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Automatic Detection of Geospatial Objects Using
Multiple Hierarchical Segmentations
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Abstract—Object-based analysis of remotely sensed imagery
provides valuable spatial and structural information that are
complementary to pixel-based spectral information in classifi-
cation. In this paper, we present novel methods for automatic
object detection in high-resolution images by combining spec-
tral information with structural information exploited using
image segmentation. The proposed segmentation algorithm uses
morphological operations applied to individual spectral bands
using structuring elements in increasing sizes. These operations
produce a set of connected components forming a hierarchy
of segments for each band. A generic algorithm is designed to
select meaningful segments that maximize a measure consisting
of spectral homogeneity and neighborhood connectivity. Given
the observation that different structures appear more clearly
at different scales in different spectral bands, we describe a
new algorithm for unsupervised grouping of candidate segments
belonging to multiple hierarchical segmentations to find coherent
sets of segments that correspond to actual objects. The segments
are modeled using their spectral and textural content, and the
grouping problem is solved using the probabilistic Latent Seman-
tic Analysis algorithm that builds object models by learning the
object-conditional probability distributions. Automatic labeling
of a segment is done by computing the similarity of its feature
distribution to the distribution of the learned object models
using Kullback-Leibler divergence. The performances of the
unsupervised segmentation and object detection algorithms are
evaluated qualitatively and quantitatively using three different
data sets with comparative experiments, and the results show
that the proposed methods are able to automatically detect, group
and label segments belonging to the same object classes.

Index Terms—Image segmentation, unsupervised object de-
tection, mathematical morphology, hierarchical segmentation,
object-based analysis.

I. INTRODUCTION

Due to the constantly increasing coverage and availability of
very high-resolution remotely sensed data, automatic content
extraction, object detection and classification for urban ap-
plications have continued to be important research problems.
There is an extensive literature on classification of remotely
sensed imagery where pixel level processing has been the
common choice for remote sensing image analysis systems.
These systems use a broad range of features including multi-
or hyper-spectral information, texture features, edge detection,
as well as linear or nonlinear transformations of these features.
Such features are used with a wide range of classifiers in-
cluding probabilistic methods employing maximum likelihood
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or Bayesian estimation techniques, neural networks, decision
trees, support vector machines and genetic algorithms for
applications like land cover/use classification.

Despite the high success rates that have been published in
the literature using limited ground truth data, visual inspection
of the results shows that most of the urban structures still
cannot be delineated as accurately as expected especially in
high-resolution images. For example, Figure 1(a) shows the
false color representation of a hyper-spectral image of Pavia,
Italy. The classification map shown in Figure 1(c) is obtained
using features extracted with PCA and Gabor texture filters
with a quadratic Gaussian classifier [1]. Similarly, Figure 1(d)
shows the map obtained using discriminant analysis feature
extraction (DAFE) and a similar classifier [2]. Even though
the success rates obtained as 93.97% and 97.2%, respectively,
according to the reference map shown in Figure 1(b) can be
considered quite high, none of the boundaries of the buildings,
roads and shadows on the left half of the image is explicit
and no structure can be seen in the results. In other words,
the limitations of pixel-based classification evaluated using
limited pixel-based ground truth are not necessarily reflected
in the numerical accuracy. Therefore, this shows that there is
still much work to be done, and more advanced classification
methods must be designed for practically acceptable results.

We believe that, in addition to pixel-based spectral data,
spatial and structural information should also be used for
more intuitive and accurate classification. Common ways of
incorporating spatial information into classification involve the
use of textural, morphological and object-based features. Fea-
tures extracted using co-occurrence matrices, Gabor wavelets
[3], morphological profiles [4], and Markov random fields
[5] have been widely used in the literature to model spatial
information in neighborhoods of pixels. However, problems
such as scale selection and the detailed content of very high-
resolution imagery make the applicability of traditional fixed
window-based methods difficult for such data sets.

Another powerful method for exploiting structural infor-
mation is to perform region-based classification rather than
classifying individual pixels. This is also referred to as object-
oriented classification in the remote sensing literature. For ex-
ample, Bruzzone and Carlin [6] performed classification using
the spatial context of each pixel according to a hierarchical
multi-level representation of the scene. In a similar approach
[7], we obtained a wavelet-based multi-resolution representa-
tion, segmented images at each resolution, and used region-
based spectral, textural and shape features for classification.
In [8], Katartzis et al. also modeled spatial information by
segmenting images into regions and classifying these regions
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(a) False color (b) Reference map

(c) Classification using PCA and
Gabor features

(d) Classification using DAFE
features

Fig. 1. Example classification results using a pixel-based quadratic Gaussian
classifier with PCA and Gabor features (c) and DAFE features (d). The
classification maps for (c) and (d) are taken from [1] and [2], respectively.

using a Markovian model, defined on the hierarchy of a multi-
scale region adjacency graph. In another study [9], Soh et al.
presented a system for sea ice image classification which also
segmented the images, generated descriptors for the segments
and then used expert system rules to classify the images.

Many popular segmentation algorithms in the computer
vision literature assume that images have a moderate number
of objects with relatively homogeneous features, and cannot be
directly applied to high-resolution remote sensing images that
contain a large number of complex structures. Furthermore, an-
other popular approach of edge-based segmentation is hard for
such images because of the large amount of details. Moreover,
watershed-based techniques are also not very useful because
they often produce oversegmented results mostly because of
irrelevant local extrema in images. A common approach is to
apply smoothing filters to suppress these extrema but lots of
details in high-resolution images may be lost because spatial
support of these details are usually small. Therefore, most of
the segmentation work in the remote sensing literature have
been based on merging neighboring pixels according to user-
defined thresholds on their spectral similarity. Alternatively,
proximity filtering and morphological operations can also be

used as post-processing techniques to pixel-based classification
results for segmenting regions [10].

In a related work, Pesaresi and Benediktsson [4] success-
fully applied opening and closing operations with increasing
structuring element sizes to an image to generate morphologi-
cal profiles for all pixels, and assigned a segment label to each
pixel using the structuring element size corresponding to the
largest derivative of these profiles. Even though morphological
profiles are sensitive to different pixel neighborhoods, the
segmentation decision is performed by evaluating pixels in-
dividually without considering the neighborhood information,
and the assumption that all pixels in a structure have only
one significant derivative maximum occurring at the same
structuring element size often does not hold for very high-
resolution images. Scale selection is also a very important
problem in multi-scale/hierarchical segmentation techniques.
For example, Tilton [11] developed a hierarchical segmenta-
tion algorithm that combined spectral clustering with iterative
region growing in which segments at coarser levels of detail
were obtained by merging segments at finer levels of detail.
The multi-resolution segmentation implementation offered by
the eCognition software also consists of bottom-up region
merging where each pixel is initially considered as a separate
object and pairs of image objects are iteratively merged to
form larger segments [12]. The main problems associated with
both of these approaches are that the resulting segmentations
depend on the thresholds used with local homogeneity criteria,
and manual interpretation of the hierarchy is needed because
different objects may appear at different scales.

