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Image Mining Using Directional Spatial Constraints
Selim Aksoy, Member, IEEE and R. Gökberk Cinbiş

Abstract—Spatial information plays a fundamental role in
building high-level content models for supporting analysts’ inter-
pretations and automating geospatial intelligence. We describe a
framework for modeling directional spatial relationships among
objects and using this information for contextual classification
and retrieval. The proposed model first identifies image areas
that have a high degree of satisfaction of a spatial relation with
respect to several reference objects. Then, this information is
incorporated into the Bayesian decision rule as spatial priors
for contextual classification. The model also supports dynamic
queries by using directional relationships as spatial constraints
to enable object detection based on the properties of individual
objects as well as their spatial relationships to other objects.
Comparative experiments using high-resolution satellite imagery
illustrate the flexibility and effectiveness of the proposed frame-
work in image mining with significant improvements in both
classification and retrieval performance.

Index Terms—Spatial relationships, image classification, image
retrieval, object detection, mathematical morphology

I. INTRODUCTION

The goal of image information mining in geospatial data
archives is to automate the content extraction and exploitation
process by building high-level subjective content models by
combining low-level features and supporting classification
and content-based retrieval in terms of semantic queries. In
addition to a large number of content-based retrieval systems
proposed in the computer vision literature, several systems
have been specifically designed for mining Earth observation
data. For example, Datcu et al. [1] developed a system where
users can train Bayesian classifiers for a particular concept
(e.g., water) using positive and negative examples of pixels,
and can have image tiles ranked according to the coverage of
this concept estimated using pixel level models. Shyu et al.
[2] developed an extensive system that supports both tile-based
and object-based indexing.

Even though correct identification of pixels and regions
improve the processing time for content extraction, manual
interpretation is often necessary for many applications be-
cause two scenes with similar regions can have very different
interpretations if the regions have different spatial arrange-
ments. Therefore, modeling spatial information to understand
the context has been an important and challenging research
problem. A structural method for modeling context is through
the quantification of spatial relationships. For example, the
GeoIRIS system in [2] supports the retrieval of tiles according
to the spatial configuration of the objects they contain. The
VisiMine system we developed includes automatic methods for
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extraction of topological, distance-based and relative position-
based relationships between region pairs [3] where such rela-
tionships can be successfully used for image classification and
retrieval in scenarios that cannot be expressed by traditional
pixel- and region-based approaches.

Both location and direction play a fundamental role in
the modeling and analysis of geospatial information. In this
paper, we describe a framework for contextual classification
and retrieval in geospatial data where the main goal is to
enable object detection based on the properties of individual
objects as well as their directional spatial relationships to
other objects. The paper builds on our work on morphological
modeling of relative position-based spatial relationships [4]
(Section II). Most of the existing methods for defining rela-
tive positions rely on angle measurements between points of
objects of interest. The angle between object centroids or the
histogram of angles between all pairs of points have been used.
However, the former can give quite counterintuitive results
when the objects do not have compact shapes, and the latter
is often computationally expensive. The morphological models
we developed define a fuzzy landscape where each image
point is assigned a value that quantifies its relative position
according to a reference object. Mathematical morphology
provides a strong basis for such formulation to incorporate
the influence of the shape of the object. Furthermore, the
fuzzy representation enables flexibility to the imprecision and
subjectivity inherent in the definitions of the relationships.

Our main contributions in this paper include extending the
relationship model to multiple reference objects, incorporating
the spatial information into the Bayesian decision rule as spa-
tial priors for contextual classification, and enabling dynamic
queries by using directional relationships as spatial constraints
with support for the visibility of image areas that are partially
enclosed by reference objects (Section III). We illustrate the
effectiveness of the proposed methods using quantitative and
qualitative results on contextual classification and retrieval of
high spatial resolution satellite imagery (Section IV).

II. DIRECTIONAL SPATIAL RELATIONSHIPS

Position-based spatial relationships describe the spatial ar-
rangements of objects relative to each other. These relation-
ships can be modeled with respect to a direction of interest.
In this section, we describe how image areas that have a high
degree of satisfaction of a particular directional relationship
relative to a reference object can be identified.

