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Abstract— A challenging problem in image content extraction
and classification is building a system that automatically learns
high-level semantic interpretations of images. We describe a
Bayesian framework for a visual grammar that aims to reduce
the gap between low-level features and user semantics. Our
approach includes learning prototypes of regions and their spatial
relationships for scene classification. First, naive Bayes classifiers
perform automatic fusion of features and learn models for
region segmentation and classification using positive and negative
examples for user-defined semantic land cover labels. Then, the
system automatically learns distinguishing spatial relationships
of these regions from training data and builds visual grammar
models. Experiments using LANDSAT scenes show that the visual
grammar enables creation of higher level classes that cannot be
modeled by individual pixels or regions. Furthermore, learning
of the classifiers requires only a few training examples.

I. INTRODUCTION

Automatic content extraction, classification and content-
based retrieval are highly desired goals in intelligent databases
for remotely sensed imagery. Most of the previous approaches
use spectral and textural features to build classification and
retrieval models. However, there is a large semantic gap
between low-level features and high-level user expectations
and scenarios.

An important element of image understanding is the spatial
information. Traditional region or scene level image analy-
sis algorithms assume that the regions or scenes consist of
uniform pixel feature distributions. However, complex query
scenarios usually contain many pixels and regions that have
different feature characteristics. Furthermore, two scenes with
similar regions can have very different interpretations if the
regions have different spatial arrangements. Even when pixels
and regions can be identified correctly, manual interpretation
is often necessary for many applications of remote sensing
image analysis like land cover classification and ecological
analysis in public health studies [1]. These applications will
benefit greatly if a system can automatically learn high-level
semantic interpretations.

The VISIMINE system [2] we have developed supports
interactive classification and retrieval of remote sensing images
by modeling them on pixel, region and scene levels. Pixel
level characterization provides classification details for each
pixel with regard to its spectral, textural and other ancillary
attributes. Following a segmentation process, region level
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features describe properties shared by groups of pixels. Scene
level features model the spatial relationships of the regions
composing a scene using a visual grammar. This hierarchical
scene modeling with a visual grammar aims to bridge the gap
between features and semantic interpretation.

This paper describes our work on learning a visual gram-
mar for scene classification. Our approach includes learning
prototypes of primitive regions and their spatial relationships
for higher-level content extraction. Bayesian classifiers that
require only a few training examples are used in the learning
process. Early work on modeling spatial relationships of re-
gions include using centroid locations and minimum bounding
rectangles to compute absolute and relative locations [3] or
using four quadrants of the Cartesian coordinate system to
compute directional relationships [4]. Centroids and minimum
bounding rectangles are useful when regions have circular
or rectangular shapes but regions in natural scenes often do
not follow these assumptions. More complex representations
of spatial relationships include spatial association networks
[5], knowledge-based spatial models [6], [7], and attributed
relational graphs [8]. However, these approaches require either
manual delineation of regions by experts or partitioning of
images into grids. Therefore, they are not generally applicable
due to the infeasibility of manual annotation in large databases
or because of the limited expressiveness of fixed sized grids.

Our work differs from other approaches in that recognition
of regions and decomposition of scenes are done automatically
after the system learns region and scene models with only a
small amount of supervision in terms of positive and negative
examples for classes of interest. The rest of the paper is
organized as follows. An overview of the visual grammar is
given in Section II. The concept of prototype regions is defined
in Section III. Spatial relationships of these prototype regions
are described in Section IV. Image classification using the
visual grammar models is discussed in Section V. Conclusions
are given in Section VI.

II. VISUAL GRAMMAR

We are developing a visual grammar [9], [10] for inter-
active classification and retrieval in remote sensing image
databases. This visual grammar uses hierarchical modeling
of scenes in three levels: pixel level, region level and scene
level. Pixel level representations include labels for individual



(a) NASA dataset (b) PRISM dataset

Fig. 1. LANDSAT scenes used in the experiments.

pixels computed in terms of spectral features, Gabor and co-
occurrence texture features, and elevation information from
Digital Elevation Model (DEM) data. Region level represen-
tations include land cover labels for groups of pixels obtained
through segmentation. These labels are learned from statistical
summaries of pixel contents of regions using mean, standard
deviation and histograms, and from shape information like
area, boundary roughness, orientation and moments. Scene
level representations include interactions of different regions
computed in terms of spatial relationships.