Our main contributions in this paper are twofold: we present
a new segmentation algorithm for exploiting structural infor-
mation, and propose a novel method that uses the resulting
regions for unsupervised object detection. Our first contribu-
tion, the segmentation algorithm, uses the neighborhood and
spectral information as well as the morphological informa-
tion. First, morphological opening and closing operations are
applied to individual spectral bands using structuring elements
in increasing sizes to generate morphological profiles. These
operations produce a set of connected components forming a
hierarchy of segments for each band. Then, unlike [4] where
only the scale with the maximum change in the profile is
considered, each component at different levels of the hierarchy
is evaluated as a candidate for meaningful structures using a
measure that consists of two factors: spectral homogeneity,
which is calculated in terms of variances of spectral features,
and neighborhood connectivity, which is calculated using sizes
of connected components. A novel two-pass algorithm is
designed to select the segments that jointly optimize this
combined measure and find the meaningful segments in a
completely unsupervised process. The proposed selection algo-
rithm is generic in the sense that other criteria for homogeneity
and connectivity can also be directly incorporated.

An important observation is that different structures appear
more clearly in different bands. For example, buildings can
be detected accurately in one band but roads, trees, fields and
paths can be detected accurately in other bands. With a similar
observation, Benediktsson et al. [2] appended the morpholog-
ical profiles that were independently extracted from multiple
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principal components into a single high-dimensional feature
vector, performed linear feature reduction, and classified the
pixels using neural networks.

In this paper, as our second main contribution, we pro-
pose a novel unsupervised method for automatic detection
of objects from multiple hierarchical segmentations and the
corresponding candidates for meaningful structures from in-
dividual bands. The goal is to find coherent groups of seg-
ments that correspond to actual objects. Considering multiple
objects/structures of interest, this setting can also be seen
as a grouping problem within the space of a large number
of candidate segments obtained from multiple hierarchical
segmentations. To solve the grouping problem, we use the
probabilistic Latent Semantic Analysis (PLSA) [13] technique
by formulating a graphical model for the joint probability of
the segments and their features in terms of the probability of
observing a feature given an object and the probability of an
object given the segment. The parameters of this graphical
model are learned using the Expectation-Maximization algo-
rithm. Then, for a particular segment, the set of probabilities
of objects/structures given this segment can be used to assign
an object label to this segment. The performances of the
unsupervised segmentation and automatic object detection
algorithms are evaluated qualitatively and quantitatively using
three different data sets with comparative experiments.

The rest of the paper is organized as follows. The data sets
and the features used for both segmentation and object detec-
tion are introduced in Section II. The segmentation algorithm
for the extraction of candidate segments from individual bands
in an image is described in Section III. The algorithm for
grouping segments for object detection is presented in Section
IV. Experiments are discussed in Section V and conclusions
are given in Section VI.

II. FEATURE EXTRACTION

We illustrate the proposed algorithms using three data sets:
1) DC Mall: HYDICE image with 1, 280×307 pixels, 3 m

spatial resolution, and 191 spectral bands corresponding
to an airborne data flightline over the Washington DC
Mall area. The false color image is given in Figure 2(a).

2) Pavia: ROSIS data with 1, 096×715 pixels, 2.6 m spatial
resolution, and 102 spectral bands corresponding to the
city center in Pavia, Italy. The false color image is given
in Figure 3(a).

3) Ankara: IKONOS data with 500 × 500 pixels and 1 m
spatial resolution pan-sharpened RGB bands correspond-
ing to part of a university campus in downtown Ankara.
The color image is given in Figure 19(a).

Since morphological operations have traditionally been de-
fined for single band binary or gray scale images, we applied
principal components analysis (PCA) to summarize the hyper-
spectral data as the PCA bands provide the optimal representa-
tion in the least-squares sense [14]. The resulting three bands
corresponding to the top principal components representing the
99% variance of the whole data are shown in Figures 2 and
3 for the DC Mall and Pavia data sets, respectively. Original
RGB bands were used for the Ankara data set.

(a) False color (b) 1st band (c) 2nd band (d) 3rd band

Fig. 2. False color image (generated using the bands 63, 52 and 36) and the
first three PCA bands of the DC Mall data set.

In addition to the PCA bands that give the best representa-
tion, we also applied linear discriminant analysis (LDA) that
projects the data onto a new set of bases that best separate
the classes in the least-squares sense [14]. 6 bands for the
DC Mall and 8 bands for the Pavia data sets were extracted
using the pixel level 7 class and 9 class ground truth available
for these data sets, respectively. Finally, we extracted Gabor
texture features [3] using kernels at 2 scales and 4 orientations
resulting in an additional feature vector of length 8 for each
pixel for a given band. The resulting PCA bands are used for
image segmentation as the best representation for the spectral
data in Section III, and the LDA and Gabor bands are used as
alternative features, in addition to the PCA bands, for object
detection in Section IV.

III. IMAGE SEGMENTATION

The proposed segmentation algorithm combines spectral
information from the original data with structural informa-
tion extracted through morphological operations. These two
complementary types of information are incorporated into a
hierarchical structure, and a generic iterative algorithm is used
to extract meaningful segments from this hierarchy by simul-
taneously optimizing spectral homogeneity and neighborhood
connectivity. Considering the fact that different structures may
appear more clearly in different bands, we analyze each band
separately. The following sections describe the details of the
algorithm. Parts of this section were presented in [15].

A. Morphological Profiles

We use mathematical morphology to exploit structural in-
formation. In particular, morphological opening and closing
operations are used to model structural characteristics of
pixel neighborhoods. These operations are known to isolate
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(a) False color (b) 1st PCA band

(c) 2nd PCA band (d) 3rd PCA band

Fig. 3. False color image (generated using the bands 68, 30 and 2) and the
first three PCA bands of the Pavia data set. (A missing vertical section in the
middle was removed.)

structures that are brighter and darker than their surroundings,
respectively. Contrary to opening (respectively, closing), open-
ing by reconstruction (respectively, closing by reconstruction)
preserves the shape of the structures that are not removed by
erosion (respectively, dilation). In other words, image struc-
tures that the structuring element (SE) cannot be contained
are removed while others remain.

The opening and closing by reconstruction operations are
applied using increasing SE sizes to generate multi-scale
characteristics called morphological profiles. The derivative of
the morphological profile (DMP) [4] is defined as a vector
where the measure of the slope of the opening-closing profile
is stored for every step of an increasing SE series. Pesaresi and
Benediktsson [4] used the structural information encoded in
the DMP for segmenting remote sensing images. They defined
an image segment as a set of connected pixels showing the
greatest value of the DMP for the same SE size. That is,
the segment label of each pixel is assigned according to the
scale corresponding to the largest derivative of its profile. Their
scheme works well in images with moderate resolution where
the structures in the image are mostly flat so that all pixels in
a structure have only one derivative maximum. A drawback of
this scheme is that neighborhood information is not used while

(a) An exam-
ple pixel
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(b) DMP of the pixel (c) Segment
for SE size 2

(d) Segment
for SE size 3

Fig. 4. The greatest value in the DMP of the pixel marked with a blue + in
(a) is obtained for SE size 2 (derivative of the opening profile is shown in (b)).
(c) shows the segment that we would obtain if we label the pixels with the
SE size corresponding to the greatest DMP. The segment in (d) that occurs
with SE size 3 is more preferable as a complete structure but it does not
correspond to the scale of the greatest DMP for all pixels inside the segment.

