

Recognition Using Grammars

• Top-down parsing starts with the root node and

successively applies productions with the goal of finding

a derivation of the test sentence x.

• Since it is rare that the sentence is derived in the first

production attempted, it is necessary to specify some

criteria to guide the choice of which rewrite rule to

apply.

CS 551, Spring 2006 18/46

Pattern Description Using Grammars

Figure 6: A 2-D line drawing picture description grammar with the set of terminal
symbols {t, b, u, o, s, ∗,¬,+} where + represents head to tail concatenation, ∗
represents head-head and tail-tail attachment, and ¬ represents head and tail
reversal. H represents heads of lines and T represents the tails. (Schalkoff, Pattern
Recognition: Statistical, Structural and Neural Approaches, 1992)

CS 551, Spring 2006 19/46

Pattern Description Using Grammars

Figure 7: Representation of a cylinder using the line drawing picture description
grammar.

CS 551, Spring 2006 20/46

Pattern Description Using Grammars

Figure 8: Representation of four characters using the line drawing picture description
grammar. (a) Pattern data. (b) Primitive representation and interconnection. (c)
Corresponding descriptions.

CS 551, Spring 2006 21/46

Pattern Description Using Grammars

• A grammar describing four blocks arranged in 2-block stacks:

VT = {table, block ,+, ↑} (terminal symbols)

VN = {DESC ,LEFT STACK ,RIGHT STACK}
(non-terminal symbols)

S = DESC ∈ VN (root symbol)

P = {DESC → LEFT STACK + RIGHT STACK

DESC → RIGHT STACK + LEFT STACK

LEFT STACK → block ↑ block ↑ table

RIGHT STACK → block ↑ block ↑ table}
(production rules)

CS 551, Spring 2006 22/46

Pattern Description Using Grammars

Figure 9: A grammar describing four blocks arranged in 2-block stacks. (i) An
example. (ii) Graphical description corresponding to (i). (iii) Another example. (iv)
Graphical description corresponding to (iii).

CS 551, Spring 2006 23/46

Pattern Description Using Grammars

• A grammar describing four blocks in 3-block and 1-block stacks:

VT = {table, block ,+, ↑} (terminal symbols)

VN = {DESC ,LEFT STACK ,RIGHT STACK}
(non-terminal symbols)

S = DESC ∈ VN (root symbol)

P = {DESC → LEFT STACK + RIGHT STACK

LEFT STACK + RIGHT STACK →
block ↑ table + block ↑ block ↑ block ↑ table

LEFT STACK + RIGHT STACK →
block ↑ block ↑ block ↑ table + block ↑ table}

(production rules)
CS 551, Spring 2006 24/46

Pattern Description Using Grammars

Figure 10: A grammar describing four blocks arranged in 3-block and 1-block
stacks. (i) An example. (ii) Graphical description corresponding to (i). (iii) Another
example. (iv) Graphical description corresponding to (iii).

CS 551, Spring 2006 25/46

Pattern Description Using Grammars

Figure 11: Tree grammar-based representation of a cube.

CS 551, Spring 2006 26/46

Pattern Description Using Grammars

Figure 12: Quadtree representation of an 8× 8 binary image.

CS 551, Spring 2006 27/46

Graph-Theoretic Methods — Definitions

• Graphical alternatives for structural representations are natural

extensions of higher dimensional grammars because graphs are

valuable tools for representing relational information.

• A graph G = {N,R} is an ordered pair represented using:

I a set of nodes (vertices), N ,

I a set of edges (arcs), R ⊆ N ×N .

• A subgraph of G is itself a graph Gs = {Ns, Rs} where Ns ⊆ N

and Rs consists of edges in R that connect only the nodes in Ns.

• A graph is connected if there is a path between all pairs of its

nodes.

• A graph is complete if there is an edge between all pairs of its

nodes.

CS 551, Spring 2006 28/46

Graph-Theoretic Methods — Definitions

• A relation from set A to set B is a subset of A×B.

• It is usually shown using a function f : A → B or b = f(a).

• For example, the relation “lies on” can contain:

R = {(floor, foundation), (rug, floor), (chair, rug), (person, chair)}.

• Note that relations have directions, i.e., the order in which an

entity appears in the pair is significant.

• Higher-order relations can be shown as ordered n-tuples that can

also be viewed as ordered pairs of an (n − 1)-tuple and a single

element, e.g., (((A×B)× C)×D).

CS 551, Spring 2006 29/46

Graph-Theoretic Methods — Definitions

• In directional graphs (digraphs), edges have directional significance,

i.e., (a, b) ∈ R means there is an edge from node a to node b.

• When the direction of edges in a graph is not important, i.e.,

specification of either (a, b) or (b, a) ∈ R is acceptable, the graph

is an undirected graph.

• A relational graph represents a particular relation graphically using

arrows to show this relation between the elements as a directed

graph.

• A semantic net is a relational graph showing all the relations

between its nodes using labeled edges.

• A tree is a finite acyclic (containing no closed loops or paths or

cycles) digraph.

