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ABSTRACT

We describe a new procedure that combines statistical and
structural characteristics of simple primitive objects to dis-
cover compound structures in images. The statistical informa-
tion that is modeled using spectral, shape, and position data of
individual objects, and structural information that is modeled
in terms of spatial alignments of neighboring object groups
are encoded in a graph structure that contains the primitive
objects at its vertices, and the edges connect the potentially
related objects. Experiments using WorldView-2 data show
that hierarchical clustering of these vertices can find high-
level compound structures that cannot be obtained using tra-
ditional techniques.

Index Terms— Object detection, alignment detection,
graph-based representation, hierarchical clustering

1. INTRODUCTION

A common approach to object recognition is to segment the
images into homogeneous regions and classify these regions.
However, as the spatial resolution increases, such homoge-
neous regions often correspond to very small details. An al-
ternative for semantic image understanding is to identify the
image regions that are intrinsically heterogeneous. Examples
of such regions, also called compound structures, include dif-
ferent types of residential, commercial, industrial, and agri-
cultural areas that are comprised of spatial arrangements of
primitive objects such as buildings, roads, and trees. How-
ever, modeling of such structures is a challenging problem
because their appearances have become increasingly complex
in the new generation very high spatial resolution images.

Hierarchical segmentation has received significant atten-
tion as a potential solution to the detection of compound
structures because different structures can appear in different
scales. One of the main problems is to determine how the hi-
erarchy is constructed. A common method is splitting and/or
merging based on spectral homogeneity. However, this does
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not work for complex structures that are intrinsically hetero-
geneous and consist of multiple parts with different spectral
characteristics. Hence, many structures of interest do not
appear in the hierarchy due to such limitations.

As an alternative, Gaetano et al. [1] performed hierarchi-
cal texture segmentation assuming that frequent neighboring
regions are strongly related. They clustered the image re-
gions to compute the frequencies of quantized region pairs.
Zamalieva et al. [2] used a similar frequency-based approach
but in a continuous domain where the modes of a prob-
ability distribution estimated using the features of region
co-occurrences were used to construct the edges of a graph,
and a graph mining algorithm was used to find subgraphs that
may correspond to compound structures. Dogrusoz and Ak-
soy [3] also used a graph-based model that clustered building
into groups with similar spatial arrangements to model the
regularity of urban structures. Vanegas et al. [4] proposed a
method based on fuzzy measures of relative direction between
objects to detect aligned object groups. They first detected
locally aligned groups of three objects, and then checked for
global alignment using these local alignments.

This paper describes our work on the modeling and de-
tection of compound structures using a graph-based spatial
model where primitive objects such as buildings (Section 2)
form the vertices of this graph, and potentially related ob-
jects are connected using undirected edges. Each vertex that
corresponds to a particular primitive object is assigned sta-
tistical features that represent the properties of the individual
object as well as structural features that represent the spatial
layout of this object with respect to its neighbors (Section 3).
Then, hierarchical clustering of these vertices produces differ-
ent levels of compound structures (Section 4). The proposed
model is illustrated using a WorldView-2 image (Section 5).

2. DETECTION OF PRIMITIVE OBJECTS

The set of primitives includes objects that can be relatively
easily extracted using low-level operations that exploit spec-
tral, textural, and morphological information. These objects,



(a) Ankara image (b) Detected buildings

Fig. 1. Examples of building detection in the Ankara image.
The detected buildings are highlighted with red in (b).

such as buildings, roads, trees, can be used as building blocks
of more complex structures. Since our focus is on the model-
ing and detection of compound structures, this initial process-
ing is kept as simple as possible in this paper.

The proof-of-concept experiments in Section 5 use group-
ings of buildings to form compound structures. The build-
ings are detected using thresholding of different spectral
bands. Figure 1 shows example building detection results in a
500×500 pixel multispectral WorldView-2 image of Ankara,
Turkey. Since most of the buildings have similar roof colors
in this image, thresholding gave acceptable results for the
rest of the analysis. Improvements to the detections in this
preprocessing step can improve the overall process. The rest
of the algorithm supports the use of different primitives that
can be added to this set for different applications.

3. FEATURE EXTRACTION

3.1. Image representation

The image content is modeled using attributed relational
graphs where the primitives form the vertices and the poten-
tially related objects are connected using undirected edges.
We assume that neighboring objects can be related, and con-
nect every neighboring vertex pair with an edge. The neigh-
borhood information is obtained by proximity analysis where
a threshold on the distance between the centroids of object
pairs is used to determine the neighbors. Figure 2 shows an
example graph where the building objects in Figure 1 are
used as vertices of interest and edges are drawn using a dis-
tance threshold of 40 pixels. After the graph is constructed,
the vertices and edges are assigned statistical and structural
features (attributes) as described below.

