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ABSTRACT
Detection of heterogeneous objects that cannot be delineated
as a single region through image segmentation is a difficult
task in the analysis of very high spatial resolution images.
We describe an approach that uses individual region occur-
rence and pairwise co-occurrence histograms in image win-
dows using logistic regression classifiers that simultaneously
perform feature selection and learn classification models from
a small number of examples. The proposed generic method
is used to learn a sparse discriminative model to localize dif-
ferent compound objects in large image scenes. Experiments
using WorldView-2 data show that the method can success-
fully detect objects like school, retail, park, and residential
areas using similar parameter settings.

Index Terms— Object detection, facility detection, re-
gion co-occurrence, logistic regression, regularization

1. INTRODUCTION

Increasing spatial and spectral resolution in the new genera-
tion optical sensors has enabled the acquisition of new details
that were not previously visible in satellite images. How-
ever, these details have also limited the application of conven-
tional object detection techniques that are based on traditional
image segmentation and classification algorithms which ex-
pect the objects of interest to appear as homogeneous regions.
Even though some objects such as buildings, roads and trees
that have relatively homogeneous spectral content and consis-
tent shape can be recognized with a certain accuracy in these
images, detection of more complex objects such as schools,
power plants, shopping malls, recreational grounds is still
very difficult due to their heterogeneous content.

Previous work on the detection of heterogeneous struc-
tures in very high spatial resolution images involves the de-
tection of specific structures such as airports [1] and orchards
[2]. However, these methods are not generalizable because
they rely on the specific characteristics of these objects. More
generic methods include Gaussian mixture density estimation
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using histogram of Gabor texture features for the detection
of golf courses and harbors [3], two-level classification where
the outputs of pixel-based classifiers in the first level are given
as input to the classifier in the second level for the detection of
high schools [4], and clustering of histograms of visual words
obtained using spectral, texture, and edge-based features for
the detection of nuclear plants, coal power plants, and airports
[5]. Nevertheless, these methods do not explicitly model the
spatial structures that comprise the objects of interest. An
alternative is described in [6] where signatures based on the
spatial relationships of pairs of regions were used for latent
topic discovery. Yet, such methods tend to capture very spe-
cific information, and may need very careful adjustment of
the parameter settings for different applications.

This paper describes our work on the detection of com-
pound heterogeneous objects that are modeled using combi-
nations of simpler homogeneous regions. After obtaining the
regions using image segmentation (Section 3), we represent
each image window using the frequencies of the occurrence
of individual region classes (Section 4) as well as their pair-
wise co-occurrence frequencies (Section 5). Then, we use
logistic regression with a sparsity constraint to train a binary
classifier that also identifies important features for each ob-
ject type (Section 6). We illustrate the proposed method in
the detection of school, retail, park, and residential area ob-
jects (Section 7) using a WorldView-2 image of King County
in the Washington State, USA (Section 2).

2. DATA SET

The data set used in this paper consists of a multispectral
WorldView-2 image with a size of 28, 920×9, 804 pixels and
2 m spatial resolution covering the King County, including
Seattle, in the Washington State, USA. Figure 1(a) shows the
true-color image. The reference data for object detection were
obtained from the Open Street Map by querying the shape
database using the tags “school”, “retail”, “residential”, and
“park”. Table 1 shows the summary of the reference data.
The Open Street Map data are known to have some inconsis-
tencies and errors, but were used in the experiments because
of the unavailability of any other GIS data.



(a) (b)

Fig. 1. Seattle data (King County) from a WorldView-2 image
with a size of 28, 920 × 9, 804 pixels. (a) True-color image.
(b) Land cover classification and segmentation.

