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AbstractÐGraphs are a powerful and universal data structure useful in various subfields of science and engineering. In this paper, we

propose a new algorithm for subgraph isomorphism detection from a set of a priori known model graphs to an input graph that is given

online. The new approach is based on a compact representation of the model graphs that is computed offline. Subgraphs that appear

multiple times within the same or within different model graphs are represented only once, thus reducing the computational effort to

detect them in an input graph. In the extreme case where all model graphs are highly similar, the run-time of the new algorithm

becomes independent of the number of model graphs. Both a theoretical complexity analysis and practical experiments characterizing

the performance of the new approach will be given.

Index TermsÐGraph matching, graph isomorphism, subgraph isomorphism, preprocessing.
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1 INTRODUCTION

GRAPHS are a powerful and universal data structure
useful in various subfields of science and engineering.

When graphs are used for the representation of objects in
some domain, the problem of comparing different objects to
each other can be formulated as the search for correspon-
dences between the attributed graphs representing the
objects. Such correspondences can be established by
isomorphism or subgraph isomorphism detection.

The concept of subgraph isomorphism detection has
been applied in a variety of fields. For example, it has been
used in chemical documentation systems for the compar-
ison of molecular structures [1], in case-based-reasoning for
the retrieval of cases from the case base [2], [3], in semantic
networks in combination with graph grammars [4], or in
machine learning, where it is used in order to learn
common substructures of different concepts [5], [6], [7],
[8]. In pattern recognition, subgraph isomorphism detection
was applied to Chinese character recognition [9], the
interpretation of schematic diagrams [10], [11], and seal
verification [12]. It was also combined with evidence-based
systems for shape analysis [13]. In computer vision,
subgraph isomorphism detection was used for the localiza-
tion of 3D objects in images [14], [15], [16], [17], [18] and in
robot vision [19].

The main problem with subgraph isomorphism detec-
tion is the fact that it is an NP-complete problem [20]. In
other words, the time to detect a subgraph isomorphism
between two graphs is in the worst case exponential in the
number of vertices of these graphs. In the following, we
give a short review of methods for subgraph isomorphism
detection that have been proposed in the past.

The most common technique to establish a subgraph
isomorphism is based on backtracking in a search tree. In

order to prevent the search tree from growing unnecessarily
large, different refinement procedures such as the one by
Ullman [21], forward-checking and looking-ahead [22], or
discrete relaxation [23] have been proposed. These techni-
ques are fairly stable and perform well in most cases.
Another approach is taken in [24], [25], where each possible
mapping of a vertex of the first graph onto a vertex of the
second graph is recorded in an association graph and the
detection of a possible graph match is performed by
maximal clique detection. Finally, in [26], it is proposed to
partition the graphs according to lattice theory in order to
reduce the computational complexity of the subgraph
isomorphism problem. All these methods provide an
optimal solution to the graph matching problem, but may
in the worst case become computationally intractable.

Continuous optimizations methods, on the other hand,
aim at providing a solution within a reasonable time.
However, they may not always find the optimal solution,
i.e., the mapping of model graph vertices to input graph
vertices found by a continuous optimization method not
necessarily represents a subgraph isomorphism. In [27], the
advantages and disadvantages of continuous optimization
methods such as neural networks compared to the optimal
backtracking methods are examined. Other continuous
optimization approaches include the application of simu-
lated annealing [28], genetic algorithms [29], [30], [31], and
probabilistic relaxation [32].

The methods for subgraph isomorphism detection
mentioned so far work on only two graphs at a time.
However, in many applications there is more than one
model graph that must be matched with the input graph.
Consequently, it is necessary to apply the subgraph
isomorphism algorithm to each model-input pair, resulting
in a computation time that is linearly dependent on the size
of the database. This dependency may become prohibitive if
the number of model graphs is large. Hence, some form of
organization or indexing on the database of model graphs is
needed. In [33], [34], [35], [36], a hierarchical organization of
the database is proposed which clusters the model graphs
into similarity classes. The given input graph is then used to
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index the database of model graphs by traversing the
hierarchy. However, such an indexing can only work if the
input graph is isomorphic to one of the model graphs. If the

input graph is larger than the models or contains more than
one instance of a model graph, the indexing process will not
work. Another hierarchical approach which does not have
this drawback was proposed in [37], where at the root of the

hierarchy there is a supergraph, consisting of different
subgraphs of the model graphs. At run-time, the input
graph is matched with the supergraph and the hierarchy is

traversed according to this initial match. The disadvantage
of this method, however, is that the root graph may become
much larger than the individual model graphs and, thus,
the first matching process may be more time consuming

than the sum of each individual subgraph isomorphism
detection process between a model graph and the input.
Finally, some interesting approaches have been applied in

the domain of computer vision, where multilevel indexes
are computed by precalculating all possible views of an
object into a view-description network [38], [39]. This
network can then be used to efficiently index the database

of model graphs. However, the scheme has not yet been
generalized to arbitrary graphs.

Many of the reviewed algorithms above have interesting
properties. However, no technique has been described,
which solves the problem of subgraph isomorphism
detection and the organization of large graph databases at
the same time for general labeled graphs. In this paper, we
propose a new approach to the problem of subgraph
isomorphism detection from a set of model graphs to an
input graph. Our algorithm is somewhat similar to the
RETE algorithm for forward-chaining, rule-based systems
[40]. It is based on a compact representation of the model
graphs. The representation is created offline by decompos-
ing the model graphs into a set of subgraphs. These
subgraphs are the basic elements of the new representation.
If a subgraph in the decomposition appears multiple times
in the same or in different model graphs, it is represented
only once. At run-time, the new representation is used to
efficiently detect subgraph isomorphisms from the models
to the input graph in the following manner. First, subgraph
isomorphisms for the subgraphs in the representation are
detected. These subgraph isomorphisms are then recur-
sively combined to form subgraph isomorphisms for the
complete model graphs. Due to the fact that common
subgraphs of different models are represented only once,
they are matched exactly once with the input graph. Thus,
the new algorithm is only sublinearly dependent on the
number of the model graphs.

The rest of this paper is organized in the following manner:
In Section 2, we provide basic definitions and notations. In
Section 3, the new algorithm is described in detail. In
Section 4, the computational complexity of the new algorithm
is analyzed. The results of the theoretical complexity are
confirmed in a number of practical experiments documented
in Section 5. Finally, we conclude the paper with a summary
and some remarks on the applicability of the new algorithm
in various domains. In Appendix A, Ullman's algorithm
which is used as a benchmark in this paper is briefly
described, along with a computational complexity analysis.

2 DEFINITIONS AND NOTATIONS

The algorithms presented in this paper work on labeled

graphs. Let LV and LE denote the set of vertex and edge

labels, respectively.

Definition 1. A graph G is a 4-tuple G � �V ;E; �; ��, where

. V is the set of vertices,

. E � V � V is the set of edges,

. � : V ! LV is a function assigning labels to the
vertices,

. � : E ! LE is a function assigning labels to the edges.