Visual grammar consists of two learning steps. First, pixel
level models are learned using naive Bayes classifiers that
provide a probabilistic link between low-level image features
and high-level user-defined semantic labels. Then, these pixels
are merged using region growing to find region level labels.
Second, a Bayesian framework is used to learn scene classes
based on automatic selection of distinguishing spatial relation-
ships between regions. Details of these learning algorithms are
given in the following sections. Examples in the rest of the
paper use LANDSAT scenes of Washington, D.C., obtained
from the NASA Goddard Space Flight Center, and Washington
State and Southern British Columbia obtained from the PRISM
project at the University of Washington. We use spectral val-
ues, Gabor texture features [11] and hierarchical segmentation
features [12] for the first dataset, and spectral values, Gabor
features and DEM data for the second dataset, shown in Fig. 1.

III. PROTOTYPE REGIONS

The first step to construct a visual grammar is to find
meaningful and representative regions in an image. Automatic
extraction of regions is required to handle large amounts of
data. To mimic the identification of regions by experts, we
define the concept of prototype regions. A prototype region is
a region that has a relatively uniform low-level pixel feature
distribution and describes a simple scene or part of a scene.

Ideally, a prototype is frequently found in a specific class of
scenes and differentiates this class of scenes from others.

In previous work [9], [10], we used automatic image seg-
mentation and unsupervised model-based clustering to auto-
mate the process of finding prototypes. In this paper, we
extend this prototype framework to learn prototype models
using Bayesian classifiers with automatic fusion of features.
Bayesian classifiers allow subjective prototype definitions to
be described in terms of objective attributes. These attributes
can be based on spectral values, texture, shape, etc. Bayesian
framework is a probabilistic tool to combine information from
multiple sources in terms of conditional and prior probabilities.
We can create a probabilistic link between low-level image
features and high-level user-defined semantic land cover labels
(e.g. city, forest, field).

Assume there are k prototype labels defined by the user. Let
x1, . . . , xm be the attributes computed for a pixel. The goal is
to find the most probable prototype label for that pixel given
a particular set of values of these attributes. The degree of
association between the pixel and prototype j can be computed
using the posterior probability

p(j|x1, . . . , xm)

=
p(x1, . . . , xm|j)p(j)

p(x1, . . . , xm)

=
p(x1, . . . , xm|j)p(j)

p(x1, . . . , xm|j)p(j) + p(x1, . . . , xm|¬j)p(¬j)

=
p(j)

∏m

i=1 p(xi|j)

p(j)
∏m

i=1 p(xi|j) + p(¬j)
∏m

i=1 p(xi|¬j)

(1)

under the conditional independence assumption. The parame-
ters for each attribute model p(xi|j) can be estimated sepa-
rately and this simplifies learning. Therefore, user interaction
is only required for the labeling of pixels as positive (j) or
negative (¬j) examples for a particular prototype label under
training. Then, the predicted prototype becomes the one with
the largest posterior probability and the pixel is assigned the
prototype label

j∗ = arg max
j=1,...,k

p(j|x1, . . . , xm). (2)

We use discrete variables in the Bayesian model where
continuous features are converted to discrete attribute values
using an unsupervised clustering stage based on the k-means
algorithm. In the following, we describe learning of the models
for p(xi|j) using the positive training examples for the j’th
prototype label. Learning of p(xi|¬j) is done the same way
using the negative examples.

For a particular prototype, let each discrete variable xi have
ri possible values (states) with probabilities

p(xi = z|θi) = θiz > 0 (3)

where z ∈ {1, . . . , ri} and θi = {θiz}
ri

z=1 is the set of
parameters for the i’th attribute model. This corresponds to
a multinomial distribution. To be able to do estimation with
a very small training set D, we use the conjugate prior, the
Dirichlet distribution p(θi) = Dir(θi|αi1, . . . , αiri

) where αiz



Fig. 2. Training for the city prototype. Positive and negative examples of
city pixels in the image on the left are used to learn a Bayesian classifier that
creates the probability map shown on the right. Brighter values in the map
show pixels with high probability of being part of a city. Pixels marked with
red have probabilities above 0.9.

are positive constants. Then, the posterior distribution of θi
can be computed using the Bayes rule as

p(θi|D) =
p(D|θi)p(θi)

p(D)

= Dir(θi|αi1 +Ni1, . . . , αiri
+Niri

)