3.2. Statistical features

The statistical features for vertices represent the properties of
individual objects. These features consist of spectral features
that are the mean values of the pixels within the object for

(a) Building mask (b) Neighborhood graph

Fig. 2. Examples of graph construction. The vertices that
are considered as neighbors based on proximity analysis are
connected with red edges in (b).

each spectral band (e.g., sij , j = 1, . . . , k, for k bands), and
shape features such as area, ai, and eccentricity, ei, where
i = 1, . . . , n and n is the number of objects. Area is com-
puted in terms of the number of pixels. Eccentricity is the
ratio of the distance between the foci of the object to the
length of its major axis. The centroid of each object, xi and
yi, is also computed as its representative location. These
features, (si1, . . . , sik, ai, ei, xi, yi), summarize the spectral
content and the shape of the corresponding objects. The sta-
tistical feature assigned to each edge consists of the distance
between the centroids of the corresponding vertices. All of
the statistical features are normalized to the unit range by us-
ing the respective minimum and maximum values.

3.3. Structural features

The structural features represent the spatial layout of each ob-
ject with respect to its neighbors, and are extracted using the
relationships among the neighboring objects. An important
structural information is the amount of alignment among ob-
jects. We propose a new method for the detection of aligned
object groups below.

Given an image containing n objects, groups of aligned
ones can be found by checking all possible subsets having
at least three objects. These subsets can be generated using a
depth-first search on the graph that is constructed as described
above. Depth-first search on an undirected graph starts at a
particular vertex v, and recursively traverses all vertices con-
nected to v. This procedure is repeated by starting the search
algorithm from each vertex in the graph. Once a path with
at least three vertices is obtained, it is considered for possible
alignment.

We define alignment of objects in terms of the collinear-
ity of their centroids. A group of three or more objects are
accepted as aligned if their centroids lie on a single straight
line. The goodness of alignment is measured in terms of the
sum of squared residuals after a least-squares line fitting on
the centroid locations. Another important factor in an align-



(a) Building mask (b) Alignment detection

Fig. 3. Examples of alignment detection. Example groups of
buildings satisfying the alignment criteria are shown in dif-
ferent colors in (b). A total of 622 aligned groups of three or
more objects are detected in this image but only 34 are shown
for clarity in the figure.

ment is the uniformity of the spacing among the objects in the
group. This is measured in terms of the standard deviation of
the edge features in the path. Since the edge features consist
of the distances between the centroids as described above, a
small standard deviation indicates uniformity of spacing be-
tween pairs of objects in the group.

An important step to avoid the exponential complexity
of depth-first search and make the alignment detection algo-
rithm feasible for large graphs is to perform pruning by using
thresholds on the sum of squared residuals for the line fit-
ting and the standard deviation of centroid distances. Using a
threshold for each measure, the depth-first search is stopped
if an object group is not aligned within the allowed limits,
and no other group containing these objects is considered in
the search. As a result, an object may belong to no aligned
group, one aligned group, or more than one aligned groups.

At the end of the search procedure, the set of structural
features computed for each object group corresponding to
each path of three or more vertices consists of the orientation
of the fitted line, θi, and the mean of the edge features (cen-
troid distances), µi, where i = 1, . . . ,m and m is the number
of detected aligned object groups. All of the structural fea-
tures are normalized to the unit range by using the respective
minimum and maximum values. Finally, each vertex in the
graph is assigned a list of aligned object groups that it be-
longs to as its structural features. Figure 3 shows examples
of aligned object groups.

4. GROUPING OF PRIMITIVE OBJECTS

After each object (vertex) is assigned statistical and structural
features, the next step is to group these objects using an itera-
tive multi-level hierarchical clustering. A one-level partition-
ing of the feature space using iterative partitioning methods
such as k-means is not preferred because the number of com-

pound object types is often not known. Furthermore, a single
level of partitioning may not be sufficient as different appli-
cations may find different levels interesting.