In this definition, the edges are directed, i.e., there is an

edge from v1 to v2, if �v1; v2� 2 E. For graphs with

undirected edges, we require �v2; v1� 2 E for any edge

�v1; v2� 2 E. The empty graph, i.e., the graph with an empty

set of vertices, will be denoted by ;.
Definition 2. Given a graph G � �V ;E; �; ��, a subgraph of G

is a graph S � �Vs; Es; �s; �s� such that

1. Vs � V
2. Es � E \ �Vs � Vs�
3. �s and �s are the restrictions of � and � to Vs and Es,

respectively, i.e.,

�s�v� � ��v� if v 2 Vs
undefined otherwise

�

�s�e� � ��e� if e 2 Es

undefined otherwise:

�
From this definition, it is easy to see that given a graph G,

any subset of its vertices uniquely defines a subgraph of G.

We use the notation S � G to indicate that S is a subgraph

of G.

Definition 3. Given a graph G � �V ;E; �; �� and a subgraph

S � �Vs; Es; �s; �s� of G, the difference of G and S is the

subgraph of G that is defined by the set of vertices V ÿ Vs. We

denote the difference of G and S by Gÿ S.

Definition 4. Given two graphs G1 � �V1; E1; �1; �1�,
G2 � �V2; E2; �2; �2�, where V1 \ V2 � ;, and a set of edges

E0 � �V1 � V2� [ �V2 � V1�
with a labeling function � : E0 ! LE , the union of G1 and G2

with respect to E0 is the graph G � �V ;E; �; �� such that

1. V � V1 [ V2

2. E � E1 [ E2 [E0
3.

��v� � �1�v� if v 2 V1

�2�v� if v 2 V2

�

4.

��e� �
�1�e� if e 2 E1

�2�e� if e 2 E2

��e� if e 2 E0

8<:
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The union of two graphs G1 and G2, with respect to a set of
edges E, according to Definition 4, will be denoted by
G1 [E G2.

Definition 5. A bijective function f : V ! V 0 is a graph
isomorphism from a graph G � �V ;E; �; �� to a graph G0 �
�V 0; E0; �0; �0� if:

1. ��v� � �0�f�v�� for all v 2 V .
2. For any edge e � �v1; v2� 2 E, there exists an edge

e0 � �f�v1�; f�v2�� 2 E0 such that ��e� � ��e0� and
for any e0 � �v01; v02� 2 E0 there exists an edge e �
�fÿ1�v01�; fÿ1�v02�� 2 E such that ��e0� � ��e�.

Definition 6. An injective function f : V ! V 0 is a subgraph
isomorphism from G to G0 if there exists a subgraph S � G0
such that f is a graph isomorphism from G to S.

Notice that graph isomorphism is a special case of subgraph
isomorphism. For the remainder of this paper, we will
assume that there is a number of a priori known graphs, the
so-called model graphs, and an input graph that is given online.
The input and model graphs will be also referred to as input
and models, for short. The problem to be solved is to find all
subgraph isomorphisms from the models to the input.

3 DECOMPOSITION-BASED SUBGRAPH

ISOMORPHISM

3.1 Overview of the Method

Given a set of model graphs G1; . . . ; GN and an input graph
GI , we want to find all subgraph isomorphisms from any of
the models to the input graph. Under a naive strategy, we
would match the input graph sequentially to each model
using, for example, Ullman's algorithm. The main dis-
advantage of this approach is that it is linearly dependent
on the number of model graphs. Moreover, it is inefficient if
different model graphs have common substructures, be-
cause these substructures will be matched with the input
graph for each model repeatedly. In order to overcome this
inefficiency, we propose a different approach.

Instead of matching each model graph individually onto
the input graph, we recursively decompose the model
graphs offline into smaller subgraphs. At run-time, these
subgraphs are matched onto the input graph and all
detected subgraph isomorphisms are combined to form
subgraph isomorphisms for complete model graphs. This
idea is similar to the RETE matching algorithm for forward
chaining production systems [40], [41]. The main advantage
of this scheme is that subgraphs that appear multiple times
in the same or in different model graphs must be matched
only once onto the input. Consequently, the corresponding
subgraph isomorphism detection process will be more
efficient than the sequential matching of the input graph
with each of the models.

The new approach consists of two parts. First, there is an
offline process in which the model graphs are recursively
decomposed and the resulting subgraphs are represented
by a special data structure. The second part is an online
process, in which an input graph is matched with the model
graphs, which are represented by the data structure

generated in the first step. In the following, we first
describe the offline decomposition of the model graphs
and the data structure for their representation. Next, the
new subgraph isomorphism algorithm that is based on this
representation and an example will be given.

3.2 Decomposing the Model Graphs

The main idea of the new approach is to recursively
decompose the model graphs into smaller subgraphs in an
offline processing step. At run-time, the subgraph iso-
morphism problem is solved in a divide-and-conquer
fashion. That is, we first look for subgraph occurrences of
parts of the models in the input graph. All such occurrences
are then successively combined to form subgraph iso-
morphisms for the complete models.

Definition 7. Let B � fG1; . . . ; GNg be a set of model graph. A
decomposition of B, D�B�, is a finite set of 4-tuples
�G;G0; G00; E�, where

1. G;G0 and G00 are graphs with G0 � G and G00 � G
2. E is a set of edges such that G � G0 [E G00.
3. For each Gi there exists a 4-tuple �G;G0; G00; E� 2

D�B� with G � Gi; i � 1; . . . ; N .
4. For each 4-tuple �G;G0; G00; E� 2 D�B� there exists no

other 4-tuple �G1; G
0
1; G

00
1 ; E1� 2 D�B� with G � G1.

5. For each 4-tuple �G;G0; G00; E1� 2 D�B�
a. if G0 consist of more than one vertex, then there

exists a 4-tuple �G1; G
0
1; G

00
1 ; E1� 2 D�B� such

that G0 � G1

b. if G00 consists of more than one vertex then there
exists a 4-tuple �G2; G

0
2; G

00
2 ; E2� 2 D�B� such

that G00 � G2

c. if G0 consists of one vertex then there exists no
4-tuple �G3; G

0
3; G

00
3 ; E3� 2 D�B� such that

G0 � G3

d. if G00 consists of one vertex then there exists no
4-tuple �G4; G

0
4; G

00
4 ; E4� 2 D�B� such that

G00 � G4.

Informally speaking, a decomposition is a recursive
partitioning of graphs into smaller subgraphs, starting with
complete models and terminating at the level of single
vertices. The first component in a 4-tuple �G;G0; G00; E� is the
graph to be decomposed, G0 and G00 are its two parts, and E
are the edges inG betweenG0 andG00 (see Conditions 1 and 2
in Definition 7). Condition 3, in Definition 7, makes sure that
every model in B is decomposed and Condition 4 implies
that a decomposition is unique. By means of Condition 5, it is
guaranteed that a decomposition is complete, i.e., the
process of partitioning a graph into two parts is continued
until individual vertices are reached. If several models
Gi;Gj; . . . have a common subgraph G, or if G occurs
multiple times in one model Gi, it is sufficient to represent G
just by one 4-tuple �G;G0; G00; E� in D�B�. This property not
only leads to a compact representation of a set of models, B,
by means of the decomposition D�B�, but it also is the key to
an efficient matching procedure at run-time.