Given a reference object B and a direction specified by
the angle α, the landscape βα(B) around the reference object
along the given direction can be defined as a fuzzy function
from the image space I into [0, 1]. The fuzzy membership
value βα(B)(x) of an image point x ∈ I corresponds to the
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degree of its satisfaction of the spatial relation. Given the unit
vector along the direction α with respect to the horizontal axis,
Bloch [5] suggested that the angle θα(x, b) measured between
this vector and the vector from a point b in the reference object
to the image point x corresponds to the visibility of the image
point from the reference object in the direction α. In [5], the
fuzzy landscape is computed as

βα(B)(x) = max
{

0, 1− 2
π

min
b∈B

θα(x, b)
}

(1)

using a function linearly decreasing with the smallest such
angle by considering all points in the reference object. It can
be shown that (1) can be computed using the morphological
dilation of B,

βα(B)(x) = (B ⊕ να)(x) ∩Bc, (2)

using the fuzzy structuring element

να(x) = max
{

0, 1− 2
π

θα(x, o)
}

(3)

where o is the origin (center) of the structuring element. B is
removed from the result of dilation in (2).

Figure 1(c) shows the landscape corresponding to the east of
a building detected in an Ikonos image. (More examples using
synthetic images can be found in [6].) The linear function in
(3) often leads to a large spread and unintuitive transitions
when the angle departs from α especially at points that are
farther away from the reference object. We developed a more
intuitive and flexible structuring element using a nonlinear
function with the shape of a Bézier curve

να,λ(x) = gλ

(
2
π

θα(x, o)
)

(4)

where λ ∈ (0, 1) determines the inflection point of the curve
(see [6] for the derivation). Increasing λ increases the spread
around α. This definition can be further extended to decrease
the degree of a point’s spatial relation to a reference object
according to its distance to that object by introducing a new
linear term

να,λ,τ (x) = gλ

(
2
π

θα(x, o)
)

max
{

0, 1− ‖−→ox‖
τ

}
(5)

where ‖−→ox‖ is the Euclidean distance of point x from the
structuring element’s center and τ is a threshold corresponding
to the distance where a point is no longer visible from the
reference object. The definition in (5) provides a structuring
element that is tunable along both angular and radial dimen-
sions. As can be seen in Figure 1, the landscapes obtained
using (4) and (5) are more intuitive and have more compact
support compared to the one obtained using (3).

Another important issue especially for remote sensing im-
ages that contain complex natural and man-made structures is
the handling of image areas that are partially or fully enclosed
by the reference object and are not visible from image points
along the direction of interest. The landscape definition (2)
using any of the structuring elements (3), (4) and (5) can give
high values at such areas as shown in Figure 2. The visibility
of these areas can be correctly handled as

βα,λ,λ′,τ,τ ′(B)(x) = (B ⊕ να,λ,τ )(x)∩ (B ⊕ να+π,λ′,τ ′)(x)c (6)

(a) Panchromatic image (b) να (c) βα

(d) να,λ (e) βα,λ (f) να,λ,τ (g) βα,λ,τ

Fig. 1. An Ikonos panchromatic image and the directional landscapes to
the east of a detected building using the parameters α = 0, λ = 0.3 and
τ = 150. βα in (c) produces a large spread and unintuitive transitions when
the angle departs from α especially at points that are farther away from the
reference object. βα,λ and βα,λ,τ in (e) and (g), respectively, result in more
intuitive landscapes with more compact support.

(a) True-color image
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(b) βα
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(c) βα,λ,τ without visibility
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C

DE

(d) βα,λ,λ′,τ,τ ′ with visibility

Fig. 2. A Landsat true-color image and the directional landscapes without
and with visibility to the north of a detected river object using the parameters
α = π/2, λ = 0.3, λ′ = 0.001, τ = 150 and τ ′ = 100. βα in (b) produces
a maximum value of 1 for the points A–D and a large value for E even though
these points are more to the south than to the north of a river segment. βα,λ,τ

in (c) gives a correct value for A. The values for B–E are closer to 0 but are
still positive due to the spread of the structuring element. βα,λ,λ′,τ,τ ′ in (d)
gives the most intuitive results for all points.

where the fuzzy intersection is computed using multiplication
and the fuzzy complement is computed by subtracting the
values from 1. λ′ can be set to a very small number to consider
only the image points along α+π, and τ ′ can be set to a value
less than τ to allow a positive landscape value at the enclosed
areas that are closer to one part of the object along α than
other parts (see Figure 2 for examples).

