Parametric Models

Part III: Hidden Markov Models

Selim Aksoy

Department of Computer Engineering Bilkent University
saksoy@cs.bilkent.edu.tr
CS 551, Spring 2011

Discrete Markov Processes (Markov Chains)

- The goal is to make a sequence of decisions where a particular decision may be influenced by earlier decisions.
- Consider a system that can be described at any time as being in one of a set of N distinct states $w_{1}, w_{2}, \ldots, w_{N}$.
- Let $w(t)$ denote the actual state at time t where $t=1,2, \ldots$.
- The probability of the system being in state $w(t)$ is

$$
P(w(t) \mid w(t-1), \ldots, w(1)) .
$$

First-Order Markov Models

- We assume that the state $w(t)$ is conditionally independent of the previous states given the predecessor state $w(t-1)$, i.e.,

$$
P(w(t) \mid w(t-1), \ldots, w(1))=P(w(t) \mid w(t-1)) .
$$

- We also assume that the Markov Chain defined by $P(w(t) \mid w(t-1))$ is time homogeneous (independent of the time t).

First-Order Markov Models

- A particular sequence of states of length T is denoted by

$$
\mathcal{W}^{T}=\{w(1), w(2), \ldots, w(T)\}
$$

- The model for the production of any sequence is described by the transition probabilities

$$
a_{i j}=P\left(w(t)=w_{j} \mid w(t-1)=w_{i}\right)
$$

where $i, j \in\{1, \ldots, N\}, a_{i j} \geq 0$, and $\sum_{j=1}^{N} a_{i j}=1, \forall i$.

First-Order Markov Models

- There is no requirement that the transition probabilities are symmetric ($a_{i j} \neq a_{j i}$, in general).
- Also, a particular state may be visited in succession ($a_{i i} \neq 0$, in general) and not every state need to be visited.
- This process is called an observable Markov model because the output of the process is the set of states at each instant of time, where each state corresponds to a physical (observable) event.

First-Order Markov Model Examples

- Consider the following 3-state first-order Markov model of the weather in Ankara:
- w_{1} : rain/snow
- w_{2} : cloudy
- w_{3} : sunny

$$
\begin{aligned}
\Theta & =\left\{a_{i j}\right\} \\
& =\left(\begin{array}{lll}
0.4 & 0.3 & 0.3 \\
0.2 & 0.6 & 0.2 \\
0.1 & 0.1 & 0.8
\end{array}\right)
\end{aligned}
$$

First-Order Markov Model Examples

- We can use this model to answer the following: Starting with sunny weather on day 1 , what is the probability that the weather for the next seven days will be "sunny-sunny-rainy-rainy-sunny-cloudy-sunny" $\left(\mathcal{W}^{8}=\left\{w_{3}, w_{3}, w_{3}, w_{1}, w_{1}, w_{3}, w_{2}, w_{3}\right\}\right)$?
- Solution:

$$
\begin{aligned}
P\left(\mathcal{W}^{8} \mid \Theta\right)= & P\left(w_{3}, w_{3}, w_{3}, w_{1}, w_{1}, w_{3}, w_{2}, w_{3}\right) \\
= & P\left(w_{3}\right) P\left(w_{3} \mid w_{3}\right) P\left(w_{3} \mid w_{3}\right) P\left(w_{1} \mid w_{3}\right) \\
& P\left(w_{1} \mid w_{1}\right) P\left(w_{3} \mid w_{1}\right) P\left(w_{2} \mid w_{3}\right) P\left(w_{3} \mid w_{2}\right) \\
= & P\left(w_{3}\right) a_{33} a_{33} a_{31} a_{11} a_{13} a_{32} a_{23} \\
= & 1 \times 0.8 \times 0.8 \times 0.1 \times 0.4 \times 0.3 \times 0.1 \times 0.2 \\
= & 1.536 \times 10^{-4}
\end{aligned}
$$

First-Order Markov Model Examples

- Consider another question: Given that the model is in a known state, what is the probability that it stays in that state for exactly d days?
- Solution:

$$
\begin{gathered}
\mathcal{W}^{d+1}=\left\{w(1)=w_{i}, w(2)=w_{i}, \ldots, w(d)=w_{i}, w(d+1)=w_{j} \neq w_{i}\right\} \\
P\left(\mathcal{W}^{d+1} \mid \boldsymbol{\Theta}, w(1)=w_{i}\right)=\left(a_{i i}\right)^{d-1}\left(1-a_{i i}\right) \\
E\left[d \mid w_{i}\right]=\sum_{d=1}^{\infty} d\left(a_{i i}\right)^{d-1}\left(1-a_{i i}\right)=\frac{1}{1-a_{i i}}
\end{gathered}
$$

- For example, the expected number of consecutive days of sunny weather is 5 , cloudy weather is 2.5 , rainy weather is 1.67 .