(a) Opening DMP

(b) Thresholding at DMP > 0

Fig. 5. (a) Example DMP at three scales. (b) The pixels whose DMP values
are greater than 0. Each connected component at each scale is a candidate
segment for the final segmentation.

assigning segment labels to pixels. This often results in lots
of small noisy segments in very high-resolution images with
non-flat structures where the scale with the largest value of
the DMP may not correspond to the true structure (see Figure
4 for an illustration). In our approach, we do not consider
pixels alone while assigning segment labels. Instead, we also
take into account the behavior of the neighbors of the pixels.

B. Hierarchical Segment Extraction

In our segmentation approach, our aim is to determine the
segments by applying opening and closing by reconstruction
operations. We assume that pixels with a positive DMP value
at a particular SE size face a change with respect to their
neighborhoods at that scale. As opposed to [4] where only
the scale corresponding to the greatest DMP is used, the main
idea is that a neighboring group of pixels that have a similar
change for any particular SE size is a candidate segment for
the final segmentation. These groups can be found by applying
connected components analysis to the DMP at each scale (see
Figure 5 for an illustration).

Considering the fact that different structures have different
sizes, we apply opening and closing by reconstruction using
SEs in increasing sizes from 1 to m (radius of disk). How-
ever, a connected component appearing for a small SE size
may be appearing because of heterogeneity and geometrical
complexity of the scenes as well as other external effects such
as shadows producing texture effects in images and resulting
in structures that can be one to two pixels wide [4]. In this
case, there is most probably a larger connected component
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(a) False color
image

(b) A small
connected
component that
is part of (c)

(c) The
preferred
connected
component

(d) A large com-
ponent where (c)
started merging
with others

Fig. 6. Example connected components for a building structure. These
components appear for SE sizes 3, 5 and 6, respectively, in the derivative
of the opening profile of the 2nd PCA band.

Fig. 7. An example tree where each candidate segment is a node.

appearing at the scale of a larger SE and to which the pixels
of those noise components belong. On the other hand, a
connected component that corresponds to a true structure in
the final segmentation may also appear as part of another
component at larger SE sizes. The reason is that a meaningful
connected component may start merging with its surroundings
and other connected components after the SE size in which it
appears is reached. Figure 6 illustrates these cases.

For each opening and closing profile, through increasing
SE sizes from 1 to m, each morphological operation reveals
connected components that are contained within each other
in a hierarchical manner where a pixel may be assigned to
more than one connected component appearing at different
SE sizes as in Figure 6. We treat each component as a
candidate meaningful segment. Using these segments, a tree
is constructed where each connected component is a node and
there is an edge between two nodes corresponding to two
consecutive scales if one node is contained within the other.
Leaf nodes represent the components that appear for SE size
1. Root nodes represent the components that exist for SE size
m. Figure 7 shows a part of an example tree constructed by
candidate meaningful segments appearing in five levels. Since
we use a finite number of SE sizes, there may be more than
one root node. In this case, there will be more than one tree
and the algorithms described in the next section are run on
each tree separately.

C. Segment Selection

After forming a tree for each opening and closing profile,
our aim is to search for the most meaningful connected

components among those appearing at different scales in the
segmentation hierarchy. With a similar motivation in [11],
Tilton analyzed hierarchical image segmentations and selected
the meaningful segments manually. Then, Plaza and Tilton
[16] investigated how different spectral, spatial and joint
spectral/spatial features of segments change from one level
to another in a segmentation hierarchy with the goal of
automating the selection process in the future. Alternatively,
Klaric et al. [17] thresholded the DMP to obtain candidate
objects, and applied heuristics such as thresholds on the aspect
ratio of the bounding box to accept a candidate as a building
object. In this paper, each node in the tree is treated as a
candidate segment in the final segmentation, and selection is
done automatically as described below.

Ideally, we expect a meaningful segment to be spectrally
as homogeneous as possible. However, in the extreme case, a
single pixel is the most homogeneous. Hence, we also want
a segment to be as large as possible. In general, a segment
stays almost the same (both in spectral homogeneity and size)
for some number of SEs, and then faces a large change at a
particular scale either because it merges with its surroundings
to make a new structure or because it is completely lost.
Consequently, the size we are interested in corresponds to the
scale right before this change. In other words, if the nodes on
a path in the tree stay homogeneous until some node n, and
then the homogeneity is lost in the next level, we say that n
corresponds to a meaningful segment in the hierarchy.

With this motivation, to check the meaningfulness of a
node, we define a measure consisting of two factors: spectral
homogeneity, which is calculated in terms of variances of
spectral features, and neighborhood connectivity, which is
calculated using sizes of connected components. Then, starting
from the leaf nodes (level 1) up to the root node (level m),
we compute this measure at each node and select a node as
a meaningful segment if it is highly homogeneous and large
enough node on its path in the hierarchy (a path corresponds
to the set of nodes from a leaf to the root).

In order to calculate the homogeneity factor in a node, we
use the fact that pixels in a correct structure should have not
only similar morphological profiles, but also similar spectral
features. Thus, we calculate the homogeneity of a node as the
standard deviation of the spectral information of the pixels in
the corresponding segment. The spectral information for the
DC Mall and Pavia data sets consist of the PCA bands whereas
the RGB bands are used for the Ankara data set. The PCA
components are used instead of the full hyper-spectral data
because they achieve dimensionality reduction and provide
the best summarization of spectral data in the least-squares
sense. The LDA bands are not used because their computation
requires labeled data but we want the segmentation step to be
fully unsupervised. The rest of the algorithm is generic; thus, is
independent from which features are used to compute spectral
homogeneity.

While examining a node from the leaf up to the root in
terms of homogeneity, we do not use the standard deviation
of the node directly. Instead, we consider the difference of
the standard deviation of that node and its parent. What we
expect is a sudden increase in the standard deviation. When the
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standard deviation does not change much, it usually means that
small sets of pixels are added to the segment or some noise
pixels are cleaned. When there is a large change, it means
that the structure merged with a larger structure or it merged
with other irrelevant pixels disturbing the homogeneity in the
node. Hence, the difference of the standard deviation in the
node’s parent and the standard deviation in the node should
be maximized while selecting the most meaningful nodes.

The computation of the standard deviation of multi-spectral
data of a node is done by projecting these data onto a 1-
dimensional representation [18]. Let the number of spectral
bands be d. The basis used for the 1-dimensional represen-
tation is selected as the vector connecting the mean of the
original d-dimensional data for the pixels of the current node
and the mean of the data for its parent. The projection of the
d-dimensional data onto this vector, that can be considered to
separate the nodes in the spectral space, is computed using
inner products, and the standard deviation of the resulting 1-
dimensional data is computed for each node. This formulation
exploits the multivariate information contained in the multi-
spectral bands while computing the standard deviation. We
also tested using the average of the standard deviations com-
puted from individual bands, but there was no visual difference
in the results compared to the ones given in the paper.

