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Abstract
Similarity between images in image retrieval is measured

by computing distances between feature vectors. This pa-
per presents a probabilistic approach and describes two
likelihood-based similarity measures for image retrieval.
Popular distance measures like the Euclidean distance im-
plicitly assign more weighting to features with large ranges
than those with small ranges. First, we discuss the ef-
fects of five feature normalization methods on retrieval per-
formance. Then, we show that the probabilistic methods
perform significantly better than geometric approaches like
the nearest neighbor rule with city-block or Euclidean dis-
tances. They are also more robust to normalization effects
and using better models for the features improves the re-
trieval results compared to making only general assump-
tions. Experiments on a database of approximately 10,000
images show that studying the feature distributions are im-
portant and this information should be used in designing
feature normalization methods and similarity measures.

1. Introduction
Image database retrieval has become a very popular re-

search area in recent years [15]. Initial work on content-
based retrieval [8, 12, 10] focused on using low-level fea-
tures like color and texture for image representation. After
features are computed for all images in the database, simi-
larity measures are used to find matches between images.

Feature vectors usually exist in a very high dimensional
space. Due to this high dimensionality, their parametric
characterization is usually not studied. A commonly used
assumption is that images that are close to each other in the
feature space are also visually similar. In geometric similar-
ity measures like the nearest neighbor rule, no assumption is
made about the probability distribution of the features and
similarity is based on the distances between feature vectors
in the feature space. Given this, Euclidean distance has been
the most widely used distance measure [8, 12, 9, 18], as well
as the weighted Euclidean distance [4, 16], city-block (L1)
distance [10, 18], the general Lp Minkowsky distance [17]
and the Mahalanobis distance [12, 18]. The L1 distance
was also used under the name “histogram intersection” [18].

Polynomial combinations of predefined distance measures
were also used to create new distance measures [5].

This paper presents a probabilistic approach for image
retrieval. We describe two likelihood-based similarity mea-
sures that compute the likelihood of two images, one being
the query image and the other one being an image in the
database, being similar or dissimilar. First, we define two
classes, the relevance class and the irrelevance class, and
then the likelihood values are derived from a Bayesian clas-
sifier. We use two different methods to estimate the condi-
tional probabilities used in the classifier. The first method
uses a multivariate Normal assumption and the second one
uses independently fitted distributions for each feature. The
performances of these two methods are compared to the per-
formances of geometric approaches that use the city-block
(L1) and Euclidean (L2) distances as similarity measures.

An important step between feature extraction and dis-
tance computation is feature normalization. Complex im-
age database retrieval systems use features that are gener-
ated by many different feature extraction algorithms and not
all of these features have the same range. Popular distance
measures, for example the Euclidean distance, implicitly
assign more weighting to features with large ranges than
those with small ranges. This paper discusses five normal-
ization methods; linear scaling to unit range, linear scaling
to unit variance, transformation to a Uniform[0,1] random
variable, rank normalization and normalization by fitting
distributions. Experiments are done on a database of ap-
proximately 10,000 images and average precision is used to
evaluate performances of both the normalization methods
and the similarity measures.

The rest of the paper is organized as follows. First, the
features that we use in this study are summarized in Section
2. Then, the feature normalization methods are described
in Section 3 and are followed by the similarity measures in
Section 4. Experiments and results are discussed in Sec-
tion 5. Finally, conclusions are given in Section 6.

2. Feature Extraction
Textural features that were described in detail in [2, 3]

are used for image representation in this paper. The first



set of features are the line-angle-ratio statistics that use
a texture histogram computed from the spatial relation-
ships between lines as well as the properties of their sur-
roundings. The second set of features are the variances of
gray level spatial dependencies that use second-order (co-
occurrence) statistics of gray levels of pixels in particular
spatial relationships. Line-angle-ratio statistics result in a
20-dimensional feature vector and co-occurrence variances
result in an 8-dimensional feature vector.

3. Feature Normalization
The following sections describe five normalization pro-

cedures. The goal is to make all features have approxi-
mately the same effect in the computation of similarity by
independently normalizing each feature component to the
[0, 1] range.
3.1. Linear scaling to unit range

Given a lower bound l and an upper bound u for a feature
component x,

x′ =
x− l

u− l
(1)

results in x′ being in the [0, 1] range.
3.2. Linear scaling to unit variance

Another normalization procedure is to transform the fea-
ture component x to a random variable with zero mean and
unit variance as

x′ =
x− µ

σ
(2)

where µ and σ2 are the sample mean and the sample vari-
ance of that feature respectively. Under the Normality as-
sumption, an additional shift and rescaling as

x′ =
x−µ
3σ + 1

2
(3)

guarantees 99% of x′ to be in the [0,1] range. We can then
round off the out-of-range components to either 0 or 1.
3.3. Transformation to a Uniform[0,1] random

variable
Given a random variable x with cumulative distribution

function Fx(x), the random variable x′ resulting from the
transformation x′ = Fx(x) will be uniformly distributed in
the [0,1] range [11].
3.4. Rank normalization

