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Abstract. Feature vectors that are used to represent images exist in a
very high dimensional space. Usually, a parametric characterization of
the distribution of this space is impossible. It is generally assumed that
the features are able to locate visually similar images close in the feature
space so that non-parametric approaches, like the k-nearest neighbor
search, can be used for retrieval.
This paper introduces a graph–theoretic approach to image retrieval by
formulating the database search as a graph clustering problem to increase
the chances of retrieving similar images by not only ensuring that the
retrieved images are close to the query image, but also adding another
constraint that they should be close to each other in the feature space.
Retrieval precision with and without clustering are compared for perfor-
mance characterization. The average precision after clustering was 0.78,
an improvement of 6.85% over the average precision before clustering.

1 Motivation

Like in many computer vision and pattern recognition applications, algorithms
for image database retrieval have an intermediate step of computing feature
vectors from the images in the database. Usually these feature vectors exist
in a very high dimensional space where a parametric characterization of the
distribution is impossible. In an image database retrieval application we expect
to have visually similar images close to each other in the feature space. Due to
the high dimensionality, this problem is usually not studied and the features
are assumed to be able to locate visually similar images close enough so that
non-parametric approaches, like the k-nearest neighbor search, can be used for
retrieval.
Unfortunately, none of the existing feature extraction algorithms can always

map visually similar images to nearby locations in the feature space and it is not
uncommon to retrieve images that are quite irrelevant simply because they are
close to the query image. We believe that a retrieval algorithm should be able
to retrieve images that are not only close (similar) to the query image but also
close (similar) to each other.



In this work, we introduce a graph–theoretic approach for image retrieval by
formulating the database search as a graph clustering problem. Graph–theoretic
approaches have been a popular tool in the computer vision literature, especially
in object matching. Recently, graphs were used in image segmentation [8, 7, 4]
by treating the image as a graph and defining some criteria to partition the
graph. Graphs did not receive significant attention in image retrieval algorithms
mainly due to the computational complexity of graph-related operations. Huet
and Hancock [5] used attributed graphs to represent line patterns in images and
used these graphs for image matching and retrieval.
Clustering the feature space and visually examining the results to check

whether visually similar images are actually close to each other is an important
step in understanding the behavior of the features. This can help us determine
the effectiveness of both the features and the distance measures in establishing
similarity between images. In their Blobworld system, Carson et al. [3] used an
expectation-maximization based clustering algorithm to find canonical blobs to
mimic human queries. In our work we also use the idea that clusters contain
visually similar images but we use them in a post-processing step instead of
forming the initial queries.
The paper is organized as follows. First, the features used are discussed in

Section 2. Then, a new algorithm for image retrieval is introduced in Section 3,
which is followed by the summary of a graph–theoretic clustering algorithm in
Section 4. Experiments and results are presented in Section 5. Finally, conclu-
sions are given in Section 6.

2 Feature Extraction

The textural features that are used were described in [1, 2]. The feature vector
consists of two sets of features which intend to perform a multi-scale texture anal-
ysis which is crucial for a compact representation in large databases containing
diverse sets of images. The first set of features are computed from the line-angle-
ratio statistics which is a texture histogram of the angles between intersecting
line pairs and the ratio of the mean gray levels inside and outside the regions
spanned by those angles. The second set of features are the variances of gray
level spatial dependencies and are computed from the co-occurrence matrices
for different spatial relationships. Each component in the 28-dimensional feature
vector is normalized to the [0, 1] interval by an equal probability quantization.

3 Image Retrieval

After computing the feature vectors for all images in the database, given a query
image, we have to decide which images in the database are relevant to it. In
most of the retrieval algorithms, a distance measure is used to rank the database
images in ascending order of their distances to the query image, which is assumed
to correspond to a descending order of similarity. In our previous work [1, 2] we
defined a likelihood ratio to measure the relevancy of two images, one being



the query image and one being a database image, so that image pairs which
had a high likelihood value were classified as “relevant” and the ones which
had a lower likelihood value were classified as “irrelevant”. The distributions for
the relevance and irrelevance classes were estimated from training sets and the
likelihood values were used to rank the database images.
We believe that a retrieval algorithm should be able to retrieve images that