The decomposition of a set of models will be used to
guide the search for subgraph isomorphisms from the
models to the input. If there is a 4-tuple �G;G0; G00; E� in
D�B�, then subgraph isomorphisms from G0 and G00 to the
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input will be searched for first. Once such subgraph
isomorphisms have been found, they will be combined,
whenever possible, into subgraph isomorphisms from G to
the input. This procedure is started with subgraphs G0 and
G00 that consist of single vertices only and is recursively
continued until the level is reached where G represents a
complete model.

Apparently, there exist many different decompositions
for a given set of models. This property holds even in the
case where the set of models consists of only a single graph.
One could now define an optimal decomposition being, for
example, one that contains the minimum number of
4-tuples, or one where the largest subgraph G that occurs
in all models is represented by a 4-tuple �G;G0; G00; E�.
However, the computation of such an optimal decomposi-
tion is a highly exponential problem [7]. In this paper, we
propose a decomposition algorithm which usually does not
generate an optimal decomposition, but is computationally
inexpensive.

In Fig. 1, the algorithm decomposition is displayed. The
input to the algorithm is a set B of models that are to be
decomposed and represented by the decompositionD�B�. In
the beginning, D�B� is empty. The basic idea is to
sequentially consider one model after the other and to
decompose each model G such that subgraphs of previously
decomposed model graphs are being reused for the decom-
position of G. For this purpose, the procedure decompose
given in Fig. 2 is called sequentially for each model graph G.
Note that the decompositionD�B�ÐorD ifB is not explicitly
mentionedÐis considered a global variable which retains its

contents for each call to decompose. The task of the procedure
decompose is to find the largest subgraph Smax in the model
graph G that is already represented in D.1 If Smax is
isormorphic to G, then G is already represented in D and
the algorithm exists. If G consists of a single vertex only, it
cannot be decomposed any further and the algorithm exists.
Otherwise, G is decomposed into Smax and Gÿ Smax.
Clearly, Smax has been previously treated by the algorithm
and, hence, only Gÿ Smax must be further decomposed by
calling the algorithm, recursively. If at some point in the
recursion, no subgraph ofG is already respresented byD�B�,
we randomly choose a subgraph Smax of G, for example, one
that consists of half the vertices of G for further decomposi-
tion. Finally, the tuple (G;Smax;Gÿ Smax; E) is added to D.

Although the algorithm decomposition will usually not
generate an optimal decomposition, it was shown in practical
experiments that this has no significant influence on the
performance of the run-time algorithm (see Section 5). Very
important, however, is the fact that the algorithm decomposi-
tion is incremental, i.e., given a setB of model graphs that are
represented by the decomposition D�B�, a new model graph
GN�1 can be added to the database by simply calling
decompose�GN�1�. Thus, D�B� can be updated incrementally
without the need for a complete recomputation ofD�B� from
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Fig. 1. Algorithm decomposition.

Fig. 2. Procedure decompose.

1. In order to find the largest subgraph in G that is already represented, it
is necessary to apply a subgraph isomorphism algorithm. As the decom-
position is an offline process, some conventional algorithm such as Ullman's
algorithm may be used. However, for the complexity analysis in Section 4,
we will assume that the new algorithm NA described in Section 3.3 is
applied in the decomposition process.



scratch. This is particularly of interest in applications where

large databases of graphs are involved and new model

graphs must be added to the database at run-time.

3.3 Subgraph Isomorphism Based on Graph
Decomposition

The decomposition of a set of model graphs presented in

the Section 3.2 is the basis for an efficient algorithm that
detects subgraph isomorphisms from a set of model graphs

to an input. Instead of matching each model individually

onto a given input, the new algorithm first finds all

occurrences of the individual vertices of the model in an

input graph. These occurrences are then recursively merged
into larger structures until the level of complete model

graphs is reached. There are two basic problems that must

be solved in this scheme. First, as the smallest component of

a graph is a single vertex, there must be a procedure for the
detection of subgraph isomorphisms from single vertices to

an input graph. Secondly, given a decomposition D�B� and

a 4-tuple �G;G0; G00; E� 2 D�B�, if all subgraph isomorph-

isms from G0 and G00 to the input graph have been found,
they must be combined into subgraph isomorphisms from

G to the input graph. For this purpose, a procedure for the

combination of subgraph isomorphisms is required.

In Fig. 3, the procedure vertex_test is given. It returns all
mappings of a single vertex v with label l onto an input
graph GI . The procedure simply consists of a loop over all
vertices of GI in which the label of each input graph vertex
vI is compared to the label of the model graph vertex v. If
the labels are identical then a subgraph isomorphism from v

to GI has been found and can be added to the set of
subgraph isomorphisms F .

In Fig. 4, the procedure for the combination of subgraph
isomorphisms is given. The procedure takes as input two
graphs S1; S2, an input graph GI , a set of edges E with a
corresponding edge labeling function, and two sets of
functions F1; F2 which contain all subgraph isomorphisms
from S1 and S2 to GI , respectively. Note that each edge
e 2 E describes an edge between S1 and S2, i.e., e � �v1; v2�
and v1 2 V1; v2 2 V2, or v1 2 V2; v2 2 V1. In order to combine
two functions f1 2 F1 and f2 2 F2, there are two conditions
that must be satisfied. First, the images of f1 and f2 must be
disjoint, i.e., f1�V1� \ f2�V2� � ;. Otherwise, the combination
of f1 and f2 will not be an injective function. Second, it must
be ensured that each edge that is specified in the set E is
mapped correctly onto edges in GI and vice versa. Thus, for
each edge e � �v1; v2� 2 E there must be an edge eI �
�f1�v1�; f2�v2�� 2 EI and ��e� � �I�eI�. Also, for each edge
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eI � �vI; v0I� 2 EI between f1�V1� and f2�V2� there must be
an edge e � �fÿ1

1 �vI�; fÿ1
2 �v0I�� 2 E with �I�eI� � ��e�. If both

conditions are satisfied, the functions f1 and f2 can be
combined into a subgraph isomorphism from S1 [E S2 to
the input. When all combinations of functions in F1 and F2

have been tested, the procedure terminates by outputting
the set Fs of subgraph isomorphisms from the union graph
S1 [E S2 to GI .