CS 551, Spring 2006 30/46

Comparing Relational Graph Descriptions

• One way to recognize structure using graphs is to let each pattern

structural class be represented by a prototypical relational graph.

• An unknown input pattern is then converted into a structural

representation in the form of a graph, and this graph is then

compared with the relational graphs for each class.

• The observed data rarely matches a stored relational representation

“exactly”, hence, graph similarity should be measured.

• One approach is to check whether the observed data match a

“portion” of a relational model.

I Case 1: Any relation not present in both graphs is a failure.

I Case 2: Any single match of a relation is a success.

I A realistic strategy is somewhere in between these extremes.

CS 551, Spring 2006 31/46

Graph Isomorphism

• A digraph G with p nodes can be converted to an adjacency matrix :

I Number each node by an index {1, . . . , p}.
I Represent the existence or absence of an edge as

Adj(i, j) =

{
1 if G contains an edge from node i to node j,

0 otherwise.

• Consider two graphs G1 = {N1, R1} and G2 = {N2, R2}.
• A homomorphism from G1 to G2 is a function f from N1 to N2:

(v1, w1) ∈ R1 ⇒ (f(v1), f(w1)) ∈ R2.

• A stricter test is that of isomorphism, where f is required to be

1:1 and onto:

(v1, w1) ∈ R1 ⇔ (f(v1), f(w1)) ∈ R2.

CS 551, Spring 2006 32/46

Graph Isomorphism

• Isomorphism simply states that relabeling of nodes yields the same

graph structure.

• Given two graphs G1 and G2 each with p nodes, to determine

isomorphism:

I Label the nodes of each graph with labels 1, . . . , p.

I Form the adjacency matrices M1 and M2 for both graphs.

I If M1 = M2, G1 and G2 are isomorphic.

I Otherwise, consider all the p! possible labelings on G2.

a b c d

a 0 1 0 1
b 1 0 1 0
c 0 1 0 1
d 1 0 1 0

a’ b’ c’ d’

a’ 0 1 1 0
b’ 1 0 0 1
c’ 1 0 0 1
d’ 0 1 1 0

a” b”c” d”

a” 0 1 0 1
b”1 0 1 0
c” 0 1 0 1
d”1 0 1 0

f(a) = a′′

f(b) = b′′

f(c) = c′′

f(d) = d′′

Figure 13: An example of isomorphism of two undirected graphs with p = 4.

CS 551, Spring 2006 33/46

Graph Isomorphism

• Unfortunately, determining graph isomorphism is computationally

expensive.

• Furthermore, it is also not a practical similarity measure because it

allows only exact matches but not all existing relations for a given

class are observed in practical problems.

• G1 and G2 are called subisomorphic if a subgraph of G1 is

isomorphic to a subgraph of G2.

• Clearly, this is a less restrictive structural match than that of

isomorphism.

• However, determining subisomorphism is also computationally

expensive.

CS 551, Spring 2006 34/46

Extensions to Graph Matching

• To allow structural deformations, numerous extensions to graph

matching have been proposed.

I Extract features from graphs G1 and G2 to form feature vectors

x1 and x2, respectively, and use statistical pattern recognition

techniques to compare x1 and x2.

I Use a matching metric as the minimum number of

transformations necessary to transform G1 into G2 where

common transformations include:
– Node insertion,

– Node deletion,

– Node splitting,

– Node merging,

– Edge insertion,

– Edge deletion.

• Note that computational complexity can still be high and it may be

difficult to design a distance measure that can distinguish structural

deformations between different classes.

CS 551, Spring 2006 35/46

Relational Graph Similarity

• Given a set of nodes N , a corresponding relational description is

defined as a set of relations DN = {R1, R2, . . . , Rn} where each

Ri ⊆ N ×N (in general, Ri ⊆ N ×N × · · · ×N).

• Given two node sets A and B, with |A| = |B|, and

corresponding relational descriptions DA = {R1, R2, . . . , Rn} and

DB = {S1, S2, . . . , Sn}, the composition Ri ◦ f maps n-tuples of

A into n-tuples of B as

Ri ◦ f = {(b1, b2, . . . , bn) ∈ Bn | ∃(a1, a2, . . . , an) ∈ An}

with f(ai) = bi, i = 1, 2, . . . , n where An = A × A × · · · × A (n

times) and Bn = B ×B × · · · ×B.

CS 551, Spring 2006 36/46

Relational Graph Similarity

• Based upon the i’th relation Ri in DA and the i’th relation Si in

DB, the structural error is computed as

Ei(f) = |Ri ◦ f − Si|+ |Si ◦ f−1 −Ri|.
• Ei(f) simply measures the number of elements in Ri that are not

in Si and the number of elements of Si that are not in Ri.

• The total structural error for this mapping is the sum over all

relations

E(f) =
n∑

i=1

Ei(f)

that defines the relational distance between DA and DB as

RD(DA, DB) = min
f

E(f)

which becomes 0 when DA and DB are isomorphic.

CS 551, Spring 2006 37/46

Attributed Relational Graphs

• In addition to representing pattern structure, the representation

may be extended to include numerical and symbolic attributes of

pattern primitives.