First-Order Hidden Markov Models

- We can extend this model to the case where the observation (output) of the system is a probabilistic function of the state.
- The resulting model, called a Hidden Markov Model (HMM), has an underlying stochastic process that is not observable (it is hidden), but can only be observed through another set of stochastic processes that produce a sequence of observations.

First-Order Hidden Markov Models

- We denote the observation at time t as $v(t)$ and the probability of producing that observation in state $w(t)$ as $P(v(t) \mid w(t))$.
- There are many possible state-conditioned observation distributions.
- When the observations are discrete, the distributions

$$
b_{j k}=P\left(v(t)=v_{k} \mid w(t)=w_{j}\right)
$$

are probability mass functions where $j \in\{1, \ldots, N\}$,
$k \in\{1, \ldots, M\}, b_{j k} \geq 0$, and $\sum_{k=1}^{M} b_{j k}=1, \forall j$.

First-Order Hidden Markov Models

- When the observations are continuous, the distributions are typically specified using a parametric model family where the most common family is the Gaussian mixture

$$
b_{j}(\mathbf{x})=\sum_{k=1}^{M_{j}} \alpha_{j k} p\left(\mathbf{x} \mid \boldsymbol{\mu}_{\boldsymbol{j} \boldsymbol{k}}, \boldsymbol{\Sigma}_{\boldsymbol{j} \boldsymbol{k}}\right)
$$

where $\alpha_{j k} \geq 0$ and $\sum_{k=1}^{M_{j}} \alpha_{j k}=1, \forall j$.

- We will restrict ourselves to discrete observations where a particular sequence of visible states of length T is denoted by

$$
\mathcal{V}^{T}=\{v(1), v(2), \ldots, v(T)\} .
$$

First-Order Hidden Markov Models

- An HMM is characterized by:
- N, the number of hidden states
- M, the number of distinct observation symbols per state
- $\left\{a_{i j}\right\}$, the state transition probability distribution
- $\left\{b_{j k}\right\}$, the observation symbol probability distribution
- $\left\{\pi_{i}=P\left(w(1)=w_{i}\right)\right\}$, the initial state distribution
- $\boldsymbol{\Theta}=\left(\left\{a_{i j}\right\},\left\{b_{j k}\right\},\left\{\pi_{i}\right\}\right)$, the complete parameter set of the model

First-Order HMM Examples

- Consider the "urn and ball" example (Rabiner, 1989):
- There are N large urns in the room.
- Within each urn, there are a large number of colored balls where the number of distinct colors is M.
- An initial urn is chosen according to some random process, and a ball is chosen at random from it.
- The ball's color is recorded as the observation and it is put back to the urn.
- A new urn is selected according to the random selection process associated with the current urn and the ball selection process is repeated.

First-Order HMM Examples

- The simplest HMM that corresponds to the urn and ball selection process is the one where
- each state corresponds to a specific urn,
- a ball color probability is defined for each state.

First-Order HMM Examples

- Let's extend the weather example.
- Assume that you have a friend who lives in İstanbul and you talk daily about what each of you did that day.
- Your friend has a list of activities that she/he does every day (such as playing sports, shopping, studying) and the choice of what to do is determined exclusively by the weather on a given day.
- Assume that İstanbul has a weather state distribution similar to the one in the previous example.
- You have no information about the weather where your friend lives, but you try to guess what it must have been like according to the activity your friend did.

First-Order HMM Examples

- This process can be modeled using an HMM where the state of the weather is the hidden variable, and the activity your friend did is the observation.
- Given the model and the activity of your friend, you can make a guess about the weather in İstanbul that day.
- For example, if your friend says that she/he played sports on the first day, went shopping on the second day, and studied on the third day of the week, you can answer questions such as:
- What is the overall probability of this sequence of observations?
- What is the most likely weather sequence that would explain these observations?

Applications of HMMs

- Speech recognition
- Optical character recognition
- Natural language processing (e.g., text summarization)
- Bioinformatics (e.g., protein sequence modeling)
- Image time series (e.g., change detection)
- Video analysis (e.g., story segmentation, motion tracking)
- Robot planning (e.g., navigation)
- Economics and finance (e.g., time series, customer decisions)

Three Fundamental Problems for HMMs

- Evaluation problem: Given the model, compute the probability that a particular output sequence was produced by that model (solved by the forward algorithm).
- Decoding problem: Given the model, find the most likely sequence of hidden states which could have generated a given output sequence (solved by the Viterbi algorithm).
- Learning problem: Given a set of output sequences, find the most likely set of state transition and output probabilities (solved by the Baum-Welch algorithm).