Based on the decomposition of a set of model graphs and

the procedures vertex_test and combine, we can formulate the

new subgraph isomorphism algorithm (Fig. 5). The input to

the algorithm consists of a decomposition D�B�, which

represents the model graphs B � fG1; . . . ; GNg and an

input graph GI . Informally speaking, the algorithm must

first search for subgraph isomorphisms from the smallest

components described in the decomposition D�B� to the

input graph GI and then gradually combine them into

larger subgraph isomorphisms. In order to keep track of the

components that have been matched already with the input

graph, each subgraph S; S0 or S00 occurring in a 4-tuple

�S; S0; S00; E� in D�B� can be marked with one of three

different tags. In the beginning, all subgraphs in the

decomposition are marked unsolved. As soon as a subgraph

has been tested for subgraph isomorphisms with the input

graph, it is either marked alive or dead. If the search for

subgraph isomorphisms was successful, then the subgraph

is marked alive and all detected subgraph isomorphisms are

associated with it. Otherwise, the subgraph is marked dead

and no subgraph isomorphisms are associated with it. First,

in Step 3a and Step 3b, the algorithm loops over all

components of the model graphs that consist of only one

vertex and calls the procedure vertex_test for each of these

components. Notice that if a vertexÐor, more precisely, a

particular vertex labelÐappears multiple times in the same

or different model graphs, the decomposition represents

this vertex only once and, thus, vertex_test is called exactly

once for this type of vertex. Next, in Steps 4a, 4b, 4c, and 4d,

each graph S is considered which is marked unsolved, but

decomposed into two subgraphs S1; S2 which have been

previously tested and successfully matched to the input

graph. The subgraph isomorphisms that are associated with

S1 and S2 are combined into possible subgraph isomorph-

isms for S by calling the procedure combine. If the set of

subgraph isomorphisms returned by combine is empty, then

S is marked dead and, consequently, for each model graph

which contains S as a subgraph, there exists no subgraph

isomorphism to the input graph. On the other hand, if the

returned set F of subgraph isomorphisms is not empty then

S is marked alive. This process continues until either all

4-tuples in D�B� have been tested or no 4-tuple can be

found in Step 4a for which both subgraphs are marked alive.

In this case, the search for further subgraph isomorphisms

can be terminated immediately. Finally, in Step 5, all

subgraph isomorphism that have been found for the model

graphs represented by D�B� are output.
It is easy to see that the new algorithm finds all subgraph

isomorphisms from each of the model graphs G1; . . . ; GN to
the input graph GI . Furthermore, if a subgraph S is part of
several model graphs and represented by the decomposi-
tion, i.e., there is a 4-tuple �S; S1; S2; E�, then the computa-
tion of all subgraph isomorphisms from S to the input
graph GI is done only once.

3.4 An Example

In order to illustrate the new algorithm, we give a detailed
example. In Fig. 6, two model graphs, g1 and g2, and an
input graph, g3, are shown. In Fig. 7, the decomposition of
g1 and g2 is graphically represented by a network. The
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network is displayed with vertices of the model graphs in
the top layer. Below are subgraphs of the models that
consist of more than one vertex. The complete models are
represented at the bottom of the network. The numbers to
the right of each network node are identifiers. At the top of
the network, the five different vertex labels occurring in g1

and g2 are represented. Notice that, for example, the vertex
with label d represented in node 2 appears in both g1 and g2.
It appears, however, only once in the decomposition. On the
second level in Fig. 7, a subgraph that is decomposed into
two vertices with label d and a, respectively, and an edge
connecting them is represented. This subgraph occurs in
both g1 and g2. In network node 7, the largest common
subgraph of g1 and g2 is represented. It is decomposed into
the subgraph represented in node 6, a vertex represented in
node 4, and an edge. Finally, network nodes 8 and 9
represent models g1 and g2, respectively.

At run-time, given the input graph g3, the algorithm NA
described in Section 3.3 first tries to find all subgraph
isomorphisms for the vertices represented in the top nodes
of the network. For example, the vertex labeled d can be
matched onto the vertices 1 and 3 of g3. Consequently, there
are two subgraph isomorphisms associated with the node 2
(denoted by f1g and f3g below the node 2 in Fig. 7). Next,
for each subgraph in the decomposition whose components
have already been successfully tested, the algorithm tries to
combine the subgraph isomorphisms of its components. In
node 6, the subgraph isomorphisms f1g and f3g associated
to node 2 and f2g and f6g associated to node 3 are
combined. However, only the combinations f12g and f32g
are valid subgraph isomorphisms from the graph in
network node 6 to the input graph g3. Because of the
existence of these two subgraph isomorphisms, network
node 6 is marked alive and, consequently, the subgraph in
node 7 will be tested next. This process continues until a

single subgraph isomorphism, f1; 254g, has been found
from the graph g2 to the input graph g3. It can be easily
verified that no other subgraph isomorphism from either g1

or g2 to g3 exists.

4 COMPUTATIONAL COMPLEXITY ANALYSIS

In this section, we give a detailed analysis of the run-time
complexity of the new algorithm for subgraph isomorphism
detection and of the algorithm for the decomposition of the
model graphs. The analysis will be based on the following
quantities:

N � the number of model graphs in the database,
M1 � the number of vertices of a subgraph that is common

to all models,
M2 � the number of vertices that are unique to each

model,
M � the total number of vertices of a model graph, i.e.,

M �M1 �M2,
I � the number of vertices in the input graph.

Due to the fact that the decomposition algorithm makes
extensive use of some subgraph isomorphism algorithm
(Step 3 in Fig. 2), its performance is strongly dependent on
the performance of the applied algorithm. For this reason,
we first study the computational complexity of the
subgraph isomorphism algorithms and then examine
complexity of the proposed decomposition algorithm.

In our analysis, we only consider the idealized situation
where the model graphs have a single subgraph of size M1

in common. In practice, the situation will usually be more
complicated due to the existence of subgraphs that are
common to some, but not all models. Furthermore, for
reasons of convenience, we assume that the model graphs
are decomposed as follows: Given a model graph G and S,
the subgraph of G which is common to all the graphs, we
assume that the decomposition contains an entry
�G;S;Gÿ S;E�. That is, the graph G is decomposed into
the common subgraph S and the difference graph Gÿ S.
The graph S is then decomposed into a subgraph Si that
consists of a single vertex and the difference graph S ÿ Si,
which is again decomposed into a single vertex and the
remaining difference graph. This process is continued until
the difference graph itself consists of a single vertex only.
The same decomposition scheme is applied to the graph
Gÿ S. Consequently, for a common subgraph of M1

vertices, there are M1 ÿ 1 4-tuples �S1; S
0
1; S

00
1 ; E� where

S1; S
0
1 and S001 are subgraphs of S. S1 consists of k, S01 of kÿ 1

and S001 of one vertex, k � 2; . . . ;M1. Analogously, there are
M2 ÿ 1 4-tuples in the decomposition of the difference
graph Gÿ S, which consists of M2 vertices.2 Based on this,
decomposition of the model graphs it is possible to analyze
the computational complexity of the new algorithm NA
given in Fig. 5. The computation steps that are performed
can be estimated in terms of the number of calls to the
procedure vertex_test times the complexity of vertex_test,
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2. It must be mentioned that the algorithm decomposition given in
Section 3.2 usually does not decompose the model graphs the way it is
assumed here. However, the results of the complexity analysis were
confirmed in a number of practical experiments documented in Section 5.

Fig. 6. Two model graphs g1; g2 and an input graph g3.



and the number of calls to the procedure combine times the
complexity of combine itself. In Table 1, an overview of the
theoretical boundaries for both the new algorithm and, for
comparison reasons, Ullman's algorithm [21] is given. (A
complexity analysis of Ullman's algorithm is given in
Appendix A.)