3. REGION SEGMENTATION

Our image segmentation method is based on pixel classifi-
cation. Feature vectors that included spectral values, ratios
between spectral bands, mean values in 3× 3 pixel neighbor-
hoods, Gabor texture, and histograms of 20 spectral clusters
within the 9-pixel neighborhood were used with a random for-
est classifier with 20 trees to classify each pixel into one of
16 classes: water, swimming pool, shrub, barren, sand, tidal
flat, wetland, dry grass, pasture hay, cultivated crop, green
grass, roof, road, shadow, tree, clearcut. The results of initial
land cover classification were post-processed using a mixture
of minimum mapping unit processing, topological rules, and
majority analysis, and were converted into a region segmen-
tation. We also added another class consisting of buildings
obtained from the City of Seattle GIS database. The building
shape layer was converted to a binary mask, the pixels corre-
sponding to the mask were set to a new class called building,
and the corresponding regions (connected components) were
treated like the rest of the classes. The 17-class region seg-
mentation and classification result is shown in Figure 1(b).

Table 1. Summary of the reference data. The number of posi-
tive examples (N ) and the sizes (height×width) of the small-
est, average, and largest reference object bounding boxes are
shown.

Object N Smallest Average Largest
School 148 11× 10 123× 103 256× 245
Retail 144 7× 10 117× 112 372× 471
Park 491 5× 1 154× 171 1, 044× 1, 346

Residential 344 6× 4 201× 200 1, 653× 2, 272

4. REGION OCCURRENCE HISTOGRAM

After the regions are obtained, the first set of features consists
of region occurrence histograms. These histograms are com-
puted for a given window where each bin in the histogram
stores the number of regions that are in that window and be-
long to a particular land cover class.

In order to capture the size information and differentiate
between regions that belong to the same land cover class but
have significantly different sizes, we further divided each land
cover class into several sub-categories. First, we computed
the distribution of size values using all regions in the data.
This distribution was approximated in a parametric form us-
ing a Gamma density whose parameters were computed using
maximum likelihood estimation. The Gamma density was se-
lected on the basis of empirical evaluation of the size distribu-
tion that showed an exponential behavior. After the paramet-
ric density was obtained, a non-uniform quantizer was con-
structed using levels that were selected according to the cu-
mulative probabilities (e.g., 0.25, 0.50, 0.75, 0.90, etc.) com-
puted from the estimated Gamma density, and the size values
were quantized using these levels. Thus, the length of the
region occurrence histogram as a feature vector that incor-
porates both land cover and size information becomes c × q
where c is the number of land cover classes and q is the num-
ber of size quantization levels.

5. REGION CO-OCCURRENCE HISTOGRAM

The region occurrence histograms described above ignore the
spatial arrangements of the regions inside the window. We
chose to model the spatial relationships of the regions using
their co-occurrence statistics. Our choice of this second-order
model was motivated by the success of the co-occurrence fea-
tures in texture modeling and the combinatorial growth of the
number of possible relationships for higher-order models.

Given c land cover classes and q size quantization lev-
els, each bin (i, j), i, j ∈ {1, . . . , c × q}, in the region co-
occurrence matrix stores the frequency of pairs of regions oc-
curring in a window, one with land cover class and size level
combination i and the other with land cover class and size
level combination j. We assume that the regions that are close
enough are related, and count only the pairs whose distances



are less than a maximum distance threshold. The distance
between two regions is computed as the smallest distance be-
tween their boundary pixels. Since the co-occurrence matri-
ces are symmetric, we only use the main diagonal and the
upper triangular parts, and append them into a feature vector
with length (c× q)(c× q + 1)/2. Finally, we append the re-
gion occurrence histogram and the region co-occurrence his-
togram together, and normalize each histogram component to
zero mean and unit variance to construct the feature vector
given as input to the learning and classification process.

6. LEARNING AND CLASSIFICATION

In this paper, we pose the object detection task in a binary set-
ting where a given image window is classified as containing a
target object of interest or not along with an associated prob-
ability of this decision. The binary classification is performed
using logistic regression that is a popular discriminative clas-
sifier that assumes a parametric form for the posterior proba-
bility and directly estimates its parameters from the training
data without any need for the assumption or the estimation of
the class conditional probability distributions.