(4)

where Niz is the number of cases in D in which xi = z,
and the Bayes estimate for θiz can be found by taking the
conditional expected value

θ̂iz = Ep(θi|D)[θiz] =
αiz +Niz

αi +Ni

(5)

where αi =
∑ri

z=1 αiz and Ni =
∑ri

z=1 Niz . An intuitive
choice for the hyper-parameters αi1, . . . , αiri

for the Dirichlet
prior is to assume all ri states to be equally probable and set
αiz = 1,∀z ∈ {1, . . . , ri} where

θ̂iz =
1 +Niz

ri +Ni

. (6)

Given the current state of the classifier that was trained
using the prior information and the sample D, we can easily
update the parameters when new data D′ is available. The new
posterior distribution for θi becomes

p(θi|D,D′) =
p(D′|θi)p(θi|D)

p(D′|D)
. (7)

With the Dirichlet priors and the posterior distribution for
p(θi|D) given in (4), the updated posterior distribution be-
comes

p(θi|D,D′) = Dir(θi|αi1+Ni1+N ′
i1, . . . , αiri

+Niri
+N ′

iri
)

(8)
where N ′

iz is the number of cases in D′ in which xi =
z. Hence, updating the classifier parameters involves only
updating the counts in the estimates for θ̂iz . Figs. 2 and
3 illustrate learning of prototype models from positive and
negative examples.

Fig. 3. Training for the park prototype.

Given the models learned for all user-defined semantic
prototype labels, a new image can be segmented into spatially
contiguous regions as follows:

• Compute probability maps for all labels and assign each
pixel to one of the labels using the maximum a posteriori
probability (MAP) rule. There is also a reject class for
probabilities smaller than a threshold and these pixels are
marked as background.

• After each pixel is assigned to a prototype, merge the
pixels with identical labels to find regions. Small regions
can also be marked as background using connected
components analysis.

• Finally, use region growing to assign background pixels
to the foreground regions by placing a window at each
background pixel and assigning it to the label that occurs
the most in its neighborhood.

The resulting regions are characterized by their polygon
boundaries and also propagate the corresponding pixel level
labels.

Fig. 4 shows example segmentations. Bayesian classifiers
successfully learned proper combinations of features for par-
ticular prototypes. For example, using only spectral features
confused cities with residential areas and some parks with
fields. Using the same training examples, adding Gabor fea-
tures improved some of the models but caused more confusion
between parks and fields. Finally adding hierarchical segmen-
tation features [12] fixed most of the confusions and enabled
learning of accurate models from a small set of training
examples.

IV. SPATIAL RELATIONSHIPS

After images are segmented and prototype labels are as-
signed to all regions, the next step in the construction of the
visual grammar is modeling of region spatial relationships.
The regions of interest are usually the ones that are close to
each other.

Representations of spatial relationships depend on the rep-
resentations of regions. VISIMINE models regions by their
boundary polygons. We use fuzzy modeling of pairwise spatial



Fig. 4. Segmentation examples from the NASA dataset. Images on the left
column are segmented using models for city (red), residential area (cyan),
water (blue), park (green), field (yellow) and swamp (maroon). Images on the
right column show resulting regions and their prototype labels.

relationships to describe the high-level user concepts shown
in Fig. 5. Among these relationships, disjoined, bordering,
invaded by and surrounded by are perimeter-class relation-
ships, near and far are distance-class relationships, and right,
left, above and below are orientation-class relationships. These
relationships are divided into sub-groups because multiple
relationships can be used to describe a region pair, e.g. in-
vaded by from left, bordering from above, and near and right,
etc.

To find the relationship between a pair of regions repre-
sented by their boundary polygons, we first compute

• perimeter of the first region, πi
• perimeter of the second region, πj
• common perimeter between two regions, πij
• ratio of the common perimeter to the perimeter of the

first region, rij =
πij

πi

• closest distance between the boundary polygon of the first
region and the boundary polygon of the second region,
dij

Fig. 5. Spatial relationships of region pairs: disjoined, bordering, invaded by,
surrounded by, near, far, right, left, above and below.

• centroid of the first region, νi
• centroid of the second region, νj
• angle between the horizontal (column) axis and the line

joining the centroids, θij
where i, j ∈ {1, . . . , n} and n is the number of regions in
the image. Then, each region pair can be assigned a degree
of their spatial relationship using the fuzzy class membership
functions given in Fig. 6.