The best case for both algorithms arises when each of the
vertices of the model graphs is uniquely labeled. For a single
model graph, there will be M different vertices and conse-
quently, the procedure vertex_test will be calledM times. Each
call will test I vertices of the input graph and, thus, cause a
total number ofO�IM� steps. The number of matchings found
by vertex_test of a single model graph vertex onto the input
graph will be bounded by O�I=M�. There will O�M� calls to
the procedure combine, i.e., for each 4-tuple �S1; S

0
1; S

00
1 ; E�

there will be a call combine�S01; F 01; S001 ; F 001 ; E;GI�, where S01
consists of kÿ 1 and S001 of one vertex. Because all vertices are
uniquely labeled, F 01 contains at most one subgraph iso-
morphism and there will beO�I=M� subgraph isomorphisms
in F 001 . In the procedure combine, each mapping in F 01 is
combined with each mapping inF 001 . Comparing the images of
the mappings takesO�k� steps and testing each edge between
S01 and S001 takes O�k� steps with k �M. Thus, the total
computational complexity for matching a single model graph
against an input graph is in the best case bounded by:

O�IM �M2I=M� � O�IM�: �1�
When N model graphs must be matched onto the input
graph, there will be O�IM1� steps performed for the
common subgraph S and O�NIM2� steps for each differ-
ence graph Gi ÿ S of the N model graphs. Additionally, for
each model graph the subgraph isomorphisms found for
the common subgraph and the difference graph must be
combined, requiring O�NM1M2� steps at most. Thus, the
computational complexity of the new algorithm for finding

all subgraph isomorphisms from N model graphs to an
input graph is in the best case bounded by:

O�IM1 �NIM2 �NM1M2�: �2�
In the extreme case where there is no common subgraph
among the model graphs, i.e., M1 � 0 and M2 �M, the
complexity is bounded by:

O�NIM�: �3�
On the other hand, in the limit when all models are
identical, i.e., M1 �M and M2 � 0, the complexity of the
new algorithm becomes independent of the number of
models and is only bounded by:

O�IM�: �4�
The worst case for both the new and the traditional

algorithm arises when all vertices in the model graphs have
the same label and each vertex is connected to each other
vertex. Given a single model graph, the new algorithm
makes only one call to the procedure vertex_test as there is
only one vertex label. Each of the model vertices is then
successfully matched onto O�I� input graph vertices and,
consequently, there are O�I� subgraph isomorphism re-
turned by vertex_test. These subgraph isomorphisms con-
stitute the input to the first call of the procedure combine in
which O�I2� subgraph isomorphisms are found at the
expense of O�M� steps. Next, according to the decomposi-
tion described at the beginning of this section, there will be
M calls to combine. For each call, the number of subgraph
isomorphisms that must be combined will be increased by a
factor of I. Consequently, the total number of steps for a
single model graph amounts in the worst case to

O�I �MIMM� � O�IMM2�: �5�
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Fig. 7. Decomposition of graphs g1; g2 from Fig. 6 displayed as a network structure.



For a database of N model graphs, the total effort is the sum
of the effort for testing the common subgraph and the effort
for testing the subgraphs that are unique to each model
graph. The common subgraph is tested exactly once at the
expense of O�IM1M2

1 �, while the unique subgraph must be
tested for each model graph individually at the expense of
O�IM2M2

2 �. By adding O�NM1M2I
M� steps necessary for the

combination of the subgraph isomorphisms, we arrive at a
total complexity for N model graphs of

O�IM1 M2
1 �NIM2 M2

2 �NM1M2I
M�: �6�

In the extreme case, when the database consists of completely
different model graphs only, i.e.,M1 � 0;M2 �M, the above
formula becomes

O�NIMM2�: �7�
On the other hand, if all models are identical, i.e.,
M1 �M;M2 � 0, the size of the database, N , disappears
in (6) and the worst case complexity of the new algorithm
becomes

O�IMM2�: �8�
When compared to the computational complexity of
Ullman's algorithm given in the second column of Table 1,
we note that both in the best and worst case the new
algorithm is faster than the traditional algorithm by a factor
of N for similar model graphs in the limit. On the other
hand, given a set of completely disjoint model graphs both
algorithms have the same computational complexity. In
practice, we can expect the computational complexity
somewhere between O�IM� and O�NIMM2�.

While the run-time complexity of the new subgraph
isomorphism algorithm is of general importance, the
complexity of the decomposition algorithm is only relevant
to applications which cannot neglect the time spent for
preprocessing. For example, in applications where some
models are known beforehand, but others are only acquired
at run-time, the time spent for decomposing and adding the
new models to the existing decomposition may be
restricted. Thus, the performance of the decomposition
algorithm will become important.

Given a set of models B � fG1; . . . ; GNg and a decom-
position D�B� of B, a new model G is decomposed and
added to D�B� by calling the procedure decompose(G). The
basic idea of this procedure is to find a tuple �Gi;G

0
i; G

00
i ; E�

in D�B� such that Gi is a subgraph of G and maximal in
D�B�. In case of success, the model G is decomposed into Gi

and the difference graph GÿGi which will be decomposed
itself by recursively calling the procedure decompose.
Clearly, the computational complexity of the decomposition
process depends on the number of calls to decompose and the
complexity of the search for the largest subgraph in
decompose. It is easy to see that for a graph G with
M vertices, any decomposition of G consists of at most
O�2M� � O�M� subgraphs. As each of these subgraphs
must be decomposed itself (unless it is already represented
in D�B�) the number of calls to decompose is at most O�M�.
In each call to decompose, a search for the largest subgraph of
G that is already represented in D�B� is performed. This
search process requires that for each tuple �Gi;G

0
i; G

00
i ; E� in

D�B� a subgraph isomorphism from Gi to G is computed.
Apparently, if these subgraph isomorphisms are computed
with a conventional algorithm such as Ullman's algorithm,
then the complexity of the search process will be linearly
dependent on the number of tuples in D�B�. However, due
to the fact that the algorithm NA was especially designed to
solve the subgraph isomorphism problem based on a
decomposition of the model graphs, it can also be applied
in the decomposition algorithm itself. That is, given a
decomposition D�B� and a model graph G, the decomposi-
tion algorithm calls the algorithm NA in order to find all
subgraph isomorphisms from graphs in D�B� to G.
Consequently, the computational complexity of the search
process in decompose depends on the computational com-
plexity of the new algorithm NA (see Table 1). Note that the
number of vertices in the input graph is denoted by I in
Table 1. However, when NA is applied in the decomposi-
tion algorithm, the input graph is in fact a model graph and,
therefore, I �M. This means that in the best case, when all
the models are identical and their vertices are uniquely
labeled, the number of steps performed in decompose is
bounded by O�M2� (see (4)). As there are O�M� recursive
calls to decompose the total number of steps for the
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TABLE 1
Best and Worst Case Complexities of the New and the Traditional Algorithm



decomposition of a model graph with M vertices is in the
best case bounded by O�M3�. Notice that in order to
decompose a complete set of model graphs from scratch,
the procedure decompose is sequentially called for each of
these models. Thus, in the best case, the computational
complexity for decomposing a set of N models is bounded
by:

O�NM3�: �9�
From the previous complexity analysis of the algorithm

NA, we know that the worst case arises when all the graphs
are completely different and the vertices of each graph are
identically labeled. Thus, according to the worst case
complexity of algorithm NA given in (7), the number of
steps in decompose is bounded by O�NIMM2� � O�NMM�2�
for I �M. As there are O�M� subgraphs in a decomposition
of a model with M vertices, the computational complexity
of the decomposition algorithm is in the worst case
bounded by O�NMM�3�. Again, if there is a set of models
that must be decomposed from scratch, the procedure
decompose will be called for each of these models individu-
ally and the worst case complexity will be bounded by:

O�N2MM�3�: �10�
Notice that in spite of the exponential worst case complexity
of the proposed decomposition algorithm, it is our
experience that it performs reasonably well for most
applications (see Section 5).