are not only similar to the query image but also similar to each other, and formu-
late a new retrieval algorithm as follows. Assume we query the database and get
back the best N matches. Then, for each of these N matches we can do a query
and get back the best N matches again. Define S as the set containing the query
image and at most N2+N images that are retrieved as the results of the original
query and N additional queries. Then, we can construct a graph with the images
in S as the nodes and can draw edges between each query image and each image
in the retrieval set of that query image. We call these edges the set R where
R = {(i, j) ∈ S × S | image j is in the retrieval set when image i is the query}.
The distances between images which correspond to two nodes that an edge con-
nects can also be assigned as a weight to that edge. We want to find the con-
nected clusters of this graph (S,R) because they correspond to similar images.
The clusters of interest are the ones that include the original query image. The
ideal problem now becomes finding the maximal P , where P ⊆ S such that
P × P ⊆ R. This is called a clique of the graph. The images that correspond to
the nodes in P can then be retrieved as the results of the query.
An additional thing to consider is that the graph (S,R) can have multiple

clusters. In order to select the cluster that will be returned as the result of the
query, additional measures are required. In the next section we define the term
“compactness” for a set of nodes. The cluster with the maximum compactness
can then be retrieved as the final result. If more than one such cluster exist, we
can select the one with the largest number of nodes or can compute the sum of
the weights of the edges in each of the clusters and select the one that has the
minimum total weight.
This method increases the chance of retrieving similar images by not only

ensuring that the retrieved images are close to the query image, but also adding
another constraint that they should be close to each other in the feature space.
In the next section we describe a graph–theoretic clustering algorithm which is
used to find the clusters. Section 5 presents experimental results.

4 Graph–Theoretic Clustering

In the previous section, we proposed that cliques of the graph correspond to
similar images. Since finding the cliques is computationally too expensive, we
use the algorithm by Shapiro and Haralick [6] that finds “near-cliques” as dense
regions instead of the maximally connected ones. Another consideration for speed
is to compute the N -nearest neighbor searches offline for all the images in the
database so that only one N -nearest neighbor search is required for a new query,
which is the same amount of computation for the classical search methods.



In the following sections, first we give some definitions, then we describe
the algorithm for finding dense regions, and finally we present the algorithm
for graph–theoretic clustering. The goal of this algorithm is to find regions in a
graph, i.e. sets of nodes, which are not as dense as major cliques but are compact
enough within some user specified thresholds.

4.1 Definitions

– (S,R) represents a graph where S is the set of nodes and R ⊆ S × S is the
set of edges.

– (X,Y ) ∈ R means Y is a neighbor of X. The set of all nodes Y such that
Y is a neighbor of X is called the neighborhood of X and is denoted by
Neighborhood(X).

– Conditional density D(Y |X) is the number of nodes in the neighborhood
of X which have Y as a neighbor; D(Y |X) = #{N ∈ S | (N,Y ) ∈
R and (X,N) ∈ R}.

– Given an integer K, a dense region Z around a node X ∈ S is defined as
Z(X,K) = {Y ∈ S | D(Y |X) ≥ K}. Z(X) = Z(X, J) is a dense region

candidate around X where J = max{K | #Z(X,K) ≥ K}.

– Association of a node X to a subset B of S is defined as

A(X|B) =
#{Neighborhood(X) ∩B}

#B
, 0 ≤ A(X|B) ≤ 1. (1)

– Compactness of a subset B of S is defined as

C(B) =
1

#B

∑

X∈B

A(X|B) , 0 ≤ C(B) ≤ 1. (2)

4.2 Algorithm for Finding Dense Regions

To determine the dense region around a node X,

1. Compute D(Y |X) for every other node Y in S.

2. Use the densities to determine a dense–region candidate set for node X by
finding the largest positive integer K such that #{Y | D(Y |X) ≥ K} ≥ K.

3. Remove the nodes with a low association (determined by the threshold
MINASSOCIATION) from the candidate set. Iterate until all of the nodes
have high enough association.

4. Check whether the remaining nodes have high enough average association
(determined by the threshold MINCOMPACTNESS).

5. Check the size of the candidate set (determined by the threshold MINSIZE).

When MINASSOCIATION and MINCOMPACTNESS are both 1, the resulting
regions correspond to the cliques of the graph.



4.3 Algorithm for Graph Theoretic Clustering

Given dense regions, to find the clusters of the graph,

1. Merge the regions that have enough overlap, determined by the threshold
MINOVERLAP, if all of the nodes in the set resulting after merging have
high enough associations.

2. Iterate until no regions can be merged.

The result is a collection of clusters in the graph. Note that a node can be a
member of multiple clusters because of the overlap allowed between them.

5 Experiments and Results

The test database consists of 340 images which were randomly selected from a
database of approximately 10,000 aerial and remote sensing images. The images
were grouped into 7 categories; parking lots, roads, residential areas, landscapes,
LANDSAT USA, DMSP North Pole and LANDSAT Chernobyl, to form the
groundtruth.