Examples in Figures 1 and 2 show that the fuzzy landscape
definitions in (2) and (6) using the structuring elements in (4)
and (5) provide intuitive and flexible methods for distinguish-
ing image areas for which the directional spatial relationships
relative to a reference object hold.
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III. CONTEXTUAL CLASSIFICATION AND RETRIEVAL

Once the fuzzy directional landscape βα is obtained for a
reference object B,1 the degree of satisfaction of this relation
by a target object A can be quantified by integrating the
landscape over the support of the target object as

µ(A) =
1

area(A)

∑
a∈A

βα(B)(a). (7)

Furthermore, the relationship model can easily be extended
when there is more than one reference object. Given the
landscapes βα1(B1), . . . , βαn

(Bn) for n reference objects
B1, . . . , Bn with n possibly different directions of interest
α1, . . . , αn, the combined relationship can be obtained as

βα1,...,αn(B1, . . . , Bn)(x) = min
i=1,...,n

βαi(Bi)(x). (8)

The “min” operator is used as the equivalent of the Boolean
“and” in fuzzy logic. The degree of satisfaction of the com-
bined relation by another object can be computed as in (7).

The computed landscape can be used as contextual informa-
tion in classification and retrieval for automatically improving
the accuracy of image mining. In the remote sensing literature,
classification is conventionally done using pixels or objects
(regions) with their spectral or textural features. Even though
both object-based classification and textural features make use
of spatial information through neighboring pixels, they are
still far from exploiting any high-level contextual information.
Therefore, a significant amount of commission is still unavoid-
able among the classes with similar low-level features.

Let x denote the feature vector of a pixel or an object at
location x in a binary classification problem with two classes
w1 and w2. As a widely used solution, the Bayesian classifier
makes a decision using the posterior probabilities as

Decide

{
w1 if P (w1|x)

P (w2|x) > 1

w2 otherwise
(9)

which is equivalent to

Decide

{
w1 if P (x|w1)

P (x|w2)
> P (w2)

P (w1)

w2 otherwise
(10)

using the Bayes rule with the class-conditional and prior
probabilities. The equal priors assumption (P (w1) = P (w2))
is often used when no additional information is available.

Assume that there is a third class w3 that is related to w2.
The pixels/objects that are assigned to w3 can be used as
spatial constraints for improving the discrimination between
w1 and w2. First, the directional landscape βα(w3) is com-
puted for the whole scene by using w3 as the reference. Then,
the fuzzy landscape value in the range [0, 1] at each image
location is used as the spatial prior for w2 at that location, i.e.,
P (w2) = βα(w3)(x) and P (w1) = 1− P (w2). The resulting
contextual decision rule becomes

Decide

{
w1 if P (x|w1)

P (x|w2)
> βα(w3)(x)

1−βα(w3)(x)

w2 otherwise
(11)

1The landscape is denoted as βα to simplify the notation in this section.
Any definition and structuring element from Section II can be used for β.

using these spatial priors. We illustrate the use of (11) for
the classification of asphalt (w1) versus shadow (w2) using
buildings and trees as the spatial reference (w3) in Section
IV-A. The extension of (11) for multi-class classification with
multiple reference classes is straightforward but is not included
in this paper due to space constraints.

The directional landscapes can also be used for image
retrieval for geospatial intelligence in both civilian and mili-
tary applications. Existing methods with pre-computed spatial
relationships within fixed partitions (tiles) cannot handle dy-
namic queries formulated as a search for objects with certain
properties (spectral, textural, shape, etc.) at a particular relative
position with respect to other reference objects. Methods
for answering dynamic queries can be found in GIS and
spatial database literatures but the former is often limited
to topological (adjacency) and distance constraints, and the
latter often assumes that the objects are represented using
single points (e.g., centroids) or bounding rectangles. Such
assumptions are often violated by complex natural and man-
made structures in remote sensing images.