5 EXPERIMENTAL RESULTS

In order to examine the performance of the new algorithm
in practice, we have performed a number of experiments
with randomly generated graphs. The new algorithm (NA)
and Ullman's refinement procedure (UA) were both
implemented in C++ and run on a SUN Sparc10 Work-
station. The code of NA consists of roughly 7,000 lines
compared to 2,500 lines of UA.

All model and input graphs were randomly generated.
The parameters in the random graph generation process
were:

. the number of vertices,

. the number of edges,

. the number of different vertex labels (all edges were
unlabeled and undirected),

. the number of graphs in the database,

. the size of the common subgraph that was contained
in all models.

In our experiments, we automatically generated model
graphs based on these parameters. From each model graph,
a corresponding isomorphic input graph was derived by
copying and permuting its vertices and edges. Both NA and
UA were then used to detect all graph isomorphisms from
the models to the inputs. In order to account for the random
nature of the underlying graphs, each experimental run was
repeated ten times and the average computation time was
recorded as a result. By varying different parameters in the
graph generation process, the behavior of the new
algorithm was studied. In Table 2, an overview of the
experiments is given, indicating the different parameter
values used in each specific experiment.

In the first experiment, we were interested in measuring
the influence of the size of the graphs and the database on
the performance of both algorithms. We started with a
database consisting of a single graph with 10 vertices and
12 edges. The number of vertex labels was set to 10. We
gradually increased the number of graphs in the database to
20 and we also increased the number of vertices from 10 to
50 together with the number of edges from 12 to 60. In Fig. 8,
the results for NA (lower plane) and UA (upper plane) are
shown. Apparently, the performance of UA became worse
than that of NA with an increasing graph as well as an
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TABLE 2
Parameters of the Various Experiments

Fig. 8. Time in seconds for increasing the number of vertices and the

size of the database. (The lower plane denotes the time of NA, while the

upper plane represents the time of UA.)



increasing database size. In Fig. 9, a cut through the 3D-plot
along the axis for one model in the database is shown. We
can observe that for a single model graph, UA is slightly
faster than NA. However, if the database contains more
than one model graph, the ability to compactly represent
common substructures will make NA eventually faster than
UA. This is confirmed in Fig.10, where the number of
graphs in the database was fixed at 20. The observation that
UA's performance decreases faster than that of NA for a
growing number of vertices is explained by the fact that by
increasing the size of the model graphs while leaving the
number of labels constant, there will be a growing number
of substructures that occur multiple times within the same
or different models. These substructures need to be
considered only once by NA. UA, however, must search
for these substructures each time they appear in a model
graph.

In Fig. 11, a cut through Fig. 8 with the number of
vertices fixed at 50, shows the influence of the database size
more closely. As was expected from the complexity
analysis, UA was linearly dependent on the size of the
database, while NA's behavior was almost independent of
the number of models.

In this first experiment, there were between one and
five vertices with identical labels in each graph on the
average. Therefore, many of the generated model graphs
had some random substructures in common. In the second

experiment, the effect of sharing common substructures
among models was examined more closely. For this
purpose, we generated model graphs consisting of 50 ver-
tices and approximately 60 edges and increased the number
of models from one to 20 and the size of the common
subgraph from five to 45 vertices. Except for the common
subgraph, all models were disjoint, i.e., except for the
vertices of the common subgraph for which 15 different
labels were allocated, the vertices of the model graphs were
all uniquely labeled. The results of the second experiment
are given in Fig. 12, where the lower plane at the front
corner denotes the times of NA while the upper plane
represents UA. Clearly, the intersection of the two planes
indicates that for a small or no common subgraph in the
different models the performance of NA was slightly worse
than that of UA. But for an increasing size of the common
subgraph, the time needed by NA decreased and became
much less than that required by UA.

In Fig. 13, a cut through Fig. 12 along the common
subgraph axis is displayed. The size of the database was set
to 20. We observe that if the common subgraph contained
less than 15 vertices, NA performed worse than UA.
However, for larger common subgraphs the time required
by NA decreased rapidly while UA's time requirement
increased. Note that in both Fig. 12 and Fig. 13, the database
contained at most 20 models. It may be expected that even
for small subgraphs there is a size of the database for which
NA outperforms UA. Fig. 14 demonstrates this behavior. It
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Fig. 9. Cut through Fig. 8 along the vertex axis for one model graph in

the database.

Fig. 10. Cut through Fig. 8 along the vertex axis for 20 model graphs in

the database.

Fig. 11. Cut through Fig. 8 along the database axis for 50 vertices in the

model graphs.

Fig. 12. Time in seconds for an increasing number of vertices in the
common subgraph and an increasing size of the database. (The lower
plane in the front corner denotes the time of NA, while the upper plane
represents the time of UA.)



shows a cut through Fig. 12 along the database axis with the
common subgraph size set to five vertices. As an extension
of the results shown in Fig. 12, the size of the database was
varied between 1 and 40. For a database size of 30 models,
the run-time of the two algorithms was identical and for
larger databases NA performed better than UA. This
indicates that NA is more efficient than UA even for small
common subgraphs provided that the number of models in
the database is sufficiently large.

In the first and second experiment, we always kept the
number of vertex labels constant. In the third experiment,
this number was varied. All generated graphs contained
50 vertices and 60 edges. The number of vertex labels grew
from 1 to 40 and again, we increased the size of the database
from 1 to 20. The results are displayed in Fig. 15. The lower
(upper) plane in the right corner corresponds to NA (UA). It
can be observed that the two planes intersect each other.
That is, the performance of NA became worse than that of
UA when less than five labels were present. The line of
intersection of the two planes grows with the number of
graphs in the database as expected. In Fig. 16, a cut through
Fig. 15 along the axes for the labels is shown, with the
database size set to 10. Between 10 and 40 labels, the
performance of NA and UA changed only minimally and
NA was always faster. However, for less than five labels,
NA took much more time to finish than UA. The worst case
emerged for NA when there was only one vertex label, i.e.,
all vertices were identically labeled. In this case, NA
required an average of 12 minutes in order to detect all
graph matches. This decrease in the performance of NA is

due to the fact that for unlabeled graphs, the number of
matches that are found for small subgraphs of the model
graphs is usually very large. Thus, the concept of the new
algorithm to first test the smaller components of the model
graphs and then to combine them into subgraph isomorph-
isms for larger components is a major disadvantage when
the underlying graphs are unlabeled. Consequently, the
worst case behavior, as described in the complexity analysis
section can be observed in Fig. 15 and Fig. 16. Obviously,
NA tends towards the worst case behavior faster than UA
for a decreasing number of labels.