Given the sample for a feature component for all images
as x1, . . . , xn, replacing each image’s feature value by its
corresponding normalized rank, i.e.

x′i =
rank

x1,...,xn
(xi)− 1

n− 1 (4)

where xi is the feature value for the i’th image, uniformly
maps all feature values to the [0,1] range. When there are
more than one image with the same feature value, especially

after quantization, they are assigned the average rank for
that value.
3.5. Normalization after fitting distributions

The transformation in Section 3.2 assumed that a feature
has a Normal(µ, σ2) distribution. The Mahalanobis distance
[7] also involves normalization in terms of the covariance
matrix but is also valid only when the features are Normally
distributed. The sample values can be used to find better
estimates for the feature distributions.

The following sections describe how to fit Normal, Log-
normal, Exponential and Gamma densities to a random
sample. After estimating the parameters of a distribu-
tion, the cut-off value that includes 99% of the feature
values is found and the samples are scaled and truncated
so that each feature component has the same range. To
measure how well a fitted distribution resembles the sam-
ple data (goodness-of-fit), we use the Kolmogorov-Smirnov
test statistic [6, 13].

3.5.1. Fitting a Normal(µ, σ2) density

Let x1, . . . , xn ∈ R be a random sample from a population
with density 1√

2πσ
e−(x−µ)

2/2σ2

, −∞ < x < ∞, −∞ <

µ < ∞, σ > 0. The maximum likelihood estimators
(MLE) of µ and σ2 can be derived as

µ̂ =
1

n

n
∑

i=1

xi and σ̂2 =
1

n

n
∑

i=1

(xi − µ̂)2. (5)

The cut-off value δx that includes 99% of the feature values
can be found as δx = µ̂+ 2.4σ̂.

3.5.2. Fitting a Lognormal(µ, σ2) density

Let x1, . . . , xn ∈ R be a random sample from a population

with density 1√
2πσ

e−(log x−µ)2/2σ2

x , x ≥ 0, −∞ < µ <

∞, σ > 0. The MLEs of µ and σ2 can be derived as

µ̂ =
1

n

n
∑

i=1

log xi and σ̂2 =
1

n

n
∑

i=1

(log xi − µ̂)2. (6)

The cut-off value δx can be found as δx = eµ̂+2.4σ̂ .

3.5.3. Fitting an Exponential(λ) density

Let x1, . . . , xn ∈ R be a random sample from a population
with density 1

λe
−x/λ, x ≥ 0, λ ≥ 0. The MLE of λ is

λ̂ =
1

n

n
∑

i=1

xi. (7)

The cut-off value δx can be found as δx = −λ̂ log 0.01.
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Figure 1: Feature histograms and fitted distributions for ex-
ample features. Exponential (solid line) model is used for
line-angle-ratio features and Normal (solid line), Lognor-
mal (dash-dot line) and Gamma (dashed line) models are
used for the others. The vertical lines show the 99% cut-off
point for each distribution.

3.5.4. Fitting a Gamma(α, β) density

Let x1, . . . , xn ∈ R be a random sample from a population
with density 1

Γ(α)βαx
α−1e−x/β , x ≥ 0, α, β ≥ 0. The

method of moments (MOM) estimators for α and β can be
derived as

α̂ =
X
2

S2
and β̂ =

S2

X
(8)

where X and S2 are the sample mean and the sample vari-
ance respectively. The cut-off value δx can be found using
the Incomplete Gamma function Iδx/β̂(α̂) and can be com-
puted numerically [1, 13].

Histograms and fitted distributions for example features
are given in Figure 1. This shows that many features from
different feature extraction algorithms can be modeled by
the distributions that were presented in Section 3.5.

4. Similarity Measures
After computing and normalizing the feature vectors for

all images in the database, given a query image, we have to
decide which images in the database are relevant to it and
have to retrieve the most relevant ones as the result of the
query. In this section, we describe two approaches, prob-
abilistic and geometric approaches to image similarity and
retrieval.

