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Abstract—Deep learning has achieved successful perfor-
mance in representation learning and content-based retrieval
of histopathology images. The commonly used setting in deep
learning-based approaches is supervised training of deep neural
networks for classification, and using the trained model to extract
representations that are used for computing and ranking the
distances between images. However, there are two remaining
major challenges. First, supervised training of deep neural
networks requires large amount of manually labeled data which
is often limited in the medical field. Transfer learning has been
used to overcome this challenge, but its success remained lim-
ited. Second, the clinical practice in histopathology necessitates
working with regions of interest (ROI) of multiple diagnostic
classes with arbitrary shapes and sizes. The typical solution
to this problem is to aggregate the representations of fixed-
sized patches cropped from these regions to obtain region-
level representations. However, naive methods cannot sufficiently
exploit the rich contextual information in the complex tissue
structures. To tackle these two challenges, we propose a generic
method that utilizes graph neural networks (GNN), combined
with a self-supervised training method using a contrastive loss.
GNN enables representing arbitrarily-shaped ROIs as graphs
and encoding contextual information. Self-supervised contrastive
learning improves quality of learned representations without
requiring labeled data. The experiments using a challenging
breast histopathology data set show that the proposed method
achieves better performance than the state-of-the-art.

Index Terms—Digital pathology, histopathological image anal-
ysis, self-supervised learning, graph neural networks, content-
based image retrieval

I. INTRODUCTION

Histopathology image analysis aims to serve as an important
tool for helping pathologists with the diagnostic process. It can
relieve the workload on pathologists and offer more objective
analysis of histopathology images. In addition to the classifier
systems providing diagnostic predictions or grading scores,
content-based image retrieval (CBIR) has also been investi-
gated for decision support in many clinical applications [1]–
[4]. Given an image database, CBIR methods aim to retrieve
images with morphological characteristics most relevant to and
consistent with the query image. CBIR can also be used for
classification purposes by considering the majority diagnosis
of the retrieved images as the most likely diagnosis.

In the general CBIR pipeline, feature extraction methods are
employed to represent each image with a feature vector. De-
pending on the feature extraction method, the image represen-
tations can be directly compared for similarity, or a ranking-
based model can be learned on top of the image features. In
the query phase, the learned or constructed similarity model is
used to retrieve the most similar images. The retrieval results
can be provided to users for further analysis.

Although the current CBIR methods achieved successes in
generic image retrieval problems, how to tackle the retrieval
in histopathology image databases is still a challenging topic
[5]. The size of histopathology images can be extremely large.
For example, the whole slide images (WSI) that are obtained
by digitizing biopsy slides at high magnification can include
more than 100,000×100,000 pixels. WSIs often contain many
regions of interest (ROI) that can belong to different diagnostic
categories and can carry different levels of relevance for the
final slide-level diagnosis. Furthermore, the pathologists do not
have any restrictions on the ROI shapes and sizes when they
evaluate the slides, and can select and study the regions at any
size and magnification deemed suitable. The complex imaging
parameters (e.g., staining procedures, machine properties),
microanatomic differences, and interactions between different
structures result in a more complex analysis compared to
natural images. The relevant changes of histopathology images
require both cell-level and contextual analysis.

Earlier works used hand-crafted features, most notably the
bag-of-features based on SIFT descriptors [6], to represent
histopathology images, and focused on similarity measures [3],
[4], [7]. We believe tackling these challenges requires more
effective representation learning methods. In recent years, deep
learning-based approaches, in particular convolutional neural
networks (CNN), have been shown to be successful in visual
representation learning in various domains including digital
pathology [8]. As the mainstream CNN architectures typically
require fixed-sized inputs, their common use in the digital
pathology domain has also been in the classification of fixed-
sized histopathology image patches. The generally studied
setting has been to aggregate the feature representations of



fixed-sized patches cropped from these images to obtain an
image-level representation. Aggregation methods typically in-
clude fixed rules such as averaging features or class scores,
or weighted averaging with learnable weights [9]–[12]. More
recently, graph neural network (GNN) architectures that deal
with size and shape variation of ROIs and encode contextual
information via message passing [13], [14] are used instead
of CNN. GNN-based methods formulate the ROI classification
problem as a graph classification problem. Regardless of the
model architecture, after the training phase of the classification
model, the “head”, i.e., the last one or more fully-connected
layers, is removed and the remaining model is used as a feature
representation extractor. Then, the extracted features are used
for CBIR.