As discussed above, using only the spectral homogeneity
factor will favor small structures. To overcome this problem,
the number of pixels in the segment corresponding to the node
is introduced as another factor to create a trade-off. As a result,
the goodness measure M for a node n is defined as

M(n) = D(n, parent(n))× C(n) (1)

where the first term is the standard deviation difference be-
tween the node’s parent and itself, and the second term is
the number of pixels in the node. The node that is relatively
spectrally homogeneous and large enough will maximize this
measure and will be selected as a meaningful segment. Other
linear and nonlinear combinations of homogeneity and scale
can be incorporated for calculating the goodness measure.
However, we use the simplest combination in (1) to avoid
introducing new parameters.

Given the value of the goodness measure for each node,
we find the most meaningful segments as follows. Suppose
T = (N , E) is the tree with N as the set of nodes and E as
the set of edges. The leaf nodes are in level 1 and the root
node is in level m. Let P denote the set of all paths from the
leaves to the root, M(n) denote the measure at node n, and
descendant(n) denote descendant nodes of node n. We select
N ∗ ⊆ N as the final segmentation such that

1) ∀a ∈ N ∗,∀b ∈ descendant(a),
M(a) ≥ M(b),

2) ∀a ∈ N \ N ∗,
∃b ∈ descendant(a) : M(a) < M(b),

3) ∀a, b ∈ N ∗,
∀p ∈ P : a ∈ p → b /∈ p,
∀p ∈ P : b ∈ p → a /∈ p,

4) ∀p ∈ P,
∃a ∈ p : a ∈ N ∗.

The first condition requires that any node in N ∗ must have
a measure greater than all of its descendants. The second
condition requires that no node in N \ N ∗ has a measure
greater than all of its descendants. The third condition requires
that any two nodes in N ∗ cannot be on the same path (i.e.,
the corresponding segments cannot overlap in the hierarchical
segmentation). The fourth condition requires that every path
must include a node that is in N ∗.

We use a two-pass algorithm for selecting the most mean-
ingful nodes (N ∗) in the tree. The bottom-up (first) pass aims
to find the nodes whose measure is greater than all of its
descendants (condition 1). The algorithm first marks all nodes
in level 1. Then, starting from level 2 up to the root level,
it checks whether each node in each level has a measure
greater than or equal to those of all of its children. The greatest
measure, seen so far in each path, is propagated to upper levels
so that it is enough to check only the immediate children,
rather than all descendants, in order to find whether a node’s
measure is greater than or equal to all of its descendants’.

After the bottom-up pass marks all such nodes, the top-down
(second) pass seeks to select the nodes satisfying, as well, the
remaining conditions (2, 3 and 4). It starts by marking all
nodes as selected in the root level if they are marked by the
bottom-up pass. Then, in each level until the leaf level, the
algorithm checks for each node whether it is marked in the
bottom-up pass while none of its ancestors is marked. If this
condition is satisfied, it marks the node as selected. Finally,
the algorithm selects the nodes that are marked as selected in
each level as meaningful segments. The pseudocode for the
selection algorithm is shown in Algorithms 1–3.

An example run of these algorithms is illustrated using
a sample tree where the nodes are labeled as i j with i
denoting the node’s level and j denoting the number of the
node from left to right in that level. A value for the goodness
measure is given in parenthesis for each node. Figures 8
and 9 show the marked nodes in each step of the Bottom-
Up and the Top-Down algorithms, respectively. During the
Bottom-Up algorithm, each node 1 j (1 ≤ j ≤ 8) is
marked in the beginning. Then, as we move upwards, nodes
2 1, 2 2, 2 3, 2 5 in level 2, and nodes 3 1 and 3 2 in level 3
are marked since the measure of each of them is greater than
or equal to those of all of its descendants. Then, we run the
Top-Down algorithm and mark nodes 3 1, 3 2, 2 5 and 1 5,
satisfying the four conditions defined above, as selected.

After selecting the most meaningful connected components
in each opening and closing tree separately, the next step is to

Algorithm 1 Segment Selection Algorithm
Run Bottom-Up algorithm
Run Top-Down algorithm
for each level l = 1 to m do

for each node n in level l do
select n as a meaningful segment if it is marked as
selected

end for
end for
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Algorithm 2 Bottom-Up Algorithm
Mark all nodes in level 1
for each level l = 2 to m do

for each node n in level l do
if M(n) ≥ max{M(a)|a ∈ children(n)} then

mark n
else

M(n) = max{M(a)|a ∈ children(n)}
leave n unmarked

end if
end for

end for

Algorithm 3 Top-Down Algorithm
Mark all nodes in level m as selected if they are already
marked in Bottom-Up
for each level l = m− 1 to 1 do

for each node n in level l do
if parent(n) is marked as selected or parent-selected
then

mark n as parent-selected
else

if parent(n) is not marked in Top-Down and n is
not marked in Bottom-Up then

leave n unmarked
else

mark n as selected
end if

end if
end for

end for

integrate the resulting connected components. A problem may
occur when two connected components, one being selected
from the opening tree and the other being selected from the
closing tree, intersect. In this case, the intersecting part is
assigned to the connected component whose goodness measure
is greater.

D. Evaluation of Segmentation

We applied the proposed hierarchical segmentation algo-
rithm to all three data sets described in Section II. Disk
structuring elements with radii from 3 to 15 were used for
both opening and closing profiles constructed for each spectral
band (3 PCA bands for DC Mall and Pavia, 3 RGB bands
for Ankara). The tree structure was constructed for each band
separately, and the segments were selected from each tree
independently. The same bands were also segmented using
the Pesaresi-Benediktsson algorithm [4] that defines an image
segment as a set of connected pixels showing the greatest value
of the derivative morphological profile for the same structuring
element size, and the watershed segmentation [19] that uses
the gradient of an image as input after suppressing small
local extrema to avoid severe oversegmentation. The same
parameters were used for all data sets for a given algorithm.

Table I shows the total number of segments obtained using

(a) Step 1 (b) Step 2

(c) Step 3 (d) Step 4

Fig. 8. An example run of the Bottom-Up algorithm on a sample tree.
Beginning from the leaves until the root, the nodes whose measures are greater
than all of the descendants (satisfying condition 1) are colored with blue in
each step.

