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Missing Features

I Suppose that we have a Bayesian classifier that uses the
feature vector x but a subset xg of x are observed and the
values for the remaining features xb are missing.

I How can we make a decision?
I Throw away the observations with missing values.
I Or, substitute xb by their average x̄b in the training data, and

use x = (xg, x̄b).
I Or, marginalize the posterior over the missing features, and

use the resulting posterior

P (wi|xg) =
∫

P (wi|xg,xb) p(xg,xb) dxb∫
p(xg,xb) dxb

.
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Expectation-Maximization

I We can also extend maximum likelihood techniques to allow
learning of parameters when some training patterns have
missing features.

I The Expectation-Maximization (EM) algorithm is a general
iterative method of finding the maximum likelihood
estimates of the parameters of a distribution from training
data.

CS 551, Spring 2011 c©2011, Selim Aksoy (Bilkent University) 3 / 32



Expectation-Maximization

I There are two main applications of the EM algorithm:
I Learning when the data is incomplete or has missing values.
I Optimizing a likelihood function that is analytically intractable

but can be simplified by assuming the existence of and
values for additional but missing (or hidden) parameters.

I The second problem is more common in pattern recognition
applications.
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Expectation-Maximization

I Assume that the observed data X is generated by some
distribution.

I Assume that a complete dataset Z = (X ,Y) exists as a
combination of the observed but incomplete data X and the
missing data Y.

I The observations in Z are assumed to be i.i.d. from the joint
density

p(z|Θ) = p(x,y|Θ) = p(y|x,Θ)p(x|Θ).

CS 551, Spring 2011 c©2011, Selim Aksoy (Bilkent University) 5 / 32



Expectation-Maximization

I We can define a new likelihood function

L(Θ|Z) = L(Θ|X ,Y) = p(X ,Y|Θ)

called the complete-data likelihood where L(Θ|X ) is
referred to as the incomplete-data likelihood.

I The EM algorithm:
I First, finds the expected value of the complete-data

log-likelihood using the current parameter estimates
(expectation step).

I Then, maximizes this expectation (maximization step).
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Expectation-Maximization

I Define

Q(Θ,Θ(i−1)) = E
[
log p(X ,Y|Θ) | X ,Θ(i−1)

]
as the expected value of the complete-data log-likelihood
w.r.t. the unknown data Y given the observed data X and
the current parameter estimates Θ(i−1).

I The expected value can be computed as

E
[
log p(X ,Y|Θ)|X ,Θ(i−1)

]
=
∫

log p(X ,y|Θ) p(y|X ,Θ(i−1)) dy.

I This is called the E-step.
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Expectation-Maximization

I Then, the expectation can be maximized by finding
optimum values for the new parameters Θ as

Θ(i) = arg max
Θ

Q(Θ,Θ(i−1)).

I This is called the M-step.

I These two steps are repeated iteratively where each
iteration is guaranteed to increase the log-likelihood.

I The EM algorithm is also guaranteed to converge to a local
maximum of the likelihood function.
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Mixture Densities

I A mixture model is a linear combination of m densities

p(x|Θ) =
m∑

j=1

αjpj(x|θj)

where Θ = (α1, . . . , αm, θ1, . . . ,θm) such that αj ≥ 0 and∑m
j=1 αj = 1.

I α1, . . . , αm are called the mixing parameters.

I pj(x|θj), j = 1, . . . ,m are called the component densities.
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Mixture Densities

I Suppose that X = {x1, . . . ,xn} is a set of observations i.i.d.
with distribution p(x|Θ).

I The log-likelihood function of Θ becomes

log L(Θ|X ) = log
n∏

i=1

p(xi|Θ) =
n∑

i=1

log

( m∑
j=1

αjpj(xi|θj)

)
.

I We cannot obtain an analytical solution for Θ by simply
setting the derivatives of log L(Θ|X ) to zero because of the
logarithm of the sum.
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Mixture Density Estimation via EM

I Consider X as incomplete and define hidden variables
Y = {yi}n

i=1 where yi corresponds to which mixture component
generated the data vector xi.

I In other words, yi = j if the i’th data vector was generated by the
j’th mixture component.

I Then, the log-likelihood becomes

log L(Θ|X ,Y) = log p(X ,Y|Θ)

=
n∑

i=1

log(p(xi|yi,θi)p(yi|θi))

=
n∑

i=1

log(αyipyi(xi|θyi)).
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Mixture Density Estimation via EM

I Assume we have the initial parameter estimates
Θ(g) = (α

(g)
1 , . . . , α

(g)
m , θ

(g)
1 , . . . ,θ(g)

m ).