State-of-the-art results have been achieved using represen-
tation learning through classification. However, their power
is bounded by the amount of manually labeled training data.
Annotation of histopathology images by expert pathologists is
a costly operation. Better performance can be achieved using
deeper and wider neural networks but training larger models in
a supervised setting requires more labeled data. Training deep
neural networks from scratch using small amount of labeled
data can easily result in overfitting [15]. Pre-training the
models on other settings and fine-tuning on target histopathol-
ogy images, and unsupervised neural networks such as auto-
encoders have also been explored, but their success in large-
scale images remain limited [16]–[18].

In this paper, we propose a self-supervised method to
learn visual representations of arbitrarily-shaped ROIs without
reference diagnostic information. The method employs a GNN
that models each ROI as a graph where vertices denote the
patches sampled from the ROI and edges represent the spa-
tial proximity of those patches. A self-supervised contrastive
learning method recently proposed by [19] and achieved the
state-of-the-art results in natural image data sets is adapted to
histopathology images. The graph structure implicitly encodes
the spatial relationships across the patches, which can be used
to tackle fine-grained representation learning in a holistic man-
ner. Self-supervised learning improves the quality of learned
representations while allowing utilization of large amounts of
unlabeled histopathology image data. Our experimental results
show that the proposed method performs better than the state-
of-the-art.

In the following, we first introduce the breast pathology data
set used in the paper, then, describe the proposed method, and
finally, present the experimental results.

II. DATA SET

We constructed a new breast histopathology data set using
78 WSIs that were digitized from specimens collected from 63
patients. The haematoxylin and eosin stained specimens were
selected from the archives of the Department of Pathology
at Hacettepe University based on their slide-level diagnoses.
The WSIs were acquired at 40× magnification by using an
Olympus slide scanner. The resulting average image size was
170,000 × 132,000 pixels. 1,030 ROIs were annotated by

TABLE I
ROI SIZE STATISTICS PER DIAGNOSTIC CLASS IN NUMBER OF PIXELS AT

10× MAGNIFICATION. ROWS SHOW THE AVERAGE ROI SIZE, THE
STANDARD DEVIATION OF ROI SIZES, AND THE RATIO OF THE LARGEST

ROI SIZE TO THE SMALLEST ONE, RESPECTIVELY.

Benign Atypia In Situ Invasive
Average 1308K 473K 2815K 12568K

Standard deviation 2510K 711K 4948K 17822K
Max-min ratio 977.2 210.8 941.1 762.5

experienced pathologists in free form with no shape and size
restrictions. The resulting annotations were collected into 4
diagnostic classes: benign (including samples containing non-
proliferative changes, apocrine metaplasia, usual ductal hyper-
plasia, columnar cell hyperplasia, flat epithelial hyperplasia,
and intraductal papilloma without atypia), atypia (including
samples containing atypical ductal hyperplasia, atypical lobu-
lar hyperplasia, and intraductal papilloma with atypia), in situ
carcinoma (including both ductal carcinoma in situ and lobular
carcinoma in situ), and invasive carcinoma. The per-class ROI
size statistics are shown in Table I.

Since the specimens were stained at different times follow-
ing different procedures, there is a great variation in their color
distributions. To eliminate the effects of staining differences
in model learning, we performed stain normalization as a pre-
processing step. We first applied color deconvolution [20] to
estimate the stain matrix of each slide. To make the estimation
more robust, haematoxylin stain vector estimation considered
only the pixels inside nucleus masks which were automat-
ically generated using a pre-trained convolutional network,
and eosin stain vector estimation considered the remaining
regions excluding high luminosity regions which correspond to
background. Then, the histograms of haematoxylin and eosin
channels of each slide are matched to a target slide chosen
from the data set [21].