(a) Step 1 (b) Step 2

(c) Step 3 (d) Step 4

Fig. 9. An example run of the Top-Down algorithm on the tree in Figure 8(d).
Beginning from the root until the leaves, the nodes marked in the Bottom-Up
algorithm which satisfy, as well, the remaining conditions (2, 3 and 4) are
marked with green in each step. When the algorithm ends, the green nodes
are selected as the most meaningful nodes in the tree.

all three algorithms. Figures 10, 11 and 12 show example
segmentations for the DC Mall, Pavia and Ankara data sets,
respectively. We present the zoomed versions of the results
for several example areas to better illustrate the details for
high-resolution imagery and for clarity of the presentation on
paper. Since there is no detailed object level GIS vector data
available, only qualitative evaluation is done for segmentation.
The results show that our segmentation algorithm is able
to detect structures in the image that are more precise and
more meaningful than the structures detected by the compared
approaches. The oversegmentation produced by the Pesaresi-

TABLE I
TOTAL NUMBER OF SEGMENTS OBTAINED USING DIFFERENT

SEGMENTATION ALGORITHMS FOR INDIVIDUAL BANDS. HS: PROPOSED
HIERARCHICAL SEGMENTATION ALGORITHM, PB: PESARESI-

BENEDIKTSSON ALGORITHM, WS: WATERSHED SEGMENTATION.

DC Mall Pavia Ankara
PCA1 PCA2 PCA3 PCA1 PCA2 PCA3 Red Green Blue

HS 647 710 713 1420 1432 1255 341 353 359
PB 30240 28097 280206 65296 63394 61965 16258 18057 15840
WS 14640 13653 1962 21817 14143 6537 7009 6335 4666
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(a)

(b)

Fig. 10. Example segmentation results for the DC Mall data set. From
left to right: false color, result of the proposed approach, result of Pesaresi-
Benediktsson, result of watershed segmentation.

Benediktsson algorithm is because the segment label assign-
ment is done for each pixel individually by only considering
the greatest value in its DMP. Thus, noisy pixels that are
different from their neighborhoods may produce small seg-
ments because they may have large values occurring at scales
corresponding to small SE sizes. Similarly, even though a
prefiltering to suppress the small local extrema of the gradient
is applied, the watershed segmentation algorithm still produces
oversegmentation as commonly observed in the literature.
However, our algorithm considers both the morphological
characteristics encoded in the DMP and the spectral homo-
geneity measured in terms of the standard deviation within
contiguous groups of pixels. It also considers the consistency
of these values within neighboring pixels forming large con-
nected components. As a result, the combined measure that
uses both spectral and structural information is both robust
to noise and consistent within detailed structures in high-
resolution images. In all of the examples, our algorithm is able
to extract many meaningful structures as whole segments.

Note that it is possible to improve some of the segments by
tuning the parameters of the Pesaresi-Benediktsson algorithm
(e.g., specifying different set of scales) and the watershed
segmentation algorithm (e.g., threshold for eliminating small
local extrema). (Same parameters were used for all algorithms
for all data sets in the experiments.) However, we observed
that different parameters needed to be selected manually for
different bands of different data sets, and the parameters
that performed well for one band of a data set could give
very bad results for other bands and other data sets. On the
other hand, the proposed segment extraction and segment
selection algorithms are free from parameters (except the
number of scales, m, used to construct the range of structuring
element sizes with fixed unit increments for the morphological
profile for segment extraction), and can automatically select

(a)

(b)

Fig. 11. Example segmentation results for the Pavia data set. From left
to right: false color, result of the proposed approach, result of Pesaresi-
Benediktsson, result of watershed segmentation.

Fig. 12. Example segmentation results for the Ankara data set. From left
to right: RGB color, result of the proposed approach, result of Pesaresi-
Benediktsson, result of watershed segmentation.

the meaningful segments at different scales and sizes in the
hierarchy for different spectral bands and different data sets
in a completely unsupervised process without any need for
parameter tuning.

Another important observation is that different structures are
extracted more clearly in different spectral bands. In particular,
buildings can be detected accurately in one band but roads,
trees, fields, paths and shadows can be detected accurately
in other bands. For example, the structures in both Figures
10(a) and 10(b) are found in the second PCA band of the
DC Mall data set. On the other hand, the structures in both
Figures 11(a) and 11(b) are found in the third PCA band of
the Pavia data set. Figure 13 shows the extracted segments
in different PCA bands of the DC Mall data set. The reason
that a particular structure being extracted better in a particular
band is that the pixels belonging to that structure are found
lighter or darker than their surroundings on that band. This
motivates the next step on automatically integrating the results
from individual bands as a final segmentation with detected
objects in an image.

IV. OBJECT DETECTION

In Section III, we described a method that used the neigh-
borhood and spectral information as well as the morphological
information for segmentation. In this section, we present an
unsupervised algorithm for automatic selection of segments
from multiple segmentations and spectral bands. (Parts of this
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Fig. 13. Example segmentation results for different PCA bands of the DC
Mall data set. The left, middle and right images show the segments extracted
in the first, second and third PCA bands where the roads/shadows, trees and
buildings are detected more clearly, respectively.

section were presented in [20].) The input to the algorithm is
a set of hierarchical segmentations corresponding to different
spectral bands. The goal is to find coherent groups of segments
that correspond to meaningful structures. The assumption here
is that, for a particular structure (e.g., building), the “good”
segments (i.e., the ones containing a building) will all have
similar features whereas the “bad” segments (i.e., the ones con-
taining multiple objects or corresponding to overlapping partial
object boundaries) will be described by a random mixture of
features. Therefore, considering multiple objects/structures of
interest, this selection process can also be seen as a grouping
problem within the space of a large number of candidate
segments obtained from multiple hierarchical segmentations.
The resulting groups correspond to different types of objects
in the image.

A. Modeling Segments

The grouping algorithm consists of three steps: extracting
segment features, grouping segments, detecting objects. In
the first step, each segment is modeled using the statistical
summary of its pixel content. First, all pixels in the image
are clustered by applying the k-means algorithm in a feature
domain. This corresponds to quantization of the feature values.
Then, a histogram is constructed for each segment to ap-
proximate the distribution of these quantized values belonging
to the pixels in that segment as shown in Figure 14. This
histogram is used to represent the segment in the rest of the
algorithm. Alternative representations include using the mean
or the covariance of the feature values of the pixels within a
segment. However, the mean is often not sufficient to distin-
guish complex objects, and the covariance estimation can have
singularity problems for small sample sizes. The histogram
model provides a trade-off that contains more information than
the mean while being easier to estimate than the covariance.
Furthermore, the segment selection algorithm in Section III-C
uses a goodness measure that selects the segments that are
large enough, so that the histograms can be reliably estimated.
Note that the object detection algorithm is generic in the sense
that any discrete model of the segment’s content can also be
used by the grouping algorithm in the next section.

k−means−−−−−−→
quantization

histogram−−−−−→
of pixels

Fig. 14. Each segment is modeled using the statistical summary of its pixel
content. In the experiments, these summaries are obtained by quantizing the
feature values using the k-means algorithm and representing the distribution
of these quantized values in a histogram.

B. Grouping Segments

In this work, we use the probabilistic Latent Semantic Anal-
ysis (PLSA) algorithm [13] to solve the grouping problem.
PLSA was originally developed for statistical text analysis
to discover topics in a collection of documents that are
represented using the frequencies of words from a vocabulary.
In our case, the documents correspond to image segments,
the word frequencies correspond to histograms of pixel level
features, and the topics to be discovered correspond to the
set of objects/structures of interest in the image. Russell et
al. [21] used a different graphical model in a similar setting
where multiple segmentations of natural images were obtained
using the normalized cut algorithm by changing its parameters,
and instances of segments corresponding to objects such as
cars, bicycles, faces, sky, etc., were successfully grouped and
retrieved from a large set of images.