Let x ∈ Rd denote the feature vector and y ∈ {−1, 1}
denote the corresponding binary class variable where 1 rep-
resents the target object class and −1 represents the back-
ground. The logistic model has the form

p(y = 1|x;w, w0) =
1

1 + exp(−wTx− w0)
(1)

where w is the weight vector and w0 is the intercept [7].
Given labeled data {(xi, yi)}ni=1, the maximum likelihood es-
timates of w and w0 can be found by solving

min
w,w0

n∑
i=1

log
(
1 + exp

(
− yi(wTxi + w0)

))
. (2)

When the number of training examples (n) is not large
enough compared to the number of features (d), as in our
case, the logistic regression classifier tends to suffer from the
over-fitting problem in which the resulting model has many
features with relatively large weights that memorize the pe-
culiarities of the training data. A standard method to prevent
over-fitting is regularization where an extra term that penal-
izes large weights is added to the cost function used in esti-
mation. The l1-regularization has shown great empirical suc-
cess in the literature, particularly due to its sparsity-inducing
property that leads to solutions with fewer nonzero parameter
values [8]. Thus, the learning process implicitly performs fea-
ture selection while optimizing the cost function to estimate
the parameters. The l1-regularized formulation corresponds
to the solution of

min
w,w0

n∑
i=1

log
(
1 + exp

(
− yi(wTxi + w0)

))
+ λ‖w‖1 (3)

Table 2. Summary of the classification results. The number
of size quantization levels (SQL) and the maximum distance
threshold (MDT) that resulted in the best performance are
shown together with the corresponding area under the ROC
curve (AUC, as mean± std).

Object SQL MDT AUC
School 5 20 0.9639± 0.0157
Retail 5 20 0.9691± 0.0161
Park 5 20 0.9436± 0.0137

Residential 5 50 0.8975± 0.0186

where λ is the regularization parameter. We use the l1-ball
constrained smooth convex optimization formulation [9] to
obtain the weight vector w and the intercept w0 as the so-
lution of (3). Then, given a test window x, the discrimina-
tive logistic regression classifier chooses the target class 1 if
p(y = 1|x;w, w0) > 0.5, or equivalently, wTx+ w0 > 0.

7. EXPERIMENTS

We used 5-fold cross-validation to train the classifier and eval-
uate its accuracy. The training stage consisted of the estima-
tion of the logistic regression parameters w, w0, and λ. We
considered three different numbers of size quantization levels
(1, 5, 10) and three different maximum distance thresholds
(5, 20, 50). In addition to the positive examples correspond-
ing to the reference object masks summarized in Table 1, for
each object class, we randomly sampled 2, 000 windows of
100× 100 pixels from the image to construct the set of nega-
tive examples.

Quantitative performance evaluation was done by using
true positive and false positive rates computed from confusion
matrices to construct ROC curves based on different thresh-
olds on the posterior in (1). The area under the ROC curve
was used as the criterion to compare different parameter set-
tings. Qualitative performance evaluation was performed via
visual inspection of the classification maps computed using
100× 100 pixel sliding windows with 10 pixel increments.

Table 2 summarizes the classification results using 5-fold
cross-validation. Figure 2 presents the resulting ROC curves.
We observed that the best performing number of size quan-
tization levels was the same (5) for all object classes. The
best performing maximum distance threshold was obtained
as 20 pixels for school, retail, and park, while 50 pixels gave
the best results for residential due to the large neighborhoods
required for the co-occurrence context in larger residential ar-
eas. The areas under the ROC curves were considerably high
on the small number of examples obtained from the Open
Street Map. We observed that the false positive rates at high
levels of true positive rates can be higher in practice when the
classifiers are applied to the whole satellite scene. Detection
examples for schools are shown in Figure 3.
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(a) School
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(b) Retail

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

park −−− 20, 5, 011 −−− 0.9436 ± 0.0137

FPR

T
P

R

(c) Park
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(d) Residential

Fig. 2. ROC curves for different object classes. y-axis is the
true positive rate and x-axis is the false positive rate. The red
bands around the curves show the confidence intervals com-
puted from the cross-validation folds.

8. CONCLUSIONS

We described an algorithm for the detection of heterogeneous
objects in very high spatial resolution images using occur-
rence and co-occurrence histograms of regions in image win-
dows as features for a logistic regression classifier. Experi-
ments were performed using shape data from the Open Street
Map. Future work includes more detailed evaluation of dif-
ferent parameters and object classes.
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