HMM Evaluation Problem

- A particular sequence of observations of length T is denoted by

$$
\mathcal{V}^{T}=\{v(1), v(2), \ldots, v(T)\} .
$$

- The probability of observing this sequence can be computed by enumerating every possible state sequence of length T as

$$
\begin{aligned}
P\left(\mathcal{V}^{T} \mid \boldsymbol{\Theta}\right) & =\sum_{\text {all } \mathcal{W}^{T}} P\left(\mathcal{V}^{T}, \mathcal{W}^{T} \mid \boldsymbol{\Theta}\right) \\
& =\sum_{\text {all } \mathcal{W}^{T}} P\left(\mathcal{V}^{T} \mid \mathcal{W}^{T}, \boldsymbol{\Theta}\right) P\left(\mathcal{W}^{T} \mid \boldsymbol{\Theta}\right) .
\end{aligned}
$$

HMM Evaluation Problem

- This summation includes N^{T} terms in the form

$$
\begin{aligned}
P\left(\mathcal{V}^{T} \mid \mathcal{W}^{T}\right) P\left(\mathcal{W}^{T}\right) & =\left(\prod_{t=1}^{T} P(v(t) \mid w(t))\right)\left(\prod_{t=1}^{T} P(w(t) \mid w(t-1))\right) \\
& =\prod_{t=1}^{T} P(v(t) \mid w(t)) P(w(t) \mid w(t-1))
\end{aligned}
$$

where $P(w(t) \mid w(t-1))$ for $t=1$ is $P(w(1))$.

- It is unfeasible with computational complexity $O\left(N^{T} T\right)$.
- However, a computationally simpler algorithm called the forward algorithm computes $P\left(\mathcal{V}^{T} \mid \Theta\right)$ recursively.

HMM Evaluation Problem

- Define $\alpha_{j}(t)$ as the probability that the HMM is in state w_{j} at time t having generated the first t observations in \mathcal{V}^{T}

$$
\alpha_{j}(t)=P\left(v(1), v(2), \ldots, v(t), w(t)=w_{j} \mid \boldsymbol{\Theta}\right) .
$$

- $\alpha_{j}(t), j=1, \ldots, N$ can be computed as

$$
\alpha_{j}(t)= \begin{cases}\pi_{j} b_{j v(1)} & t=1 \\ \left(\sum_{i=1}^{N} \alpha_{i}(t-1) a_{i j}\right) b_{j v(t)} & t=2, \ldots, T .\end{cases}
$$

- Then, $P\left(\mathcal{V}^{T} \mid \boldsymbol{\Theta}\right)=\sum_{j=1}^{N} \alpha_{j}(T)$.

HMM Evaluation Problem

- Similarly, we can define a backward algorithm where

$$
\beta_{i}(t)=P\left(v(t+1), v(t+2), \ldots, v(T) \mid w(t)=w_{i}, \boldsymbol{\Theta}\right)
$$

is the probability that the HMM will generate the observations from $t+1$ to T in \mathcal{V}^{T} given that it is in state w_{i} at time t.

- $\beta_{i}(t), i=1, \ldots, N$ can be computed as

$$
\beta_{i}(t)= \begin{cases}1 & t=T \\ \sum_{j=1}^{N} \beta_{j}(t+1) a_{i j} b_{j v(t+1)} & t=T-1, \ldots, 1\end{cases}
$$

- Then, $P\left(\mathcal{V}^{T} \mid \boldsymbol{\Theta}\right)=\sum_{i=1}^{N} \beta_{i}(1) \pi_{i} b_{i v(1)}$.

HMM Evaluation Problem

- The computations of both $\alpha_{j}(t)$ and $\beta_{i}(t)$ have complexity $O\left(N^{2} T\right)$.
- For classification, we can compute the posterior probabilities

$$
P\left(\boldsymbol{\Theta} \mid \mathcal{V}^{T}\right)=\frac{P\left(\mathcal{V}^{T} \mid \Theta\right) P(\boldsymbol{\Theta})}{P\left(\mathcal{V}^{T}\right)}
$$

where $P(\boldsymbol{\Theta})$ is the prior for a particular class, and $P\left(\mathcal{V}^{T} \mid \boldsymbol{\Theta}\right)$ is computed using the forward algorithm with the HMM for that class.

- Then, we can select the class with the highest posterior.

HMM Decoding Problem

- Given a sequence of observations \mathcal{V}^{T}, we would like to find the most probable sequence of hidden states.
- One possible solution is to enumerate every possible hidden state sequence and calculate the probability of the observed sequence with $O\left(N^{T} T\right)$ complexity.
- We can also define the problem of finding the optimal state sequence as finding the one that includes the states that are individually most likely.
- This also corresponds to maximizing the expected number of correct individual states.