Finally, we partitioned the data set into four folds by using
ROI-level diagnosis labels. The split is constrained to make
all WSIs and ROIs from the same patient fall under the same
fold. We employed a genetic algorithm to find a good split that
achieves similar slide-level and ROI-level class distributions
among the folds. During model learning, we use two folds
as the training set, one fold as the validation set, and one
fold as the test set. The assignment of folds to data subsets
are random. The resulting ROI-level and slide-level class
distributions of the three sets are given in Table II.

III. PROPOSED METHOD

In our framework, the regions of interest (ROI) with ar-
bitrary shapes are represented by undirected graphs where
vertices correspond to fixed-size patches and edges correspond
to spatial proximity relation between the patches. We propose
learning a graph neural network (GNN) that encodes ROI
graphs into representations using a contrastive loss function
in a self-supervised setting. Then, a content-based retrieval
system is constructed using the trained GNN to extract rep-
resentations from ROIs and Euclidean distance between the
extracted representations to measure the similarity of ROIs.



TABLE II
CLASS DISTRIBUTION OF SLIDES AND ROIS IN TRAINING, VALIDATION,

AND TEST SETS. NOTE THAT A SLIDE CAN CONTAIN MULTIPLE ROIS
CORRESPONDING TO DIFFERENT DIAGNOSTIC LABELS, RESULTING IN A

MULTI-LABEL SETTING FOR EACH SLIDE. THUS, THE NUMBERS OF SLIDES
FOR EACH DIAGNOSTIC CLASS IN THE TABLE DO NOT SUM UP TO THE

TOTAL NUMBER OF SLIDES FOR A GIVEN SET.

Benign Atypia In Situ Invasive Total

Slide

Training Set 30 16 16 13 39
Validation Set 15 7 8 6 18
Test Set 16 8 9 6 21
Total 61 31 33 25 78

ROI

Training Set 226 55 154 102 537
Validation Set 109 25 56 50 240
Test Set 105 30 69 49 253
Total 440 110 279 201 1030

A. Graph Construction

First, patches of size 224 × 224 are extracted from the
ROI. We use scrambled Sobol sequences for dense and low
discrepancy sampling of 2-dimensional coordinates that cor-
respond to the centers of the patches. If more than half of the
pixels of a patch are within the ROI, the patch is included
in the graph. Using low discrepancy sampling introduces
irregularity to the distribution while preventing large gaps
between patch clusters that can occur in random sampling.
Then, patch features are extracted using a ResNet-50 model
[22] trained on ImageNet, although any suitable architecture
including unsupervised models can be used in this step. A
vertex for each patch is added to the ROI graph where the
position of the vertex is the center coordinates of the patch
relative to the region and the feature representation of the
vertex is the extracted feature vector. An edge is added to
the graph between two vertices if the distance between their
positions is less than or equal to 448, i.e., twice the patch size.

B. Region of Interest Representation Learning

We adopt the SimCLR framework [19] for learning repre-
sentations of ROIs. SimCLR has recently achieved state-of-
the-art results on ImageNet with an architecture simpler than
its alternatives such as Contrastive Predictive Coding [23].

SimCLR framework comprises a stochastic data augmen-
tation module, a neural network encoder, a neural network
projection head, and the normalized temperature-scaled cross
entropy loss as the contrastive loss function. The data aug-
mentation module takes as input a data sample, and outputs
two different augmented views of this example. The encoder
extracts feature vectors from the augmented data points. Fi-
nally, the projection head maps the feature vectors to the space
where contrastive prediction loss is calculated.

During the end-to-end training of the model, a random mini-
batch of size M is fed to the augmentation module, resulting
in 2M data points. Given the positive pair of a data point
which originated from the same example, the other 2(M − 1)
data points are treated as negatives. The loss function between
a positive pair of data points (i, j) is defined as

li,j = − log
exp(sim(zi, zj)/τ)

Σ2M
k=1I[k 6=i] exp(sim(zi, zk))/τ

(1)

where I is the 0-1 indicator function, zi, zj are the outputs of
the prediction head, sim is the cosine similarity function, and
τ is the adjustable temperature parameter. The loss function
in (1) is computed across all positive pairs in a mini-batch.