In the fourth experiment, the influence of the connectiv-
ity, i.e., the number of edges in a graph, was examined. In
all of the previous experiments, the average degree of each
vertex was kept at 2:5. For the experiment documented in
Fig. 17, the graphs consisted of 50 vertices, 10 vertex labels,
and a gradually increasing number of edges, starting at 50
and ending at 120. Similar to the previous experiments, we
also varied the number of models in the database from 1 to
10. In Fig. 17, the lower plane (upper plane) in the left
corner denotes the times of NA (UA). Apparently, the
performance of NA decreased with a growing number of
edges in the graphs. In Fig. 18, a cut through Fig. 17 is taken
along the axis denoting the number of edges with the
number of graphs in the database fixed at 10. There was
practically no influence of the number of edges on the
performance of UA in the considered range. However, the
computation time of NA increased fast with the number of
edges. This behavior is due to the fact that with a high
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Fig. 13. Cut through Fig. 12 along the common subgraph axis with the

size of the database set to 20.

Fig. 14. Cut through Fig. 12 along the database axis with the size of the

common subgraph set to 5.

Fig. 15. Time in seconds for increasing number of labels and size of the

database. (The lower plane in the right corner denotes time of NA while

the upper plane represents UA.)

Fig. 16. Cut through Fig. 15 along the labels axis with 10 model graphs

in the database.



connectivity, the number of small subgraphs of a graph that
can be matched onto themselves is large. On the other hand,
the tendency of UA to spend more time than NA for larger
databases was again confirmed in Fig. 19, where a cut of
Fig. 17 along the axis denoting the size of the database is
shown. The number of edges was constantly set to 100. We
observe that for less than seven models in the database, NA
was slower than UA. For more than seven models, the
sharing of common subgraphs in NA and the linear
dependency of UA on the size of the database resulted in
UA taking more time than NA.

While in the first four experiments, we examined the
behavior of NA for the case of graph isomorphism, the fifth
experiment was especially devoted to subgraph isomorph-
ism detection. The models generated for this experiment
consisted of 50 vertices, 10 different vertex labels, and
60 edges. For each model graph, a corresponding input graph
was created by copying the model and subsequently adding a
growing number of vertices and edges. Thus, it was ensured
that there existed at least one subgraph isomorphism from the
model to the input. The number of additional vertices in the
input graph was varied between 0 and 250, i.e., in the
beginning, the input graphs consisted of 50 and in the end of
300 vertices. At the same time, the number of models in the
database was also increased from 1 to 20. The results of the

fifth experiment are given in Fig. 20. Note that the lower plane
in the left corner denotes the time of NA while the upper plane
represents UA. As expected, both NA and UA used more time
for a growing input graph and a growing database. However,
while UA performed better than NA when there were only
few models in the database, the linear dependency on the
database size caused UA to take more time than NA when
there were more than ten models. In Fig. 21, a cut through Fig.
20 along the axis of the input graph for a database containing
one model is given. It confirms that NA did not perform as
well as UA for finding all subgraph isomorphisms from a
model to a growing input graph. On the other hand, in Fig. 22,
a cut through Fig. 20 along the database axis with the input
graph constantly set to 300 vertices reveals that due to the
compact representation of the models, NA used less time than
UA when the database size was increased.

In all the experiments documented so far, the perfor-
mance of UA and NA were studied for model graphs and
databases of moderate sizes. The next two experiments
were devoted to testing the behavior of both algorithms for
very large graphs on the one hand and very large databases
on the other hand. In Fig. 23, the size of the model and input
graph was increased from 50 to 500 vertices along with the
number of edges that was increased from 60 to 600 edges.
There were 30 different vertex labels used, i.e., for a graph
with 300 vertices there were on the average 10 vertices with
the same label. The database consisted of a single model
graph. We can observe that the performance of UA
decreased much faster than NA's performance. While UA
matched graphs with 250 vertices within 30 seconds, NA
was capable of matching graphs twice as large in the same
time. This behavior can again be explained by the fact that
with an increasing number of vertices (and a constant
number of labels) the number of substructures that appear
multiple times inside the same model graph grows.
Although the algorithm decomposition that was proposed
for the offline decomposition of the models usually does not
detect all of these substructures and represents them only
once, the resulting decomposition is still fairly compact and
allows NA to perform better than UA. Most important,
however, is that decomposition is computationally inexpen-
sive. For example, the decomposition of a graph with 50
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Fig. 17. Time in seconds for increasing number of edges and size of the

database. (The lower plane in the left corner denotes the time of NA

while the upper plane represents UA.)

Fig. 18. Cut through Fig. 17 along the edges axis with 10 model graphs

in the database.

Fig. 19. Cut through Fig. 17 protect along the database axis with 100

edges in the model graphs.



vertices and 60 edges took only 0.21 seconds, and for a
graph with 500 vertices and 600 edges only 70 seconds were
required (not documented here).

Next, in Fig. 24, the number of model graphs in the
database was increased from 1 to 100. As in the very first
experiment (Fig. 8) the graphs consisted of 50 vertices and
60 edges with 10 vertex labels. Note that with NA even
large databases remain tractable (about 1 second) while UA
requires time that is linearly dependent on the database
(15 seconds for 100 models).

Finally, in the eighth experiment, we studied the
influence of the decomposition algorithm on the perfor-
mance of NA. In Section 3.2, it was observed that there
exists a large number of different decompositions of a set of
model graphs. These decompositions differ in terms of
compactness and also in terms of the run-time performance
of NA. For example, it can be hypothesized that the optimal
decomposition, i.e., the decomposition which contains a
4-tuple �Gc;G

0
c; G

00
c ; Ec� for the largest subgraph Gc that

appears in all the model graphs, will guarantee the optimal
run-time performance of NA. However, as mentioned
before, the computation of the optimal decomposition is a
highly exponential task. Thus, in Section 3.2, we proposed

the algorithm decomposition which is computationally
inexpensive. The drawback of this algorithm, however, is
that it does not necessarily generate an optimal decomposi-
tion for a given set of models. Furthermore, as the models
are treated sequentially, the resulting decomposition is
dependent on the order of the models in the database. In
order to study the difference in the performance of NA for
an optimally decomposed database of models, on the one
hand, and for a nonoptimal decomposition of the same
database on the other hand, the following experiment was
performed. We generated a database containing 20 model
graphs, each consisting of 50 vertices, 60 edges, and
10 different vertex labels. Furthermore, a subgraph Gc with
30 vertices and 40 edges that appeared in all the model
graphs was explicitly defined. Thus, it was possible to
simulate the result of an optimal decomposition algorithm
by taking the largest common subgraph Gc directly from the
graph generation process. The input graphs were iso-
morphic copies of the model graphs. The performance of
NA for detecting all graph isomorphisms from the models
to the inputs based on this optimal decomposition was
compared to its performance when the proposed, non-
optimal algorithm decomposition was applied. In Fig. 25, the
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Fig. 20. Time in seconds for increasing number of vertices in the input and size of the database. (The lower plane in the left corner denotes the time

of NA while the upper plane represents UA.)

Fig. 21. Cut through Fig. 20 along the input graph axis with 1 model in

the database.

