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ABSTRACT

We propose an algorithm for automatic detection of buildings
with complex shapes and roof structures in very high spatial
resolution remotely sensed images. First, an initial overseg-
mentation is obtained. Then, candidate building regions are
found using shadow and sun azimuth angle information. Fi-
nally, the building regions are selected by clustering the can-
didate regions using minimum spanning trees. The experi-
ments on Ikonos scenes show that the algorithm is able to
detect buildings with complex appearances and shapes.

Index Terms— Building detection, segmentation, spatial
relationships, minimum spanning trees

1. INTRODUCTION

Automatic detection of buildings in very high spatial resolu-
tion remotely sensed imagery has been an important problem
because the detection results can be used in many applications
such as change detection, urbanization monitoring, and digi-
tal map production. For example, as one of the most salient
features of human settlements, precise identification and lo-
calization of buildings provide key information sets needed
for territorial planning and in any assessment related to hu-
man security such as preparedness to natural hazards and to
post-disaster evaluation [1]. Furthermore, human settlement
analysis for slum and unorganized settlement monitoring can
be assisted by automatically extracted building information
because slum areas can generally be characterized by a high
density of short and small buildings in irregular spatial ar-
rangements [2, 3]. Similarly, buildings can be considered as
one of the best indicators for human population estimation.

There is an extensive literature on building detection
where both pixel level and object/region level processing
have been used. However, most of the previous methods
try to solve the problem for specific settings such as images
having buildings with the same type of appearance and im-
ages where the buildings are isolated and have simple roof
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structures. With the increase in the spatial details in the im-
ages obtained from new generation sensors with meter and
sub-meter spatial resolution, the buildings may have very
complicated appearances and may have complex structures
with very different spectral signatures. Popular edge/line-
based and morphology-based approaches also do not often
work for complex urban scenes because the contrast among
the parts of a roof can be higher than the contrast between the
roof and its surroundings (as shown in examples in Figure 1).

Even though different buildings may appear in signifi-
cantly different colors and shapes, a common property of such
buildings can be the existence of shadows. The relationship
between buildings and shadows has actually been exploited
in earlier works [4, 5]. More recently, Sirmacek and Unsalan
[6] detected buildings with red roofs using color information
and verified their existence with the occurrences of shadow-
like nearby regions. However, the assumption of red roofs
is limiting and there may be other sources of shadows in the
image.

This paper proposes a method for detection of buildings
with complex shapes and roof structures in very high spatial
resolution images by exploiting spectral, structural, and con-
textual information using a mathematical morphology-based
context model and minimum spanning tree-based clustering.
First, watershed segmentation is applied to obtain overseg-
mented regions. Then, shadow regions are detected in this
oversegmentation based on their spectral properties (Section
2). Next, candidate building regions are identified using the
directional spatial relationships of all regions with respect
to the detected shadow regions along the sun azimuth an-
gle (Section 3). Finally, the building regions are selected
by clustering the oversegmented regions that satisfy the spa-
tial constraints using minimum spanning trees (Section 4).
Experiments are performed using Ikonos images (Section 5).

2. IMAGE SEGMENTATION AND SHADOW
REGION DETECTION

Image segmentation is performed using the classical water-
shed segmentation algorithm to partition the panchromatic



(a) Antalya1 image (b) Watershed segmentation of An-
talya1

(c) Antalya2 image (d) Watershed segmentation of An-
talya2

Fig. 1. Examples from an Ikonos panchromatic image of An-
talya, Turkey and the corresponding watershed segmentation
results. The segmentation boundaries are overlayed as white.

image into spectrally homogeneous regions. The results con-
tain oversegmented regions because the test areas in this study
include buildings with complex roof structures as shown in
Figure 1. Other segmentation methods can also be used but
similar results are likely to be obtained because of the com-
plex spectral appearance within building regions.

Among all regions, the ones that are likely to belong to
shadows are selected using their spectral properties. First, the
normalized difference vegetation index (NDVI) is computed
using the pan-sharpened image. Then, the regions whose av-
erage brightness values are lower than a brightness threshold
and average NDVI values are lower than an NDVI threshold
are denoted as shadow regions. More complicated shadow
detection methods can also be used but the aforementioned
method performed sufficiently well in the experiments.

3. DIRECTIONAL SPATIAL CONSTRAINTS

The candidate building regions are identified by using the
shadow regions as directional spatial constraints in a model
that we recently proposed for contextual classification and re-
trieval [7]. Given a reference object B and a direction spec-
ified by the angle α, the landscape βα(B) around the refer-
ence object along the given direction can be defined as a fuzzy

function from the image space I into [0, 1]. The fuzzy mem-
bership value βα(B)(x) of an image point x ∈ I corresponds
to the degree of its satisfaction of the directional spatial rela-
tion relative to the reference object B.

In [7], we proposed to compute the fuzzy landscape using
the morphological dilation of B,

βα(B)(x) = (B ⊕ να,λ,τ )(x) ∩Bc, (1)

using the fuzzy structuring element

να,λ,τ (x) = gλ

(
2
π

θα(x, o)
)

max
{

0, 1− ‖−→ox‖
τ

}
(2)

where o is the origin (center) of the structuring element,
θα(x, o) is the angle measured between the unit vector along
the direction α with respect to the horizontal axis and the
vector from o to the image point x, gλ(·) is a nonlinearly
decreasing function with the shape of a Bézier curve, and
‖−→ox‖ is the Euclidean distance of point x from o. The func-
tion g decreases the degree of the relationship as the angle
θ increases when the point x departs from α (λ models the
extent of the decrease). The second part of (2) decreases the
degree of the point’s spatial relation to the reference object
according to its distance to that object where τ is a thresh-
old corresponding to the distance where a point is no longer
visible from the reference object. This definition provides
a structuring element that is tunable along both angular and
radial dimensions (see [7] for more details).