The PLSA technique uses a graphical model for the joint
probability of the segments and their features in terms of the
probability of observing a feature given an object and the
probability of an object given the segment. Suppose there
are N segments (documents) having content coming from a
distribution (vocabulary) with M discrete pixel feature values
(words). The collection of segments is summarized in an N -
by-M co-occurrence table n where n(si, xj) stores the number
of occurrences of feature value xj in segment si. In addition,
there is a latent object type (topic) variable tk associated with
each observation, an observation being the occurrence of a
feature in a particular segment.

The graphical model used by PLSA to model the joint
probability P (xj , si, tk) is shown in Figure 15. The generative
model P (si, xj) = P (si)P (xj |si) for feature content of
segments can be computed using the conditional probability

P (xj |si) =
K∑

k=1

P (xj |tk)P (tk|si) (2)

where P (xj |tk) denotes the object-conditional probability
of feature xj occurring in object tk, P (tk|si) denotes the
probability of object tk observed in segment si, and K is
the number of object types. Then, the object specific feature
distribution P (xj |tk) and the segment specific feature distri-
bution P (xj |si) can be used to determine similarities between
object types and segments (explained in the next section).

In PLSA, the goal is to identify the probabilities P (xj |tk)
and P (tk|si). These probabilities are learned using the
Expectation-Maximization (EM) algorithm [13]. In the E-step,
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P (x|t)P (s)

building

s t x
P (t|s)

(a)

=

s t s

P (x|s) P (x|t) P (t|s)

x x t

(b)

Fig. 15. (a) PLSA graphical model. The filled nodes indicate observed
random variables whereas the unfilled node is unobserved. The red arrows
show examples for the measurements represented at each node. (b) In PLSA,
the object specific feature probability, P (xj |tk), and the segment specific
object probability, P (tk|si), are used to compute the segment specific feature
probability, P (xj |si).

the posterior probability of the latent variables are computed
based on the current estimates of the parameters as

P (tk|si, xj) =
P (xj |tk)P (tk|si)∑K
l=1 P (xj |tl)P (tl|si)

. (3)

In the M-step, the parameters are updated to maximize the
expected complete data log-likelihood as

P (xj |tk) =
∑N

i=1 n(si, xj)P (tk|si, xj)∑M
m=1

∑N
i=1 n(si, xm)P (tk|si, xm)

, (4)

P (tk|si) =

∑M
j=1 n(si, xj)P (tk|si, xj)∑M

j=1 n(si, xj)
. (5)

The E-step and the M-step are iterated until the difference be-
tween the consecutive expected complete data log-likelihoods
is less than a threshold or the number of iterations exceeds a
predetermined value.

C. Detecting Objects

After learning the parameters of the model, we want to
find good segments belonging to each learned object type.
This is done by comparing the feature distribution within
each segment, p(x|s), and the feature distribution for a given
object type, p(x|t). The similarity between two distributions
can be measured using the Kullback-Leibler (KL) divergence
D(p(x|s)‖p(x|t)). Then, for each object type, the segments
in an image can be sorted according to their KL divergence
scores, and the most representative segments for that object
type can be selected. However, if there are two segments that
are extracted from different spectral bands grouped within the
same object type and at least one of them overlaps with the
other by a predetermined percent of its whole area, the less

representative structure (the one with a larger KL divergence
score) is removed from that object type to avoid having
multiple segments of the same object.

D. Evaluation of Object Detection

The performance of the PLSA-based segment grouping and
object detection depends on the choice of the features that are
used to model the segments and the number of object types
that is given as input to the grouping algorithm. Clustering
evaluation measures can be used to study the effects of dif-
ferent settings of the parameters and provide an objective and
quantitative evaluation of the unsupervised grouping/detection
algorithms described in the previous sections.

In the literature, clustering is often used as an intermediate
step of a classification/recognition system where only the
performance of the final system is analyzed, or usually only
a qualitative visual inspection of the clustering results are
performed. To evaluate the accuracy of object detection, first,
quality measures for both individual object types (clusters)
and the overall detection (clustering) must be defined. One
way of defining these measures involves the use of ground
truth data where the resulting groups are compared to the
manually assigned labels for the segments. In other words,
the quality measures should quantify how well the results of
the unsupervised detection algorithm reflect the groupings in
the ground truth.

In an optimal result, the segments with the same object class
labels in the ground truth must be assigned to the same group
(cluster) and the segments corresponding to different object
class types must appear in different groups (clusters) at the end
of the detection process. An information theoretic criterion that
measures the homogeneity of the distribution of the segments
with respect to different object types is the entropy [22].
Another measure is the Rand index [23] that is analogous
to the Kappa coefficient and measures the agreement between
two labellings. These two measures are described below.

1) Entropy: Let hck denote the number of segments as-
signed to the object type (cluster) k with a ground truth
object class label c, hc. =

∑K
k=1 hck denote the number

of segments with a ground truth object class label c, and
h.k =

∑C
c=1 hck denote the number of segments assigned to

object type (cluster) k, where K is the number of object types
given as input to the grouping/detection algorithm and C is
the true number of objects. The quality of individual clusters
is measured in terms of the homogeneity of the true object
class labels within each cluster. For each cluster k, the cluster
entropy Ek is given by

Ek = −
C∑

c=1

hck

h.k
log

hck

h.k
. (6)

Then, the overall cluster entropy Ecluster is given by a weighted
sum of individual cluster entropies as

Ecluster =
1∑K

k=1 h.k

K∑
k=1

h.kEk. (7)

A smaller cluster entropy value indicates a higher homo-
geneity. However, the cluster entropy continues to decrease as
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the number of clusters increases. To overcome this problem,
another entropy criterion that measures how segments of the
same true object class are distributed among the clusters can
be defined. For each true object class c, the class entropy Ec

is given by

Ec = −
K∑

k=1

hck

hc.
log

hck

hc.
. (8)

Then, the overall class entropy Eclass is given by a weighted
sum of individual class entropies as

Eclass =
1∑C

c=1 hc.

C∑
c=1

hc.Ec. (9)

Unlike the cluster entropy, the class entropy increases when
the number of clusters increase. Therefore, the two measures
can be combined for an overall entropy measure as

E = βEcluster + (1− β)Eclass (10)

where β ∈ [0, 1] is a weight that balances the two measures
[22].

2) Adjusted Rand index: When the number of true object
classes and the number of detected object types are the same,
the Kappa coefficient can be used to measure the amount of
agreement between the two labellings. However, the number
of detected clusters in unsupervised classification is not always
the same as the true number of objects. In such cases, the Rand
index can be used to measure the agreement of every pair
of segments according to both unsupervised and ground truth
labellings [23]. The agreement occurs if two segments that
belong to the same class are put into the same cluster, or two
segments that belong to different classes are put into different
clusters. The Rand index is computed as the proportion of all
segment pairs that agree in their labels. The index has a value
between 0 and 1, where 0 indicates that the two labellings do
not agree on any pair of segments and 1 indicates that the two
labellings are exactly the same.