Fig. 22. Cut through Fig. 20 along the database axis with 300 vertices in

the input graph.



computation time of NA for both types of decompositions is
given for various permutations of the models in the
database. While the optimal decomposition was indepen-
dent of the order of models, the proposed decomposition
algorithm generated different decompositions for different
orderings of the models and the performance of NA varied
accordingly. With the optimal decomposition, NA per-
formed faster than with the decompositions produced by
algorithm decomposition. However, the average (maximum)
difference in the performance is 14 percent (31 percent)
compared to the optimal decomposition. Considering the
fact that UA required more than 2 seconds in this
experiment (not documented here), i.e., 870 percent more
than NA based on the optimal decomposition, we can
conclude that NA outperforms UA independent of the
decomposition strategy that is used. Hence, it can be argued
that the advantages of the proposed decomposition algo-
rithm (incremental update, computationally inexpensive)
outweigh the disadvantages (nonoptimal decomposition).

6 SUMMARY AND CONCLUSION

In this paper, a new algorithm for efficient subgraph

isomorphism detection was proposed. The new algorithm

is based on the idea of finding common subgraphs among

different model graphs or within a single model graph. In

an offline preprocessing step, these common subgraphs are

recorded and at runtime they are used to efficiently detect

subgraph isomorphisms from all model graphs to some

input graph. In a theoretical complexity analysis it was

shown that in the limit, when all model graphs are highly

similar, the new method becomes independent of the size of

the database. In order to verify the results of the theoretical

complexity analysis, we performed a number of practical

experiments with randomly generated graphs. The experi-

ments confirmed that for model graphs with some common

substructures the new algorithm is only sublinearly

dependent on the size of the database. Furthermore, it

was observed that for large model graphs the new

algorithm is faster than traditional algorithms due to

reappearing substructures that naturally evolve in large

graphs. On the other hand, the experiments also documen-

ted that for unlabeled, highly connected graphs, the new

algorithm performs poorly.
We conclude that the new algorithm presented in this

paper is highly recommended for applications where we
are faced with large databases of large labeled graphs with
restricted connectivity. By contrast, the new algorithm
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Fig. 23. Computation time for an increasing number of vertices in the

model graphs.

Fig. 24. Computation time for an increasing number of models in the

database.

Fig. 25. Computation time for various decompositions of the set of model graphs.



should not be applied to problems dealing with unlabeled,
highly connected graphs, to databases of completely
disjoint graphs, or to problems where the input graph is
considerably larger than the model graphs. We feel that the
new algorithm is a substantial contribution to the problem
of efficient subgraph matching. The algorithm has been
presented in a general form without the explicit use of
domain features or heuristics. Therefore, it can be regarded
a generic tool that is applicable to various tasks. The
extension of the new algorithm to error-tolerant subgraph
isomorphism detection is currently under investigation. At
last, it is to be mentioned that there is a potential for
parallelization inherent in the new approach, which may be
used for a further improvement of the performance [42].

APPENDIX A

COMPLEXITY OF ULLMAN's ALGORITHM

In order to understand the complexity analysis of Ullman's
algorithm [21] given in this appendix, we first briefly describe
the algorithm itself. The basic idea of Ullman's algorithm is to
take one vertex of a model after the other and map it onto the
input vertices such that the resulting mapping represents a
subgraph isomorphism according to Definition 6. If, at some
point in the algorithm, the mapping does not represent a
subgraph isomorphism then the algorithm backtracks and
tries another mapping. Formally, given a model G �
�V ;E; �; �� and an input GI � �VI; EI; �I; �I�, the first vertex
v1 in V is mapped to some vertex wi in VI . If ��v1� � �I�wi�
then the partial mapping f�v1; wi�g represents a subgraph
isomorphism and the algorithm continues with the second
vertex v2 in V . Clearly, v2 cannot be mapped to wi because wi
is already mapped to by v1. Thus, v2 is mapped to some input
vertex wj in VI ÿ fwig. If ��v2� � �I�wj� and, furthermore, if
for each edge e � �v1; v2� 2 E there exists a corresponding
edge eI � �wi; wj� 2 EI with ��e� � ��eI� then the partial
mapping f�v1; wi�; �v2; wj�g represents a subgraph isomorph-
ism from the subgraph of G induced by the vertices v1; v2 to
the inputGI . This process is continued until either all vertices
v1; . . . ; vM in V are successfully mapped onto VI and a
subgraph isomorphism from G to GI is found or until for
some vertex vn, no corresponding vertex in VI ÿ
fwi; wj; . . . ; wkg exists, with fwi; wj; . . . ; wkgbeing the vertices
in VI that are mapped to by v1; v2; . . . ; vnÿ1. In both cases, the
algorithm backtracks to a previous vertex of G and tries to
remap it. Although this algorithm finds all subgraph
isomorphisms from a small model to a small input graph in
reasonable time, it performs poorly when the underlying
graphs become larger. One of the reasons for this behavior is
that the algorithm only tests for the subgraph isomorphism
conditions in the partial mapping, but does not consider the
vertices of the model that have not yet been mapped. In order
to overcome this problem, Ullman proposed a forward-
checking procedure. In this procedure, it is checked for each
vertex of the model whether it can be mapped onto at least
one vertex of the input graph such that the subgraph
isomorphism conditions are locally true. If, for some partial
mapping f�v1; wi�; . . . ; �vn; wl�g, there is a vertex vn0 2 V with
n0 > n and the forward-checking procedure reveals that vn0

cannot be mapped onto any vertex in VI ÿ fwi; . . . ; wlg then

the algorithm backtracks immediately and a possibly large
number of computation steps is avoided. In general, it can be
said that the forward-checking procedure introduced by
Ullman greatly reduces the number of partial mappings that
are generated during the search for subgraph isomorphisms.

We now analyze the computational complexity of
Ullman's algorithm based on the description given above
and the quantities introduced in Section 4. The definitions
of the best and the worst case are identical to the definitions
used in Section 4. In the best case, the model graph consists
of M uniquely labeled vertices while the input graph
consists of I vertices and M different labels, i.e., each label
is given to O�I=M� vertices of the input graph. Thus, in
Ullman's algorithm, each vertex of the model can be
successfully mapped to �I=M� vertices of the input graph
but only one of these mappings also satisfies the edge
constraints and can be extended into a larger partial
mapping. As there are O�M� vertices in the model, and
for each vertex there are O�M� edge constraints that must
be tested in the forward-checking procedure, the total
number of computational steps is bounded by
O�M2I=M� � O�IM�. Furthermore, due to the fact that
Ullman's algorithm can only by applied to two graphs at a
time, it is linearly dependent on the number of models in
the database, N . Hence, its computational complexity is in
the best case bounded by:

O�NIM�: �11�
In the worst case, the model and the input graph vertices
are unlabeled and each vertex is connected to every other
vertex in the graph via an edge. Thus, for the first vertex
there will be O�I� mappings that can be extended with
O�I ÿ 1�mappings for the second vertex, resulting in a total
of O�I�I ÿ 1�� successful mappings, and so on. As there are
O�M� vertices of the model graph and O�IMÿ1� partial
mappings that are generated for each vertex, the algorithm
will investigate a total of O�MIMÿ1� partial mappings. For
each of these mappings, the forward-checking procedure
tentatively maps O�M� model vertices onto O�I� input
vertices in O�IM� steps such that the total number of steps
performed is O�IMM2�. Given a database with N model
graphs, the worst case complexity of Ullman's algorithm is
therefore bounded by:

O�NIMM2�: �12�
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