4.1. Probabilistic similarity measures
In our previous work [2] we defined two classes, the rele-

vance classA and the irrelevance class B, and used a Gaus-
sian classifier to measure the relevancy of two images one
being the query image and one being a database image so
that image pairs which had a high likelihood ratio were clas-
sified as relevant and the ones which had a lower likelihood
ratio were classified as irrelevant. Given two images with
feature vectors x and y, and their feature difference vector
d = x− y, x, y, d ∈ R

Q with Q being the size of a feature
vector, the posterior probability that they are relevant is

P (A|d) = P (d|A)P (A)/P (d) (9)

and the posterior probability that they are irrelevant is

P (B|d) = P (d|B)P (B)/P (d). (10)

Assuming that these two classes are equally likely, the like-
lihood ratio is defined as

r(d) =
P (d|A)
P (d|B) . (11)

In the following sections, we describe two methods to esti-
mate the conditional probabilities P (d|A) and P (d|B).

4.1.1. Multivariate Normal assumption

We assume that the feature differences for the relevance
class have a multivariate Normal density with mean µA and
covariance matrix ΣA as

f(d|µA,ΣA) =
1

(2π)Q/2|ΣA|1/2
e−(d−µA)

′Σ−1
A
(d−µA)/2.

(12)
Similarly, the feature differences for the irrelevance class
are assumed to have a multivariate Normal density with
sample mean µB and sample covariance matrix ΣB as

f(d|µB,ΣB) =
1

(2π)Q/2|ΣB|1/2
e−(d−µB)

′Σ−1
B
(d−µB)/2.

(13)
The likelihood ratio in (11) is given as

r(d) =
f(d|µA,ΣA)
f(d|µB,ΣB)

. (14)

µA,ΣA, µB and ΣB are estimated using the multivariate
versions of the MLEs given in Section 3.5.1.

To simplify the computation of the likelihood ratio in
(14), we take its logarithm, eliminate some constants, and
use

r(d) = (d− µA)
′Σ−1A (d− µA)− (d− µB)

′Σ−1B (d− µB)
(15)

to rank the database images in ascending order of these val-
ues which corresponds to a descending order of similarity.



4.1.2. Independently fitted distributions

We also use the independently fitted distributions to
compute the likelihood values. After comparing the
Kolmogorov-Smirnov test statistics as the goodness-of-fits,
we model the line-angle-ratio features by Exponential den-
sities and the co-occurrence features by Normal densi-
ties. Let x and y be two iid. random variables with an
Exponential(λ) distribution. The distribution of z = x − y
is called Double Exponential(λ) and can be found as

fz(z) =
1

2λ
e−|z|/λ , −∞ < z <∞. (16)

Let x and y be two iid. random variables with a
Normal(µ, σ2) distribution. Using moment generating
functions, we can easily show that their difference z = x−y
has a Normal(0, 2σ2) distribution

fz(z) =
1√
4πσ2

e−z
2/4σ2

, −∞ < z <∞. (17)

Using this Double Exponential model for the 20 line-angle-
ratio feature differences and the Normal model for the 8
co-occurrence feature differences, the joint density for the
relevance class is given as

f(d|λA1, . . . , λA20, σ2A21, . . . , σ2A28) =
20
∏

i=1

1

2λAi
e−|di|/λAi

28
∏

i=21

1
√

4πσ2Ai
e−d

2
i /4σ

2
Ai

(18)

and the joint density for the irrelevance class is given as

f(d|λB1, . . . , λB20, σ2B21, . . . , σ2B28) =
20
∏

i=1

1

2λBi
e−|di|/λBi

28
∏

i=21

1
√

4πσ2Bi
e−d

2
i /4σ

2
Bi .

(19)

The likelihood ratio in (11) becomes

r(d) =
f(d|λA1, . . . , λA20, σ2A21, . . . , σ2A28)
f(d|λB1, . . . , λB20, σ2B21, . . . , σ2B28)

. (20)

λAi, λBi, σ2Ai and σ2Bi are estimated using the MLEs given
in Sections 3.5.3 and 3.5.1. Instead of computing the com-
plete likelihood ratio, we take its logarithm, eliminate some
constants, and use

r(d) =
20
∑

i=1

|di|
(

1

λAi
− 1

λBi

)

+
1

4

28
∑

i=21

[

d2i
σ2Ai

− d2i
σ2Bi

]

(21)
to rank the database images.

4.2. Geometric similarity measures
In the geometric similarity measures for retrieval, simi-

larity between images is measured by computing distances
between feature vectors in the feature space. In the well
known nearest neighbor decision rule, each image in the
database is assumed to be represented by its feature vector
y in the Q-dimensional feature space. Given the feature vec-
tor x for the input query, the goal is to find the y’s which are
the closest neighbors of x according to a distance measure.
Then, the k-nearest neighbors of x will be retrieved as the
most relevant images to x. For the distance metric ρ, we use
the city-block distance (Minkowsky L1 metric)

ρ(x, y) =

Q
∑

q=1

|xq − yq| (22)

and the Euclidean distance (Minkowsky L2 metric)

ρ(x, y) =

(

Q
∑

q=1

(xq − yq)
2

)1/2

(23)

where x, y ∈ R
Q and xq and yq are the q’th components of

the feature vectors x and y respectively.