The proposed directional models are promising solutions for
dynamic queries due to their flexibility for any type of objects
with support for the notion of visibility as described in Section
II. Given the objects detected in a data set with possibly
the confidence of detection and a list of attributes (features)
for each object, dynamic queries for objects having certain
attributes and satisfying several additional spatial relationship
constraints with respect to multiple reference objects can be
answered as follows. First, the fuzzy landscape is computed as
in (8). Then, the degrees of satisfaction of these relationships
by objects that satisfy the attribute criteria are found as in
(7). Finally, the objects are ranked according to a combined
measure (e.g, product, sum, weighted sum) that involves the
confidence of detection, the attribute values, and the spatial
constraints. We illustrate such queries in Section IV-B.

IV. EXPERIMENTS

Performance analysis of high-level spatial relationship mod-
els is a very difficult and subjective task where synthetic
images [5] or rotated or scaled versions of real images [2]
were used for evaluation in the literature. We present proof-
of-concept experiments to illustrate the use of directional
landscape models as spatial contextual constraints for image
classification and retrieval. The models described in this paper
were implemented in Matlab. Parallel and faster implementa-
tions are possible but are beyond the scope of this paper.

A. Classification Experiments

We used a well-known hyperspectral image of Pavia, Italy
obtained by the ROSIS sensor. A pixel-based Bayesian clas-
sification was performed for 9 classes using spectral and
textural features as described in [7]. The output of the Bayesian
classifier was a probability value for each class at each pixel.

Figures 3(a) and 3(b) show a 490 × 199 pixel section of
this image and the corresponding classification map. Table
I(a) shows the confusion matrix for the pixels where either the
asphalt class (w1) or the shadow class (w2) gave the highest
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TABLE I
CONFUSION MATRICES FOR ASPHALT VERSUS SHADOW CLASSIFICATION.

(a) Using the decision rule (9) without
spatial information. Overall accuracy
is %63.66.

Assigned
asphalt shadow

True asphalt 3,302 2,000
shadow 1,028 2,003

(b) Using the decision rule (11) with
spatial information. Overall accuracy
is %86.16.

Assigned
asphalt shadow

True asphalt 5,054 248
shadow 905 2,126

probability. Figure 3(e) was used as the ground truth. The
%63.66 accuracy shows a significant amount of commission
between these two classes when only pixel-based information
is used. This is a common problem in the classification of
images with high spatial resolution. It occurs because of the
mismatches between the land cover/use classes in the ground
truth used for training the classifiers and the land cover/use
observed in the image being classified. These mismatches
that are caused by external factors such as the position of
the sun and clouds at the time of image capture make the
classification time-dependent where the classes with relatively
similar spectral values (e.g., water versus shadow, asphalt
versus shadow, snow versus cloud) are often misclassified.

The spatial context can be incorporated into the decision
process by using the tiles (building roofs) and trees as addi-
tional information. The directional landscape was computed
for the pixels classified as tiles using the parameters α =
−50◦, λ = 0.3 and τ = 25. The α value measured from
the horizontal axis in counter-clockwise direction was visually
determined from the image to approximate the sun angle
(can be obtained from the image metadata if available). The
λ and τ values were determined empirically. Similarly, the
directional landscape for the trees class was computed using
the parameters α = −50◦, λ = 0.3 and τ = 10. The two
landscapes, shown in Figures 3(c) and 3(d), were combined
using the “max” operator (which is the equivalent of the
Boolean “or” operator). Then, the contextual decision rule in
(11) was used to update the classification at each pixel by using
tiles and trees as reference (w3). Figure 3(f) and Table I(b)
show the classification results when spatial information was
used. The updated contextual decision gave a %86.16 accuracy
that corresponds to a net %22.50 improvement by classifying
a pixel with shadow-like feature values as shadow only when
it also has a high degree of directional spatial relationship with
respect to buildings or trees at a particular angle.

B. Retrieval Experiments

Retrieval experiments were done using an Ikonos panchro-
matic image of Antalya, Turkey. Figure 4(a) shows a 1, 000×
700 pixel section that is part of a university campus. First,
derivative of the morphological opening and closing profiles
(DMP) were computed using disk structuring elements with
radii from 3 to 15. Then, objects were extracted by simple
thresholding of the DMP levels. No pre- or post-processing of
the results were considered as the aim was not to assess the
performance of object detection in detail but to illustrate the
potential use of the spatial relationship models for retrieval.