5.1 Clustering Experiments

The first step of testing the proposed retrieval algorithm is to check whether the
clusters formed by the graph–theoretic clustering algorithm are visually consis-
tent or not. First, each image was used as a query to search the database, and
for each search, N top-ranked images were retrieved. Then, a graph was formed
with all images as nodes and for each node N edges correspond to its N top-
ranked images. Finally, the graph was clustered by varying the parameters like
N , MINASSOCIATION and MINCOMPACTNESS. In order to reduce the pos-
sible number of parameters, MINSIZE and MINOVERLAP were fixed as 12 and
0.75 respectively. The resulting clusters can overlap. This is a desired property
because image content is too complex to be grouped into distinct categories.
Hence, an image can be consistent with multiple groups of images.
To evaluate the consistency of a cluster, we define the following measures.

Given a cluster of K images,

CorrectAssociationk =
#{i | GT(i) = GT(k), i = 1, . . . ,K}

K
(3)

gives the percentage of the cluster that image k is correctly associated with,
where GT(i) is the groundtruth group that image i belongs to. Then, consistency
is defined as

Consistency =
1

K

K∑

k=1

CorrectAssociationk. (4)

To select the best set of parameters, we define a cost function

Cost = 0.7(1− Consistency) + 0.3(Percentage of unclustered images) (5)
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Fig. 1. Consistency vs. Percentage of unclustered images for N ∈
{10, . . . , 70}, MINCOMPACTNESS ∈ {0.3, . . . , 1.0}, MINASSOCIATION ∈
{0, . . . ,MINCOMPACTNESS}, MINSIZE = 12, MINOVERLAP = 0.75. Dashed
lines correspond to the minimum cost.

and select the parameter set that minimizes it. Here Consistency is averaged
over all resulting clusters.
Among all possible combinations of the parameters given in Figure 1, the best

parameter set was found as {N,MINCOMPACTNESS,MINASSOCIATION} =
{15, 0.6, 0.4}, corresponding to an average Consistency of 0.75 with 6% of the
images unclustered. Example clusters using these parameters are given in Fig-
ure 2. We observed that decreasing N or increasing MINCOMPACTNESS or
MINASSOCIATION increases both Consistency and Percentage of unclustered

images.

5.2 Retrieval Experiments

We also performed experiments using all of the 340 groundtruthed images in the
database as queries and, using the parameter set selected above, retrieved images
in the clusters with the maximum compactness for each query. For comparison,
we also retrieved only 12 top–ranked images (no clustering) for each query.
Example queries without and with clustering are shown in Figures 3 and 4.

We can observe that some images that are visually irrelevant to the query image
can be eliminated after the graph–theoretic clustering. An average precision of
0.78 (compared to 0.73 when only 12 top-ranked images are retrieved) for the
whole database showed that approximately 9 of the 12 retrieved images belong
to the same groundtruth group, i.e. are visually similar to the query image.
We also observed that, in order to get an improvement by clustering, the

initial precision before clustering should be large enough so that the graph is
not dominated by images that are visually irrelevant to the query image. In our
experiments, when the initial precision was less than 0.5, the average precision
after clustering was 0.19. For images with an initial precision greater than 0.5,
the average precision after clustering was 0.93. The better the features are, the
larger the improvement after clustering becomes.



(a) Consistency = 1 (b) Consistency = 1

Fig. 2. Example clusters for N=15, MINCOMPACTNESS=0.6, MINASSOCIA-
TION=0.4, MINSIZE=12, MINOVERLAP=0.75.

(a) Using only 12 top–ranked images. (b) Using graph–theoretic clustering.

Fig. 3. Example query 1. Upper left image is the query. Among the retrieved images,
first three rows show the 12 most relevant images in descending order of similarity and
the last row shows the 4 most irrelevant images in descending order of dissimilarity.
When clustering is used, only 12 images that have the smallest distance to the original
query image are displayed if the cluster size is greater than 12.



(a) Using only 12 top–ranked images. (b) Using graph–theoretic clustering.

Fig. 4. Example query 2.

6 Conclusions

This paper addressed the problem of retrieving images that are quite irrelevant
to the query image, which is caused by the assumption that the features are
always able to locate visually similar images close enough in the feature space.
We introduced a graph–theoretic approach for image retrieval by formulating

the database search as a problem of finding the cliques of a graph. Experiments
showed that some images that are visually irrelevant to the query image can be
eliminated after the graph–theoretic clustering. Average precision for the whole
database showed that approximately 9 of the 12 retrieved images belong to the
same groundtruth group, i.e. are visually similar to the query image.
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