5. Experiments and Results
5.1. Database population

Our database contains 10,410 256 × 256 images that
come from the Fort Hood Data of the RADIUS Project
and also from the LANDSAT and Defense Meteorologi-
cal Satellite Program (DMSP) Satellites. The RADIUS
images consist of visible light aerial images of the Fort
Hood area in Texas, USA. The LANDSAT images are
from a remote sensing image collection. For these exper-
iments, we randomly selected 340 images from the total of
10,410 and formed a groundtruth of 7 categories; parking
lots, roads, residential areas, landscapes, LANDSAT USA,
DMSP North Pole and LANDSAT Chernobyl.

5.2. Retrieval performance
Retrieval results, in terms of precision averaged over the

groundtruth images, using the likelihood ratio with multi-
variate Normal assumption, the likelihood ratio with fitted
distributions, the city-block distance and the Euclidean dis-
tance with different normalization methods are given in Fig-
ure 2. Note that, linear scaling to unit range involves only
scaling and translation and it does not have any truncation
so it does not change the structures of distributions of the
features. Therefore, using this method reflects the effects of
using the raw feature distributions while mapping them to
the same range.

Example queries using different similarity measures with
the same query image are given in Figure 3.
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(b) Linear scaling to unit variance.
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(c) Transformation to a Uniform random variable.
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(d) Rank normalization.
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(e) Fitting Exponentials to line-angle-ratio and
Normals to co-occurrence features.
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(f) Fitting Exponentials to line-angle-ratio and
Gammas to co-occurrence features.

Figure 2: Precision vs. Number of images retrieved for the similarity measures used with different normalization methods.
Fitting Exponentials to line-angle-ratio and Lognormals to co-occurrence features, and fitting Exponentials to all features
resulted in similar results but were not included here due to space limitations.

(a) Likelihood ratio (MVN) (12 similar images re-
trieved)

(b) Likelihood ratio (Fit) (11 similar images re-
trieved)

(c) City-block (L1) distance (9 similar images re-
trieved)

Figure 3: Retrieval examples using the same parking lot image as query with different similarity measures. The upper left
image is the query. Among the retrieved images, first three rows show the 12 most relevant images in descending order of
similarity and the last row shows the 4 most irrelevant images in descending order of dissimilarity. Euclidean (L2) distance
retrieved 7 similar images for this query. Please note that both the order and the number of similar images retrieved with
different measures are different.



5.3. Observations
• Using probabilistic similarity measures always per-

formed better in terms of both precision and recall than
the cases where the geometric measures were used.
On the average, the likelihood ratio that used the mul-
tivariate Normality assumption performed better than
the likelihood ratio that used independent features with
Exponential or Normal distributions. The covariance
matrix in the correlated multivariate Normal usually
captured more information than using individually bet-
ter fitted but independent distributions.

• Probabilistic measures performed similarly when dif-
ferent normalization methods were used. This shows
that these measures are more robust to normalization
effects than the geometric measures.

• City-block distance performed better than the Eu-
clidean distance. They both performed better with nor-
malization methods like transformation using the cu-
mulative distribution function or the rank normaliza-
tion, i.e. the methods that tend to make the distribution
uniform and spread out the feature values as much as
possible.

6. Conclusions
This paper presented two probabilistic similarity mea-

sures for image retrieval and compared their retrieval per-
formances to those of the geometric measures. The prob-
abilistic measures used likelihood ratios that were derived
from a Bayesian classifier that measured the relevancy of
two images, one being the query image and one being a
database image, so that image pairs which had a high likeli-
hood value were classified as “relevant” and the ones which
had a lower likelihood value were classified as “irrelevant”.
The first likelihood-based measure used multivariate Nor-
mality assumption and the second measure used indepen-
dently fitted distributions for the features. Experiments on a
database of approximately 10,000 images showed that both
likelihood-based measures performed significantly better
than the commonly used city-block (L1) and Euclidean (L2)
distances in terms of average precision.

We also discussed the effects of feature normalization
on retrieval performance. We described five normalization
methods; linear scaling to unit range, linear scaling to unit
variance, transformation to a Uniform[0,1] random vari-
able, rank normalization and normalization by fitting dis-
tributions to independently normalize each feature compo-
nent to the [0,1] range. We showed that studying the dis-
tributions of the features and using the results of this study
significantly improves the results compared to making only
general assumptions.
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