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Introduction

I Density estimation with parametric models assumes that
the forms of the underlying density functions are known.

I However, common parametric forms do not always fit the
densities actually encountered in practice.

I In addition, most of the classical parametric densities are
unimodal, whereas many practical problems involve
multimodal densities.

I Non-parametric methods can be used with arbitrary
distributions and without the assumption that the forms of
the underlying densities are known.
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Non-parametric Density Estimation

I Suppose that n samples x1, . . . ,xn are drawn i.i.d.
according to the distribution p(x).

I The probability P that a vector x will fall in a region R is
given by

P =

∫
R

p(x′)dx′.

I The probability that k of the n will fall in R is given by the
binomial law

Pk =

(
n

k

)
P k(1− P )n−k.

I The expected value of k is E[k] = nP and the MLE for P is
P̂ = k

n
.
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Non-parametric Density Estimation

I If we assume that p(x) is continuous and R is small enough
so that p(x) does not vary significantly in it, we can get the
approximation ∫

R
p(x′)dx′ ' p(x)V

where x is a point in R and V is the volume of R.

I Then, the density estimate becomes

p(x) ' k/n

V
.
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Non-parametric Density Estimation

I Let n be the number of samples used, Rn be the region
used with n samples, Vn be the volume of Rn, kn be the
number of samples falling in Rn, and pn(x) = kn/n

Vn
be the

estimate for p(x).

I If pn(x) is to converge to p(x), three conditions are required:

lim
n→∞

Vn = 0

lim
n→∞

kn = ∞

lim
n→∞

kn

n
= 0.
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Histogram Method

I A very simple method is to
partition the space into a
number of equally-sized
cells (bins) and compute a
histogram. Figure 1: Histogram in one

dimension.

I The estimate of the density at a point x becomes

p(x) =
k

nV
where n is the total number of samples, k is the number of
samples in the cell that includes x, and V is the volume of
that cell.
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Histogram Method

I Although the histogram method is very easy to implement, it
is usually not practical in high-dimensional spaces due to
the number of cells.

I Many observations are required to prevent the estimate
being zero over a large region.

I Modifications for overcoming these difficulties:
I Data-adaptive histograms,
I Independence assumption (naive Bayes),
I Dependence trees.
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Non-parametric Density Estimation

I Other methods for obtaining the regions for estimation:
I Shrink regions as some function of n, such as Vn = 1/

√
n.

This is the Parzen window estimation.
I Specify kn as some function of n, such as kn =

√
n. This is

the k-nearest neighbor estimation.

Figure 2: Methods for estimating the density at a point, here at the center of
each square.
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Parzen Windows

I Suppose that ϕ is a d-dimensional window function that
satisfies the properties of a density function, i.e.,

ϕ(u) ≥ 0 and
∫

ϕ(u)du = 1.

I A density estimate can be obtained as

pn(x) =
1

n

n∑
i=1

1

Vn

ϕ

(
x− xi

hn

)
where hn is the window width and Vn = hd

n.
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Parzen Windows

I The density estimate can also be written as

pn(x) =
1

n

n∑
i=1

δn(x− xi) where δn(x) =
1

Vn

ϕ

(
x

hn

)
.

Figure 3: Examples of two-dimensional circularly symmetric Parzen
windows functions for three different values of hn. The value of hn affects
both the amplitude and the width of δn(x).
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Parzen Windows

I If hn is very large, pn(x) is the superposition of n broad functions,
and is a smooth “out-of-focus” estimate of p(x).

I If hn is very small, pn(x) is the superposition of n sharp pulses
centered at the samples, and is a “noisy” estimate of p(x).

I As hn approaches zero, δn(x− xi) approaches a Dirac delta
function centered at xi, and pn(x) is a superposition of delta
functions.

Figure 4: Parzen window density estimates based on the same set of five
samples using the window functions in the previous figure.
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Figure 5: Parzen window estimates of a univariate Gaussian density using
different window widths and numbers of samples where ϕ(u) = N(0, 1) and
hn = h1/

√
n.
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Figure 6: Parzen window estimates of a bivariate Gaussian density using
different window widths and numbers of samples where ϕ(u) = N(0, I) and
hn = h1/

√
n.
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Figure 7: Estimates of a mixture of a uniform and a triangle density using
different window widths and numbers of samples where ϕ(u) = N(0, 1) and
hn = h1/

√
n.

CS 551, Spring 2011 c©2011, Selim Aksoy (Bilkent University) 14 / 25



Parzen Windows

I Densities estimated using Parzen windows can be used with the
Bayesian decision rule for classification.

I The training error can be made arbitrarily low by making the
window width sufficiently small.

I However, the goal is to classify novel patterns so the window
width cannot be made too small.

Figure 8: Decision boundaries in 2-D. The left figure uses a small window
width and the right figure uses a larger window width.
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k-Nearest Neighbors

I A potential remedy for the problem of the unknown “best”
window function is to let the estimation volume be a function
of the training data, rather than some arbitrary function of
the overall number of samples.

I To estimate p(x) from n samples, we can center a volume
about x and let it grow until it captures kn samples, where
kn is some function of n.

I These samples are called the k-nearest neighbors of x.

I If the density is high near x, the volume will be relatively
small. If the density is low, the volume will grow large.
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Figure 9: k-nearest neighbor estimates of two 1-D densities: a Gaussian
and a bimodal distribution.
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k-Nearest Neighbors

I Posterior probabilities can be estimated from a set of n

labeled samples and can be used with the Bayesian
decision rule for classification.

I Suppose that a volume V around x includes k samples, ki

of which are labeled as belonging to class wi.
I As estimate for the joint probability p(x, wi) becomes

pn(x, wi) =
ki/n

V

and gives an estimate for the posterior probability

Pn(wi|x) =
pn(x, wi)∑c

j=1 pn(x, wj)
=

ki

k
.
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Non-parametric Methods

(Parzen windows)

use as is quantize

continuous x

p̂(x) = k/n
V p̂(x) = pmf using

variable window,
fixed k

(k-nearest neighbors)

fixed window,
variable k

relative frequencies
(histogram method)
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Non-parametric Methods

I Advantages:
I No assumptions are needed about the distributions ahead of

time (generality).
I With enough samples, convergence to an arbitrarily

complicated target density can be obtained.

I Disadvantages:
I The number of samples needed may be very large (number

grows exponentially with the dimensionality of the feature
space).

I There may be severe requirements for computation time and
storage.
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Figure 10: An illustration of the histogram approach to density estimation, in
which a data set of 50 points is generated from the distribution shown by the
green curve. Histogram density estimates are shown for various values of the
cell volume (∆).
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Figure 11: Illustration of the Parzen density model. The window width (h)
acts as a smoothing parameter. If it is set too small (top), the result is a very
noisy density model. If it is set too large (bottom), the bimodal nature of the
underlying distribution is washed out. An intermediate value (middle) gives a
good estimate.
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Figure 12: Illustration of the k-nearest neighbor density model. The
parameter k governs the degree of smoothing. A small value of k (top) leads
to a very noisy density model. A large value (bottom) smoothes out the
bimodal nature of the true distribution.
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Figure 13: Density estimation examples for 2-D circular data.
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Figure 14: Density estimation examples for 2-D banana shaped data.
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