• An attributed graph G = {N,P, R} is a 3-tuple where

I N is a set of nodes,

I P is a set of properties of these nodes,

I R is a set of relations between nodes.

• Let pi
q(n) denote the value of the q’th property of node n of graph

Gi.

• Nodes ni ∈ Ni and n2 ∈ N2 are said to form an agreement (n1, n2)
if

p1
q(n1) ∼ p2

q(n2)
where “∼” denotes similarity.

CS 551, Spring 2006 38/46

Attributed Relational Graphs

• Let ri
j(nx, ny) denote the j’th relation involving nodes nx, ny ∈ Ni.

• Two assignments (n1, n2) and (n′
1, n

′
2) are considered compatible

if

r1
j(n1, n

′
1) ∼ r2

j(n2, n
′
2) ∀j.

• Two attributed graphs G1 and G2 are isomorphic if there exists a

set of 1:1 assignments of nodes in G1 to nodes in G2 such that all

assignments are compatible.

CS 551, Spring 2006 39/46

Comparing Attributed Graph Descriptions

• A strategy for measuring the similarity between two attributed

graphs is to find node pairings using the cliques of a match graph.

• A clique of a graph is a totally connected subgraph.

• A maximal clique is not included in any other clique.

• A match graph is formed from two graphs G1 and G2 as follows:

I Nodes of the match graph are assignments from G1 to G2.

I An edge in the match graph exists between two nodes if the

corresponding assignments are compatible.

• The maximal cliques of the match graph provide starting points for

good candidate node pairings between two graphs.

CS 551, Spring 2006 40/46

Comparing Attributed Graph Descriptions

• Another similarity measure between two attributed graphs is the

editing distance which is defined as the minimum cost taken over

all sequences of operations (error corrections) that transform one

graph to the other.

• These operations are defined as substitution, insertion and deletion.

• Let G1 and G2 be two graphs where each node and edge are

assigned labels with an additional confidence value for each label.

• Let f1 be the confidence value of the label of a node in the first

graph and f2 be the confidence value of a node with the same label

in the second graph.

• The cost of node substitution is |f1 − f2| and the cost of node

insertion or deletion is f1.

CS 551, Spring 2006 41/46

Comparing Attributed Graph Descriptions

• Let g1 be the confidence value of the label of an edge in the first

graph and g2 be the corresponding value for an edge in the second

graph.

• The cost of edge substitution is |g1 − g2| and the cost of edge

insertion or deletion is g1.

• The computation of the distance between two attributed graphs

involves not only finding a sequence of error corrections that

transforms one graph to the other, but also finding the one that

yields the minimum total cost.

CS 551, Spring 2006 42/46

Comparing Attributed Graph Descriptions

(a) First image and its graph. (b) Second image and its graph.

Figure 14: The editing distance between these two graphs is computed as:

• node substitution:

I object 0 in (b) with object 0 in (a) with cost |1.0 − 1.0| = 0

I object 1 in (b) with object 1 in (a) with cost |0.4 − 0.3| = 0.1

I object 2 in (b) with object 3 in (a) with cost |0.1 − 0.2| = 0.1

• edge substitution for these nodes:

I |0.7 − 0.7| = 0, |0.3 − 0.4| = 0.1, |0.3 − 0.3| = 0

• node deletion: object 2 in (a) with cost 0.2

• edge deletion for this node: 0.5, 0.2, 0.1
Total cost of matching is 0.1 + 0.1 + 0.1 + 0.2 + 0.5 + 0.2 + 0.1 = 1.3. (Taken from Petrakis

et al. “ImageMap: An Image Indexing Method Based on Spatial Similarity,” IEEE Trans. on Knowledge and Data

Engineering, 14(5):979–987, 2002.)

CS 551, Spring 2006 43/46

Comparing Attributed Graph Descriptions

Figure 15: An example image scene and its attributed graph. Nodes correspond to
image regions marked with white boundaries and edges correspond to the spatial
relationships between these regions.

CS 551, Spring 2006 44/46

Comparing Attributed Graph Descriptions

(a) First graph. (b) Second graph.

Figure 16: The editing distance between these two graphs is computed as:

• node substitution:

I park in (a) with park in (b) with cost |0.8 − 0.9| = 0.1

I city in (a) with city in (b) with cost |0.9 − 0.9| = 0

I water in (a) with water in (b) with cost |1.0 − 1.0| = 0

• edge substitution for these nodes:

I |0.9 − 0.8| + 0.8 = 0.9, |1.0 − 1.0| + |0.8 − 0.9| = 0.1, |0.6 − 0.7| = 0.1,

• node insertion: field in (a) with cost 0.7

• edge insertion for this node: 0.4, 0.7, 0.6
Total cost of matching is 3.6.

CS 551, Spring 2006 45/46

Comparing Attributed Graph Descriptions

(a) Query scene marked using the red rectangle. (b) Query graph: red is city, green is park, blue is water.

(c) Nodes with labels similar to those in the query. (d) Subgraphs matching to the query.

Figure 17: Scene matching using attributed graphs.

CS 551, Spring 2006 46/46