In our application, the data augmentation module removes
a random subset of vertices from the ROI graph. The resulting
two views represent the same ROI with different graph struc-
tures and vertex features. A GNN is employed as the encoder.
As the projection head, we use a 2-layer multi-layer perceptron
(MLP) with ReLU nonlinearity. This way, the GNN encoder is
forced to learn high-level contextual features to maximize the
agreement between the two views. The process is illustrated
in Figure 1.

C. Graph Neural Network Architectures

Three common building blocks of GNN models are neigh-
borhood aggregation, local pooling, and global pooling [24].
Neighborhood aggregation enables encoding contextual in-
formation, local pooling makes the learned representations
hierarchical similarly to the pooling in convolutional neural
networks, and global pooling aggregates vertex representations
into a graph representation. In its general form, neighborhood
aggregation can be defined as

X ′ = Φ(A,X; Θ) (2)

where X ∈ RN×C is the input feature matrix of N vertices
with C input channels, A is the adjacency matrix, Θ is the set
of trainable parameters, and X ′ ∈ RN×F is the output feature
matrix with F channels.

In our method, we consider three architectures: stacked
graph convolutional network (GCN) [25] followed by global
pooling, DiffPool [26], and GraphConv [27].

1) GCN-based Architecture: Our GCN-based architecture
is flat, i.e., does not have local pooling that constructs a
hierarchy. A single layer of GCN is defined as

X ′ = ReLU(D̃−
1
2 ÃD̃−

1
2XΘ) (3)

where Θ ∈ RC×F is the matrix of filter parameters, X ′ is
the convolved output, Ã = A + IN is the adjacency matrix
with inserted self-loops, and D̃ii = ΣjÃij . A number of
GCN layers are stacked to enlarge the receptive field of the
neurons. Finally, vertex features are averaged across the vertex
dimension to produce a single graph feature vector G as

G =
1

N

N∑
i=1

X ′i. (4)

2) DiffPool-based Architecture: DiffPool learns differen-
tiable dense cluster assignments for vertices at each layer,
mapping each vertex to a cluster. Each cluster becomes the
input vertex for the next layer. The pooling operation is defined
as

X ′ = softmax (S)T ·X (5)

A′ = softmax (S)T ·A · softmax (S) (6)

where S is the learned assignments and A′ is the coarsened
adjacency matrix. The number of clusters in the pooling



Fig. 1. The SimCLR framework applied to a region of interest in a breast biopsy image. Two separate vertex dropout augmentations (t ∼ T and t′ ∼ T ) are
applied to obtain two separate views of the same ROI. The GNN encoder and the MLP projection head are trained to maximize the agreement between the
representations using the contrastive loss. After training is completed, the GNN encoder is used to extract ROI representations for the retrieval task.

operation must be predetermined. At the end, features of final
clusters are averaged across the cluster dimension to produce
a single graph feature vector G as given in (4).

3) GraphConv-based Architecture: The GraphConv-based
architecture consists of the top-k pooling operator where
vertices are dropped based on a learnable projection score as
described in [28]. The neighborhood aggregation function for
vertex i is defined as

X ′i = Θ1Xi +
∑

j∈N(i)

Θ2Xj (7)

where Θ contains the learned weights and N(i) is the set of
neighbors of vertex i. The aggregation followed by pooling is
repeated k times which forms k subgraphs. Then, the features
from k subgraphs are produced by mean and max-pooling
of their vertex features. Finally, the subgraph features are
concatenated and fed to a 2-layer MLP as described in [27].
The output of the MLP forms the graph representation.

IV. EXPERIMENTS

A. Model Configurations

The GCN-based architecture has two layers of GCN con-
volutions with ReLU activation. The DiffPool-based archi-
tecture has two pooling operations that divide the network
into three hierarchical layers. The first two layers have one
subnetwork for vertex features and one subnetwork for cluster
assignments. The last layer has only one subnetwork for
vertex features. Each subnetwork consists of two consecutive
SAGE convolution layers [29]. The GraphConv-based model
has three hierarchical layers, each with one graph convolution
and one top-k pooling. All models are trained using a variant
of Adam optimizer with weight decay proposed in [30]. The
parameters of the optimizer, the temperature parameter in
the loss function, the hidden layer sizes, and pooling ratios
are determined through hyperparameter optimization based on
the validation set performance. The best values are chosen
independently for each model.