I Compute

p(yi|xi,Θ
(g)) =

α
(g)
yi pyi

(xi|θ(g)
yi

)

p(xi|Θ(g))
=

α
(g)
yi pyi

(xi|θ(g)
yi

)∑m
j=1 α

(g)
j pj(xi|θ(g)

j )

and

p(Y|X ,Θ(g)) =
n∏

i=1

p(yi|xi,Θ
(g)).
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Mixture Density Estimation via EM

I Then, Q(Θ,Θ(g)) takes the form

Q(Θ,Θ(g)) =
∑
y

log p(X ,y|Θ)p(y|X ,Θ(g))

=
m∑

j=1

n∑
i=1

log(αjpj(xi|θj))p(j|xi,Θ(g))

=
m∑

j=1

n∑
i=1

log(αj)p(j|xi,Θ(g))

+
m∑

j=1

n∑
i=1

log(pj(xi|θj))p(j|xi,Θ(g)).
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Mixture Density Estimation via EM

I We can maximize the two sets of summations for αj and θj

independently because they are not related.

I The estimate for αj can be computed as

α̂j =
1

n

n∑
i=1

p(j|xi,Θ
(g))

where

p(j|xi,Θ
(g)) =

α
(g)
j pj(xi|θ(g)

j )∑m
t=1 α

(g)
t pt(xi|θ(g)

t )
.
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Mixture of Gaussians

I We can obtain analytical expressions for θj for the special case
of a Gaussian mixture where θj = (µj ,Σj) and

pj(x|θj) = pj(x|µj ,Σj)

=
1

(2π)d/2|Σj |1/2
exp

[
−1

2
(x− µj)

TΣ−1
j (x− µj)

]
.

I Equating the partial derivative of Q(Θ,Θ(g)) with respect to µj to
zero gives

µ̂j =
∑n

i=1 p(j|xi,Θ(g))xi∑n
i=1 p(j|xi,Θ(g))

.
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Mixture of Gaussians

I We consider five models for the covariance matrix Σj :

I Σj = σ2I

σ̂2 =
1
nd

m∑
j=1

n∑
i=1

p(j|xi,Θ(g))‖xi − µ̂j‖2

I Σj = σ2
j I

σ̂2
j =

∑n
i=1 p(j|xi,Θ(g))‖xi − µ̂j‖2

d
∑n

i=1 p(j|xi,Θ(g))
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Mixture of Gaussians

I Covariance models continued:

I Σj = diag({σ2
jk}d

k=1)

σ̂2
jk =

∑n
i=1 p(j|xi,Θ(g))(xik − µ̂jk

)2∑n
i=1 p(j|xi,Θ(g))

I Σj = Σ

Σ̂ =
1
n

m∑
j=1

n∑
i=1

p(j|xi,Θ(g))(xi − µ̂j)(xi − µ̂j)
T

I Σj = arbitrary

Σ̂j =
∑n

i=1 p(j|xi,Θ(g))(xi − µ̂j)(xi − µ̂j)T∑n
i=1 p(j|xi,Θ(g))
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Mixture of Gaussians

I Summary:
I Estimates for αj , µj and Σj perform both expectation and

maximization steps simultaneously.
I EM iterations proceed by using the current estimates as the

initial estimates for the next iteration.
I The priors are computed from the proportion of examples

belonging to each mixture component.
I The means are the component centroids.
I The covariance matrices are calculated as the sample

covariance of the points associated with each component.

CS 551, Spring 2011 c©2011, Selim Aksoy (Bilkent University) 18 / 32



Examples

I Mixture of Gaussians examples

I 1-D Bayesian classification examples

I 2-D Bayesian classification examples
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Figure 1: Illustration of the EM algorithm iterations for a mixture of two
Gaussians.
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(a) Scatter plot. (b) Same spherical covari-
ance, log-likelihood = -806.08.

(c) Different spherical covari-
ance, log-likelihood = -804.21.

(d) Different diagonal covari-
ance, log-likelihood = -630.46.

(e) Same arbitrary covariance,
log-likelihood = -810.93.

(f) Different arbitrary covari-
ance, log-likelihood = -523.11.