However, the expected value of the Rand index of two
random groupings does not take a constant value. The adjusted
Rand index [23], which can be computed as

R =

C∑
c=1

K∑
k=1

(
hck
2

)
−

[
C∑

c=1

(
hc.
2

) K∑
k=1

(
h.k
2

)]
/
(

N
2

)
[

C∑
c=1

(
hc.
2

)
+

K∑
k=1

(
h.k
2

)]
/2 −

[
C∑

c=1

(
hc.
2

) K∑
k=1

(
h.k
2

)]
/
(

N
2

)
(11)

where N is the total number of segments, has a maximum
value of 1 and an expected value of 0. Therefore, it has a wider
range and more sensitivity than the original index. This index
is also analogous to the Kappa coefficient because it measures
the agreement over and above that expected by chance [23].

3) Ground truth for object detection: Since suitable de-
tailed GIS data and object level ground truth are not available
in the form of individual segments, we use the pixel level
ground truth to generate the object labels for evaluation. The
pixel level ground truth that we manually created and is shown
in Figure 16(a) is used for this purpose. Given all segments
that are used for object detection, a segment is assigned an

object class label if at least 20% of its pixels have an overlap
with the pixel level ground truth and at least 50% of those
pixels have the same label. The first threshold handles the areas
where the pixel level ground truth is not available. The second
threshold ensures that the majority of the segment belongs to
the same object. These two thresholds are selected empirically
to obtain an object level ground truth with a coverage as much
as possible by making use of the pixel level ground truth as
much as possible. These object labels for segments are used
to perform a quantitative evaluation of the unsupervised object
detection.

V. EXPERIMENTS

Qualitative evaluation of the proposed image segmentation
algorithm with comparative experiments was presented in
Section III-D. The input to the unsupervised object detection
algorithm is the set of all segments extracted from individual
bands of an image where the goal is to find coherent groups
of segments that correspond to different objects. The total
number of segments automatically extracted was 2,070, 4,107
and 1,053 for the DC Mall, Pavia and Ankara data sets,
respectively.

The next step is the modeling of the segments using
histograms of quantized feature values. All seven possible
combinations of three different types of features (PCA, LDA,
Gabor) for the DC Mall and Pavia data sets, and three possible
combinations of two different types of features (RGB, Gabor)
for the Ankara data set were used as described in Section II.
The pixels in each image were quantized using the k-means
algorithm where the number of quantization levels (k) was set
to three different values (10, 25, 40) to study the effects of
quantization. Then, for each segment, a histogram with k bins
was constructed by counting the number of pixels belonging
to each quantization level within that segment as described in
Section IV-A.

Next, the PLSA algorithm was used to learn the object-
conditional feature distributions for all object types. In the
experiments, the number (K) of latent object type variables
(tk) was varied from 5 to 60 with increments of 1. The
parameters of the distribution models were learned using the
EM algorithm for each setting as described in Section IV-B.

In the final step, the KL divergence score between each
segment and each object type was computed, and the segments
were grouped as belonging to the object type where the KL
score was the smallest. Since the segments were extracted from
different bands, some of the segments could overlap. When the
overlap between two segments belonging to the same group
was more than 30% of the area of one of the segments, the one
with a larger KL divergence score was removed as described
in Section IV-C.

Quantitative performance evaluation for object detection
was performed for the DC Mall data set using the performance
indices described in Section IV-D. We extended the original
pixel level ground truth containing only 8,079 pixels that
we obtained with the hyper-spectral data [24] to increase
its coverage as much as possible (shown in Figure 16(a)).
Figure 16 shows the entropy and Rand indices with respect to
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different settings of the features, the number of quantization
levels, and the number of object types (number of clusters).
When individual cluster entropy and class entropy values
are analyzed in detail, we can see that the cluster entropy
continued to decrease as expected as the number of clusters
increased because purer clusters were obtained when the
segments were divided into a larger number of groups. On the
other hand, the class entropy tended to stay flat for very small
number of clusters and started to increase when the number of
clusters became greater than the number of true object classes
(C = 7 for this data set) because the segments belonging to
the same object class were divided into more and more groups,
diversifying the distribution of the class over the clusters. The
turning point for the overall entropy occurred when the number
of clusters was approximately equal to the number of true
object classes (around K = 8 or 9), after which it continued to
increase because the increase in the class entropy was greater
than the decrease in the cluster entropy.

The Rand index measures the agreement between the de-
tected and true segment labels using two components: the
number of segment pairs that belong to the same class and put
into the same cluster, and the number of segment pairs that
belong to different classes and put into different clusters. In
the experiments, the former number tended to stay flat for very
small number of clusters and started to decrease as expected
when the number of clusters became greater than the number
of true object classes because the segments of the same object
type were divided into different clusters. On the other hand, the
latter number continued to increase as expected as the number
of clusters increased. The overall Rand index followed the
former number because its decrease was more significant than
the increase in the latter. Note that, the adjusted Rand index
values above 30% correspond to an agreement of above 80%
between the detected and ground truth labels of every pair
of segments according to the definition of the original Rand
index in [23].

When the effects of different feature combinations are
analyzed, we can see that individually LDA features performed
better than PCA and Gabor features. This is expected because
pixel level class labels are used to extract these features so
that they maximize class separability whereas the PCA and
Gabor features are computed using unsupervised techniques.
The feature combinations that include LDA features also
performed better than other combinations for the same reasons.
Gabor features were not as effective as others because such
features are generally useful for large textured areas such as
vegetation but many building segments did not gain additional
information from texture because their support (area) were
usually too small compared to the sizes of the texture filters.
When PCA (spectral) features are compared to LDA features,
the latter were very effective in distributing segments that
belong to different object classes such as buildings, vegetation,
roads, etc. to different groups (clusters) whereas the former
were powerful in distinguishing buildings with different types
of roofs (all buildings were in the same ground truth class
called roof). Therefore, they provide complementary informa-
tion and usually the best results were obtained when they
were used together but the results with only PCA features

(a) Reference map (rotated)

Class Roof Street Path Grass Trees Water Shadow Total

Pixel level 28975 19175 2027 43399 18406 25491 2160 139633
Object level 154 169 45 175 256 7 44 850
(b) Ground truth statistics (number of pixels and segments in each class)
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(c) Entropy vs. number of object types
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(d) Adjusted Rand index vs. number of object types

Fig. 16. The reference map and the statistics of the ground truth used to
compute the object detection performance indices. The plots in (c) and (d)
show the indices for different settings of the features for k = 25 (left) and
for different number of quantization levels (k = 10, 25, 40) when PCA, LDA
and Gabor features were used (right). The x-axes show the number of object
types (K, number of clusters) given as input to the detection algorithm.

were also acceptable and show that the grouping technique is
very powerful for unsupervised object detection even when no
manual label information is available.