HMM Decoding Problem

- Define $\gamma_{i}(t)$ as the probability that the HMM is in state w_{i} at time t given the observation sequence \mathcal{V}^{T}

$$
\begin{aligned}
\gamma_{i}(t) & =P\left(w(t)=w_{i} \mid \mathcal{V}^{T}, \Theta\right) \\
& =\frac{\alpha_{i}(t) \beta_{i}(t)}{P\left(\mathcal{V}^{T} \mid \Theta\right)}=\frac{\alpha_{i}(t) \beta_{i}(t)}{\sum_{j=1}^{N} \alpha_{j}(t) \beta_{j}(t)}
\end{aligned}
$$

where $\sum_{i=1}^{N} \gamma_{i}(t)=1$.

- Then, the individually most likely state $w(t)$ at time t becomes

$$
w(t)=w_{i^{\prime}} \text { where } i^{\prime}=\arg \max _{i=1, \ldots, N} \gamma_{i}(t) .
$$

HMM Decoding Problem

- One problem is that the resulting sequence may not be consistent with the underlying model because it may include transitions with zero probability ($a_{i j}=0$ for some i and j).
- One possible solution is the Viterbi algorithm that finds the single best state sequence \mathcal{W}^{T} by maximizing $P\left(\mathcal{W}^{T} \mid \mathcal{V}^{T}, \boldsymbol{\Theta}\right)$ (or equivalently $P\left(\mathcal{W}^{T}, \mathcal{V}^{T} \mid \boldsymbol{\Theta}\right)$).
- This algorithm recursively computes the state sequence with the highest probability at time t and keeps track of the states that form the sequence with the highest probability at time T (see Rabiner (1989) for details).

HMM Learning Problem

- The goal is to determine the model parameters $\left\{a_{i j}\right\},\left\{b_{j k}\right\}$ and $\left\{\pi_{i}\right\}$ from a collection of training samples.
- Define $\xi_{i j}(t)$ as the probability that the HMM is in state w_{i} at time $t-1$ and state w_{j} at time t given the observation sequence \mathcal{V}^{T}

$$
\begin{aligned}
\xi_{i j}(t) & =P\left(w(t-1)=w_{i}, w(t)=w_{j} \mid \mathcal{V}^{T}, \boldsymbol{\Theta}\right) \\
& =\frac{\alpha_{i}(t-1) a_{i j} b_{j v(t)} \beta_{j}(t)}{P\left(\mathcal{V}^{T} \mid \boldsymbol{\Theta}\right)} \\
& =\frac{\alpha_{i}(t-1) a_{i j} b_{j v(t)} \beta_{j}(t)}{\sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_{i}(t-1) a_{i j} b_{j v(t)} \beta_{j}(t)} .
\end{aligned}
$$

HMM Learning Problem

- $\gamma_{i}(t)$ defined in the decoding problem and $\xi_{i j}(t)$ defined here can be related as

$$
\gamma_{i}(t-1)=\sum_{j=1}^{N} \xi_{i j}(t)
$$

- Then, $\hat{a}_{i j}$, the estimate of the probability of a transition from w_{i} at $t-1$ to w_{j} at t, can be computed as

$$
\begin{aligned}
\hat{a}_{i j} & =\frac{\text { expected number of transitions from } w_{i} \text { to } w_{j}}{\text { expected total number of transitions away from } w_{i}} \\
& =\frac{\sum_{t=2}^{T} \xi_{i j}(t)}{\sum_{t=2}^{T} \gamma_{i}(t-1)} .
\end{aligned}
$$

HMM Learning Problem

- Similarly, $\hat{b}_{j k}$, the estimate of the probability of observing the symbol v_{k} while in state w_{j}, can be computed as
$\hat{b}_{j k}=\frac{\text { expected number of times observing symbol } v_{k} \text { in state } w_{j}}{\text { expected total number of times in } w_{j}}$

$$
=\frac{\sum_{t=1}^{T} \delta_{v(t), v_{k}} \gamma_{j}(t)}{\sum_{t=1}^{T} \gamma_{j}(t)}
$$

where $\delta_{v(t), v_{k}}$ is the Kronecker delta which is 1 only when $v(t)=v_{k}$.

- Finally, $\hat{\pi}_{i}$, the estimate for the initial state distribution, can be computed as $\hat{\pi}_{i}=\gamma_{i}(1)$ which is the expected number of times in state w_{i} at time $t=1$.

HMM Learning Problem

- These are called the Baum-Welch equations (also called the EM estimates for HMMs or the forward-backward algorithm) that can be computed iteratively until some convergence criterion is met (e.g., sufficiently small changes in the estimated values in subsequent iterations).
- See (Bilmes, 1998) for the estimates $\hat{b}_{j}(\mathrm{x})$ when the observations are continuous and their distributions are modeled using Gaussian mixtures.