Figure 2: Fitting mixtures of 5 Gaussians to data from a circular distribution.
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(a) True densities and sample histograms. (b) Linear Gaussian classifier with Pe =

0.0914.

(c) Quadratic Gaussian classifier with Pe =

0.0837.
(d) Mixture of Gaussian classifier with Pe =

0.0869.
Figure 3: 1-D Bayesian classification examples where the data for each
class come from a mixture of three Gaussians. Bayes error is Pe = 0.0828.

CS 551, Spring 2011 c©2011, Selim Aksoy (Bilkent University) 22 / 32

http://www.cs.bilkent.edu.tr/~saksoy/courses/cs551/src/gauss_classifier1_example.dat


(a) Scatter plot. (b) Linear Gaussian classifier with Pe =

0.094531.

(c) Quadratic Gaussian classifier with Pe =

0.012829.
(d) Mixture of Gaussian classifier with Pe =

0.002026.
Figure 4: 2-D Bayesian classification examples where the data for the
classes come from a banana shaped distribution and a bivariate Gaussian.
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(a) Scatter plot. (b) Quadratic Gaussian classifier with Pe =

0.1570.

(c) Mixture of Gaussian classifier with Pe =

0.0100.
Figure 5: 2-D Bayesian classification examples where the data for each
class come from a banana shaped distribution.
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Mixture of Gaussians

I Questions:
I How can we find the initial estimates for Θ?

I Choose random data points, make them the initial means,
assign all points to these means, and compute the priors and
covariance matrices.

I Or, run a clustering algorithm for an initial grouping of all
points, and compute the initial estimates from these groups.

I How do we know when to stop the iterations?
I Stop if the change in log-likelihood between two iterations is

less than a threshold.
I Or, use a threshold for the number of iterations.

I How can we find the number of components in the mixture?
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Minimum Description Length Principle

I The Minimum Description Length (MDL) principle tries to
find a compromise between the model complexity (still
having a good data approximation) and the complexity of
the data approximation (while using a simple model).

I Under the MDL principle, the best model is the one that
minimizes the sum of the model’s complexity L(M) and the
efficiency of the description of the training data with respect
to that model L(D|M), i.e.,

L(D,M) = L(M) + L(D|M).
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Minimum Description Length Principle

I According to Shannon, the shortest code-length to encode
data D with a distribution p(D|M) under model M is given
by

L(D|M) = − log L(M|D) = − log p(D|M)

where L(M|D) is the likelihood function for model M given
the sample D.
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Minimum Description Length Principle

I The model complexity is measured as the number of bits
required to describe the model parameters.

I According to Rissanen, the code-length to encode κM

real-valued parameters characterizing n data points is

L(M) =
κM
2

log n

where κM is the number of free parameters in model M
and n is the size of the sample used to estimate those
parameters.
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Minimum Description Length Principle

I Once the description lengths for different models have been
calculated, we select the one having the smallest such
length.

I It can be shown theoretically that classifiers designed with a
minimum description length principle are guaranteed to
converge to the ideal or true model in the limit of more and
more data.
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Minimum Description Length Principle

I As an example, let’s derive the description lengths for
Gaussian mixture models with m components.

I The total number of free parameters for different covariance
matrix models are:

Σj = σ2I κM = (m− 1) + md + 1

Σj = σ2
j I κM = (m− 1) + md + m

Σj = diag({σ2
jk}d

k=1) κM = (m− 1) + md + md

Σj = Σ κM = (m− 1) + md +
d(d + 1)

2

Σj = arbitrary κM = (m− 1) + md + m
d(d + 1)

2

where d is the dimension of the feature vectors.
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Minimum Description Length Principle

I The first term describes the mixture weights {αj}m
j=1, the

second term describes the means {µj}m
j=1 and the third

term describes the covariance matrices {Σj}m
j=1.

I Hence, the best m can be found as

m∗ = arg min
m

[
κM
2

log n−
n∑

i=1

log

(
m∑

j=1

αjpj(xi|µj ,Σj)

)]
.
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Minimum Description Length Principle
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(b) Σj = σ2I
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(c) Σj = σ2
j I
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(d) Σj = diag({σ2
jk}
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(f) Σj = arbitrary

Figure 6: Example fits for a sample from a mixture of three bivariate
Gaussians. For each covariance model, description length vs. the number of
components (left) and fitted Gaussians as ellipses at one standard deviations
(right) are shown. Using MDL with the arbitrary covariance matrix gave the
smallest description length and also could capture the true number of
components.
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