Given the sun azimuth angle, we can find the directional
landscapes of the shadow regions along this direction by us-
ing (1). The resulting directional landscapes give high re-
sponses in areas close to the shadow regions along the sun
azimuth angle. These areas correspond to the locations where
the probability of the presence of buildings is high. Figures
2(a) and 2(c) show the shadow regions and the corresponding
landscapes. Consequently, the regions whose average satis-
faction degrees are higher than a satisfaction threshold, av-
erage NDVI values are lower than the NDVI threshold, and
sizes are lower than a size threshold are identified as candi-
date building regions. Figures 2(b) and 2(d) show examples
for candidate regions. As can be seen from the figures, most
of the regions are correctly identified with a small number of
misdetections and several false alarms.

4. GRAPH-THEORETIC BUILDING MODEL

After obtaining the candidate regions, our aim is to identify
the regions corresponding to building parts. An important
observation is that regions forming a building are densely
located whereas regions separating different buildings are
found far from their neighbors. The distance between two
regions is measured as the distance between their centroids.
This seems to be a valid assumption because the regions are
obtained from oversegmentation and mostly have compact



(a) Shadows and spatial constraints
in Antalya1

(b) Candidate building regions in An-
talya1

(c) Shadows and spatial constraints
in Antalya2

(d) Candidate building regions in An-
talya2

Fig. 2. Examples of shadow regions, directional landscapes,
and candidate building regions.

shapes. Hence, we construct a graph where the graph nodes
correspond to the candidate regions’ centroids and the edges
are created between two neighboring nodes. What we expect
is that the nodes representing parts of building regions will
form dense subgraph components.

After constructing the graph, the goal is to group the re-
gions into clusters so that each group corresponds to a build-
ing or a non-building area. Therefore, we assign a weight
to each edge as the spatial distance between the correspond-
ing nodes. Then, to determine the most relevant neighbors
of each node, we construct the minimum spanning tree of the
graph by using these edge weights. By constructing the tree,
a node is connected to its most important and most related
neighbors while its relationships with the neighbors that are
further away can be ignored.

To cluster the nodes into groups, some edges of the min-
imum spanning tree should be removed. This is achieved by
removing the edges that are longer than a length threshold.
As a result, the nodes that are spatially close enough remain
in the same cluster. Figure 3 shows examples for graph con-
struction and clustering.

Next, the regions whose average satisfaction degrees are
higher than a marker threshold are selected as building mark-
ers. The marker threshold is selected high enough so that
building markers do not overflow the building boundaries. Fi-

(a) Graph for Antalya1 (b) Clustering for Antalya1

(c) Graph for Antalya2 (d) Clustering for Antalya2

Fig. 3. Examples of graph construction and minimum span-
ning tree-based clustering. The removed edges are colored in
red.

nally, the clusters that contain the nodes corresponding to the
building markers are identified as building clusters.

5. EXPERIMENTS

Six sub-scenes of 1 m spatial resolution Ikonos images of An-
talya, Turkey were used to evaluate the proposed algorithm.
Figure 4 shows example detection results. It can be seen that
most of the building regions that cannot be obtained by tradi-
tional spectral segmentation methods that cannot incorporate
structural and contextual information were correctly extracted
by the proposed method. However, some building boundaries
were not delineated correctly. When the overall detections
were considered, the following sources of error were iden-
tified. Most of the errors were caused by the sensitivity of
the length threshold to different building appearances. The
length threshold was used in the minimum spanning tree clus-
tering for grouping the regions of a building into a cluster
while separating the non-building regions. In this paper, the
length threshold was selected large enough so that buildings
with large structures were not divided into smaller parts. In
case of some buildings with small structures on the roof, this
selection caused building and non-building regions to remain
in the same cluster. As a result, such buildings merged with
their surroundings. Missed detections were mostly caused by
missed detections of shadows. In particular, short buildings



(a) Results for Antalya1 (b) Results for Antalya2

(c) Results for Antalya3 (d) Results for Antalya4

(e) Results for Antalya5 (f) Results for Antalya6

Fig. 4. Building detection results. The detected buildings are
highlighted in red.

not creating sufficiently visible shadows were not detected. In
some cases, walls creating shadows resulted in false alarms.
Buildings were partially detected when some part of a build-
ing was very similar to the adjacent road in terms of gray
level content. In this case, the corresponding building part
merged with the road instead of the remaining building parts
during the initial segmentation. In some cases, detected build-
ing boundaries overflowed the true boundaries mostly due to
the small road segments adjacent to the buildings. Most of the
road segments had uniform intensity and appeared as large
regions after the initial segmentation. When road segments
appeared as small regions after the initial segmentation, these
regions were sometimes grouped into the same cluster with
the adjacent building regions during the minimum spanning
tree clustering.

6. CONCLUSIONS

We described an algorithm for detecting buildings in very
high spatial resolution imagery. After an initial oversegmen-
tation, we used directional spatial constraints to find candidate
building regions that were close to shadows along the sun az-
imuth angle. The building regions were selected by cluster-
ing the candidate regions using minimum spanning trees. We
evaluated the proposed approach on different scenes with dif-
ferent building characteristics. The experiments showed that
the proposed algorithm is able to detect buildings with dif-
ferent shapes and colors. Future work includes investigating
ways of automating the selection of the thresholds for differ-
ent scenes. In addition, once the building regions are detected,
they can be used to improve scene analysis [8] and urban area
classification [2].
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