(a) True-color image (b) Classification map using decision
rule (9) without spatial information

(c) Directional landscape with respect
to the detected tiles

(d) Directional landscape with respect
to the detected trees

(e) Ground truth map (f) Classification map using decision
rule (11) with spatial information

Fig. 3. Classification of the Pavia image without and with using spatial
contextual information. The classes in the classification and ground truth maps
are asphalt (gray), shadow (black), tiles (red) and trees (green). The ground
truth is produced by visual inspection.

Figure 4(b) shows the extracted objects grouped into four cat-
egories, namely: building, road, parking lot, and tree. Further
processing would have improved the detection results but we
considered them as sufficient for retrieval experiments.

Next, several complex queries were constructed to search for
different objects when two or more objects were used as spatial
constraints as described in Section III. The object types in
the grouping in Figure 4(b) were used as the object attributes.
For each query, the fuzzy landscape corresponding to multiple
reference objects was computed as in (8), and the objects that
satisfied both the attribute criterion and the spatial constraints
were included in the result set of that query. An object was
considered as satisfying the spatial constraints if its degree of
satisfaction of the spatial relationship computed using (7) was
greater than 0.5.

Retrieval performance was evaluated using precision (per-
centage of the correctly detected objects among all detections
in the result set) and recall (percentage of the correctly
detected objects among all objects in the ground truth) using
a ground truth that was constructed by manually identifying
the objects satisfying each query. Figures 4(c) and 4(d) show
10 queries and the corresponding precision values when the
fuzzy directional landscape was computed using the definition
in (6) with the structuring element in (4) (proposed model)
and using the definition in (1) (model in [5]) for comparison.
The α values were determined from the query descriptions in
Figure 4(c) and the λ parameter in (4) was fixed at 0.3. The
structuring element in (5) with τ was not used in order not to
increase the number of parameters during evaluation.

Both models achieved perfect recall for all queries. How-
ever, our model resulted in significantly better precision than
the one by [5]. The errors by the latter were due to the
large spread by the structuring element in (3) and the missing
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(a) Panchromatic image
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(b) Extracted objects and their IDs

Q1 Find buildings between 68 and 71
Q2 Find buildings to the east of 8 and south of 74
Q3 Find buildings to the east of 19 and north of 22
Q4 Find buildings to the east of 19, north of 22 and west of 46
Q5 Find buildings between 60 and 80
Q6 Find buildings to the east of 16, north of 23 and west of 46
Q7 Find parking lots between 31, 32 and 57
Q8 Find buildings between 37 and 8
Q9 Find parking lots to the east of 46 and northwest of 80
Q10 Find tree groups between 17 and 46

(c) Queries

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10
0

20

40

60

80

100

(d) Precision

(e) Results for Q2 (f) Results for Q6 (g) Results for Q10

Fig. 4. Retrieval experiments using the Antalya image. The extracted objects in (b) are labeled as building (red), road (dark gray), parking lot (light gray) and
tree (green). The blue (left) bars in (d) show the precision using the directional relationship model proposed in Section II, and the red (right) bars correspond
to the model in [5]. The query results in (e)-(g) show the combined landscape, the reference objects (red) and the detected objects (blue). For each query, the
image on the left shows the result for the proposed model and the one on the right shows the result using the model in [5].

support for visibility to handle the areas that were partially
enclosed by complex structures (e.g., roads) (see Figures
4(e)–4(g) for examples). Overall, the directional landscapes
obtained by the proposed model using multiple reference
objects were more intuitive than the ones by the compared
method as also reflected in the precision values. Even further
improvements can be obtained by using a “between” model
that uses the definition in (6) but also handles the cases where
one object is significantly spatially extended relative to others
by taking spatial proximity into consideration [4], [6].

V. CONCLUSIONS

This paper presented our work on modeling directional
spatial relationships by automatically identifying image areas
for which such relationships relative to several reference
objects hold, and using this information as spatial constraints
for contextual classification and retrieval. Experiments using
high-resolution satellite imagery showed that the Bayesian
decision rule that incorporated spatial information significantly
decreased the amount of commission among spectrally similar
classes. Retrieval experiments also showed that the proposed
models produced more intuitive results and higher precision
than other approaches in dynamic query scenarios with spatial
constraints.
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