Hierarchical clustering has the additional advantage of be-
ing able to use pairwise object distances that can be defined in
an abstract manner as opposed to the Euclidean distance that
is used in k-means that requires a well-defined vector space.
The pairwise object distances in hierarchical clustering can
be computed separately for statistical features and structural
features. The distance for two objects with respect to sta-
tistical features described in Section 3.2 is computed using
sum of squared differences between the corresponding fea-
tures of these objects. The statistical distance will be small if
two objects have similar spectral content, similar shape, and
are spatially close to each other in the image. The distance
with respect to structural features described in Section 3.3 is
computed from the alignment groups that these objects belong
to. The distance between two alignment groups is computed
as the sum of squared differences between the correspond-
ing features of these groups. The distance for two objects is
computed as the minimum of the distances between all pairs
of alignment groups where one group in a pair is associated
with one of the objects and the other group is associated with
the other object. The structural distance will be small if two
objects belong to alignment groups whose orientations and
object spacing are similar. If at least one of the objects is not
found to belong to any alignment group, the distance of that
object to any other object is set to ∞.

Once the statistical and structural distances are computed
for each neighboring object pair, agglomerative hierarchical
clustering iteratively groups these objects to construct a tree
representation in which each level corresponds to a particu-
lar grouping. We experimented with different combinations
of statistical and structural distances in clustering. A particu-
lar setting that provided good results is to combine the results
of separate clusterings using statistical distances and struc-
tural distances. The criterion that is used to decide which two
groups in a level are merged to form a new group in the next
level is chosen as the average linkage criterion for statistical
distances and single linkage criterion for structural distances.
The average linkage criterion is used with statistical distances
because we want all objects that are selected as belonging to
the same group to have similar features. The single linkage
criterion is used with structural distances because we want
to merge two groupings of objects when they have at least
one pair of objects, one coming from each group, that be-
long to very similar alignments. These objects are often the
ones belonging to the same alignment group that results in a
zero structural distance. Finally, the two clustering results are
combined by assigning the objects the same label if they are
determined to belong to the same cluster by either statistical
distances or structural distances. This corresponds to merg-
ing two clusters that are separated by statistical distances if
they contain objects belonging to the same cluster based on



structural distances, and merging two clusters that are sepa-
rated by structural distances if they contain objects belonging
to the same cluster based on statistical distances.

5. EXPERIMENTS

We performed experiments on the WorldView-2 image of
Ankara (Figure 1) to illustrate the grouping framework pro-
posed in this paper. A graph was constructed with 418 ver-
tices corresponding to the detected buildings and 2, 610 edges
obtained using proximity analysis. The alignment detection
algorithm resulted in 622 groups of three or more buildings
aligned within the allowed limits. After the statistical and
structural features were computed and the corresponding
distances were recorded for each object pair, hierarchical
clustering was performed to find compound structures as
described in Section 4.

Clustering using statistical distances resulted in 37 groups
of a total of 254 buildings at an example hierarchy level
shown in Figure 4(b). This level was manually selected by
visual examination of the hierarchy. The remaining 164 build-
ings did not merge to any group at this level. We can observe
that similar buildings that are close to each other may fall into
different clusters while buildings with different characteris-
tics may fall into the same cluster. This is expected because
some building groups are characterized by their structural
features (i.e., alignments) rather than similarities of their in-
dividual statistical features. On the other hand, clustering
using structural distances resulted in 80 aligned groups of a
total of 402 buildings with 16 remaining buildings that did
not belong to any group as shown in Figure 4(c). The re-
sults show successful extraction of linearly aligned groups
of three or more buildings. The groups that do not satisfy
this strict definition of alignment remain separated. Finally,
the combined clustering produced 38 groups containing a
total of 403 buildings and 15 remaining individual buildings
as shown in Figure 4(d). The results show how building
groups that are separated into different clusters by using only
statistical features are merged by incorporating structural in-
formation. We can conclude that groups of buildings with
different characteristics and spatial layouts that cannot be ob-
tained by traditional segmentation methods are successfully
extracted by the proposed method. Such compound structures
can be used for semantic understanding of remotely sensed
images in high-level classification, content-based retrieval,
and automated annotation applications.

6. CONCLUSIONS

We described a new procedure that combines statistical char-
acteristics of primitive objects modeled using spectral, shape,
and position information with structural characteristics en-
coded using their spatial alignments modeled in terms of joint

(a) Building mask (b) Statistical clustering

(c) Structural clustering (d) Combined clustering

Fig. 4. Example clustering results. Different groups are
shown in different colors. The buildings that did not merge
to any group at the given level are shown as white.

orientation and uniformity of inter-object spacing for the de-
tection of compound structures. The experiments that aimed
to find building groups as structures of interest showed that
combination of statistical and structural characteristics in a
hierarchical clustering framework resulted in groupings that
cannot be obtained by traditional segmentation techniques.
Future work includes methods for automatic selection of pa-
rameters and experiments on larger data sets.
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