When the effect of the number of quantization levels is
analyzed, we did not observe any significant difference be-
tween k = 10, 25 or 40. Finally, even though there were
some differences in the performance index values for different
feature combinations, visual inspection of the resulting groups
showed that these differences occurred mostly because of
different groupings of the small tree and grass segments. Even
though the major and relatively larger segments such as build-
ings or roads were grouped similarly with different feature
combinations, there were some differences in the grouping of
small vegetation segments (especially when K was increased)
that were larger in number compared to other object types,
and this caused some differences in the performance indices.

Note that, the quantitative performance indices actually
provide a “pessimistic” estimate of the actual performance
because, for example, two different kinds of buildings with
different roof types that are correctly put into different clusters
by the object detection algorithm will decrease the Rand
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TABLE II
THE NUMBER OF AUTOMATICALLY DETECTED SEGMENTS FOR ROADS,

BUILDINGS AND VEGETATION OBJECTS, AND THE CORRESPONDING
PRECISION AND RECALL VALUES (AS PERCENTAGES) FOR DIFFERENT

NUMBER OF CLUSTERS (K).

Roads Buildings Vegetation
K Detect Prec Recall Detect Prec Recall Detect Prec Recall
5 498 33.53 86.98 240 75.42 75.32 945 56.19 93.90
15 428 35.98 86.39 295 67.80 75.32 874 59.04 92.49
25 326 46.63 80.47 325 66.15 85.71 945 55.98 93.19

index if those two visually different buildings have the same
ground truth label as “roof”. Even though the ground truth
may not contain that much detail, visual evaluation confirms
that such cases can be correctly handled by our algorithm.
This also shows that there may not be a single best value
for K but one can interpret the plots like in Figure 16 by
looking at the significant changes in the performance indices
that occur when a significant new cluster (group) is produced
when the number of object types is increased. Therefore, a
natural extension of this unsupervised grouping process is the
selection and labeling of the detected groups by the user for
a final classification with a desired level of detail.

In addition to the entropy and Rand indices, we also
evaluated the performance of the proposed object detection
algorithm using precision and recall to measure how well
the detected objects correspond to the ground truth objects.
Given the segment groups (clusters) obtained using the unsu-
pervised detection algorithm for a specific value of K, first,
we manually identified the groups containing roads, buildings
and vegetation according to the content of the majority of the
segments using visual inspection. For a segment to be accepted
as a correct detection, it must have a sufficient overlap with
an object in the ground truth. Then, we used the object level
ground truth described in Section IV-D, and for each object
type, computed precision and recall as:

precision =
# of correctly detected objects (segments)

# of all detected objects (segments)
, (12)

recall =
# of correctly detected objects (segments)

# of all objects in the ground truth
. (13)

Recall can be interpreted as the number of true positive
objects extracted by the algorithm, while precision evaluates
the tendency of the algorithm for false positives [17]. The
results for three different values of K are shown in Table
II. We believe that the results are quite satisfactory given the
complexity of the data and the unsupervised nature of the
algorithm used.

Figure 17 shows example groups obtained for the DC
Mall data set when PCA, LDA and Gabor features were
used with 25 quantization levels. The clusters for K =
5 contained roads/shadow, buildings/water, buildings/soil,
trees/grass, grass, and were already quite meaningful for a
small K. When K was increased, trees and grass segments
started separating further. At K = 8, the water segments

separated from buildings.1 At K = 10, the building segments
started separating into different clusters according to their roof
types. Further increase in K caused grass segments to be
divided into more clusters (e.g., greener segments vs. browner
segments). At K = 17, most of the shadow segments separated
from roads. Larger values of K produced small clusters that
contained small tree or grass segments because there were
more such segments compared to segments of other types.

Similarly, Figures 18 and 19 show example results for Pavia
and Ankara data sets, respectively. Due to space limitations,
instead of individual clusters, the segments belonging to the
groups that mostly contain buildings, roads, and vegetation
are shown. For the Pavia image, all buildings with tile roofs
were grouped together with almost no false alarms. There
were some minor confusions between the roads and some
shadow segments and buildings with very similar colors. For
the Ankara image, the clusters were almost complete when
K = 5. Overall, the quantitative evaluation using performance
indices and the qualitative visual inspection of the detection
results for all data sets confirmed that the proposed algorithms
were able to identify the segments corresponding to objects
(i.e., “good” segments) by placing them into coherent groups
in an unsupervised mode, where there is a strong correlation
between the true object labels and the detected segment labels.

VI. CONCLUSIONS

We presented novel methods for unsupervised image seg-
mentation and automatic object detection in high-resolution
remotely sensed imagery. Our segmentation algorithm ex-
ploited structural information using morphological operators.
These operators were applied to each spectral band separately
where candidate segments were extracted by applying con-
nected components analysis to the pixels selected according
to their morphological profiles. These segments were modeled
hierarchically using a tree, and the most meaningful ones in
this hierarchy were selected by optimizing a criterion that con-
sisted of two factors: spectral homogeneity and neighborhood
connectivity. The segment selection algorithm is generic in the
sense that not only can other criteria for a “good” (meaningful)
segment be directly incorporated, but it can also be used with
other hierarchical segmentation algorithms.

We evaluated the proposed approach qualitatively on three
data sets. The results showed that our method that considers
morphological characteristics, spectral information, and their
consistency within neighboring pixels is able to detect struc-
tures in the image which are more precise and more mean-
ingful than the structures detected by two popular approaches
that do not make strong use of neighborhood and spectral
information jointly.

We also proposed an object detection algorithm that for-
mulated the detection process as an unsupervised grouping

1Some large water segments do not appear in the results because small
structuring elements (maximum radius of 15) were used in the morphological
profile as we are mainly interested in smaller structures such as buildings.
All water segments can be extracted using larger structuring elements.
Alternatively, simple thresholding of spectral bands can detect water segments
before running our object detection algorithm.
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(a) False
color

(b) K = 5

(c) K = 8 (d) K = 10 (e) K = 17

Fig. 17. Examples of object detection for the DC Mall data set. (b) Clusters
when K = 5. The groupings are already meaningful for a small K. (c) Two
new clusters introduced when K = 8. The second cluster in (b) is divided into
building and water segments. (d) Two new clusters introduced when K = 10.
The building segments in the first cluster in (c) are further divided according
to their roof types. (e) Two new clusters introduced when K = 17. The first
cluster in (b) is divided into road and shadow segments.

problem for automatic selection of coherent sets of seg-
ments corresponding to meaningful structures among a set
of candidate segments from multiple hierarchical segmenta-
tions obtained from individual spectral bands. The grouping
problem was solved using the probabilistic Latent Semantic
Analysis algorithm that built object models by learning the
object-conditional feature probability distributions. Automatic
labeling of a segment was done by comparing its spectral and
textural content distribution to the distribution of the learned
object models. The object detection algorithm is generic in
the sense that any model for a segment’s content can be used
by the grouping algorithm. Extensive performance evaluation
showed that the proposed methods are able to automatically
detect and group structures belonging to the same object
classes.
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