B. Evaluation

The proposed method is compared to the supervised clas-
sification learning method which is the state-of-the-art. For a
fair comparison, the vertex dropout augmentation is applied to
the training set in supervised learning. Similar to the proposed
method, a two-layer MLP that follows the GNN encoder and
outputs four class scores is used in the classification method.
In all methods, the output of the GNN encoder is used as the
ROI representation for content-based image retrieval.

In all experiments, the same training, validation, and test
sets are used for model training, hyperparameter optimization
through random search and model selection, and retrieval per-
formance evaluation, respectively. The training and validation
sets are included neither in the gallery nor in the query sets
in the CBIR setup for a realistic evaluation.

The test set is randomly split into query and gallery subsets
according to 1-to-4 ratio and the same split is used in all exper-
iments. For each ROI in the query set, regions in the gallery
set are retrieved in a ranked order based on the Euclidean
distance between their representations. Regions that have the
same class label with the query are considered relevant results
while others are considered irrelevant. Mean Average Precision
(mAP) metric is used for quantitative evaluation of retrieval
performance. Average Precision (AP) is the weighted mean
of precisions achieved at each threshold, with the increase in
recall from the previous threshold used as the weight as

AP =
∑
n

(Rn −Rn−1)Pn (8)

where Pn is the precision and Rn is the recall at the n’th
threshold. Then, the mAP is defined as the mean of average
precisions over all queries as

mAP =
1

Q

Q∑
q=1

AP (q). (9)

AP@K is defined as the AP calculated using the top K
retrieved items. MAP@K is calculated using AP@K. Consid-
ering the size of the test set, MAP@10 and MAP@25 are
calculated and reported in the experiments. Combinations of



TABLE III
ROI RETRIEVAL RESULTS FOR DIFFERENT METHODS AND TRAINING

SETTINGS.

Method Supervision Architecture MAP@10 MAP@25

GNN-LR [13] Supervised
DiffPool 0.62 0.59

GraphConv 0.73 0.64
GCN 0.80 0.76

Ours Self-Supervised
DiffPool 0.78 0.70

GraphConv 0.82 0.75
GCN 0.86 0.80

different GNN architectures and training settings are com-
pared. The quantitative results are summarized in Table III.
Example retrieval results are presented in Figure 2. GNN-LR
[13] is the state-of-the-art method considered for classification-
based learning. The only modification we made is to use dense
patch sampling instead of non-overlapping sliding window
approach used in the paper. The dense sampling method
performed better than the sliding window approach in both
supervised and self-supervised settings.

C. Discussion

Overall, the proposed self-supervised learning method
achieved the best performance despite not utilizing class
labels. This result is consistent with our view that contrastive
learning can improve the quality of learned representations.

GCN architecture performed better then DiffPool and
GraphConv in our experiments, although DiffPool performs
better in popular GNN benchmark data sets [31]. We argue
that due to the large variation of graph sizes in our data set, it
is difficult to choose cluster sizes in the DiffPool architecture
that are meaningful for all ROI graphs and this degrades
its performance. In contrast, the top-k pooling operations
in the GraphConv architecture require ratio hyperparameters
instead of fixed numbers. A simpler architecture like our
GCN-based architecture still encodes contextual information
through neighborhood aggregation. Therefore, the choice of
GNN architecture should be treated as a hyperparameter in
the proposed learning method.

V. CONCLUSIONS

In this paper, we proposed a novel histopathology region of
interest retrieval learning method. The regions are represented
by graphs, and graph neural networks are trained using con-
trastive loss. The proposed method, without using class labels,
has achieved better retrieval performance in a realistic breast
histopathology data set than its alternatives that use the same
amount of data with class labels. Thus, the method allows
utilizing the vast amount of unlabeled histopathology image
data. The method enables cheaply training histopathology
retrieval systems that can process arbitrarily-shaped queries.
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