For the perimeter-class relationships, we use the perimeter
ratios rij with trapezoid membership functions. The motiva-
tion for the choice of these functions is as follows. Two regions
are disjoined when they are not touching each other. They are
bordering each other when they have a common perimeter.
When the common perimeter between two regions gets closer
to 50%, the larger region starts invading the smaller one. When
the common perimeter goes above 80%, the relationship is
considered an almost complete invasion, i.e. surrounding. For
the distance-class relationships, we use the perimeter ratios rij
and boundary polygon distances dij with sigmoid membership
functions. For the orientation-class relationships, we use the
angles θij with truncated cosine membership functions. Details
of the membership functions are given in [10].

Note that the pairwise relationships are not always symmet-
ric. Furthermore, some relationships are stronger than others.
For example, surrounded by is stronger than invaded by, and
invaded by is stronger than bordering, e.g. the relationship
“small region invaded by large region” is preferred over the
relationship “large region bordering small region”. The class
membership functions are chosen so that only one of them is
the largest for a given set of measurements.

When an area of interest consists of multiple regions, this
area can be decomposed into multiple region pairs and the
measurements defined above can be computed for each of the
pairwise relationships. For an area that consists of k regions,
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(a) Perimeter-class spatial relationships
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(b) Distance-class spatial relationships
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(c) Orientation-class spatial relationships

Fig. 6. Fuzzy membership functions for pairwise spatial relationships.

the “min” operator, which is the equivalent of the Boolean
“and” operator in fuzzy logic, can be used to combine

(

k

2

)

pairwise relationships.

V. IMAGE CLASSIFICATION

Image classification is defined here as a problem of assign-
ing images to different classes according to the scenes they
contain. The visual grammar enables creation of higher level
classes that cannot be modeled by individual pixels or regions.
Furthermore, learning of these classifiers require only a few
training images. We use a Bayesian framework that learns
scene classes based on automatic selection of distinguishing
(e.g. frequently occurring, rarely occurring) relations between
regions.

The input to the system is a set of training images that
contain example scenes for each class defined by the user. Let
s be the number of classes, m be the number of relationships
defined for region pairs, k be the number of regions in a
region group, and t be a threshold for the number of region
groups that will be used in the classifier. Denote the classes by
w1, . . . , ws. The system automatically learns classifiers from
the training data as follows:

1) Count the number of times each possible region group
with a particular spatial relationship is found in the set
of training images for each class. This is a combinatorial
problem because the total number of region groups in
an image with n regions is

(

n

k

)

and the total number of

possible relationships in a region group is
(m+(k

2)−1

(k

2)

)

.

A region group of interest is the one that is frequently
found in a particular class of scenes but rarely exists in
other classes. For each region group, this can be mea-
sured using class separability which can be computed in
terms of within-class and between-class variances of the
counts as

ς = log

(

1 +
σ2
B

σ2
W

)

(9)

where σ2
W =

∑s

i=1 vivar{zj | j ∈ wi} is the within-
class variance, vi is the number of training images for
class wi, zj is the number of times this region group
is found in training image j, σ2

B = var{
∑

j∈wi
zj | i =

1, . . . , s} is the between-class variance, and var{·} de-
notes the variance of a sample.

2) Select the top t region groups with the largest class
separability values. Let x1, . . . , xt be Bernoulli random
variables for these region groups, where xj = T if the
region group xj is found in an image and xj = F

otherwise. Let p(xj = T ) = θj . Then, the number
of times xj is found in images from class wi has a
Binomial(vi, θj) =

(

vi

vij

)

θ
vij

j (1 − θj)
vi−vij distribution

where vij is the number of training images for wi

that contain xj . Using a Beta(1, 1) distribution as the
conjugate prior, the Bayes estimate for θj becomes

p(xj = T |wi) =
vij + 1

vi + 2
. (10)



Using a similar procedure with Multinomial and Dirich-
let distributions, the Bayes estimate for an image be-
longing to class wi (i.e. containing the scene defined by
class wi) is computed as

p(wi) =
vi + 1

∑s

i=1 vi + s
. (11)

3) For an unknown image, search for each of the t region
groups (determine whether xj = T or xj = F, ∀j) and
assign that image to the best matching class using the
MAP rule with the conditional independence assumption
as

w∗ = arg max
wi

p(wi|x1, . . . , xt)

= arg max
wi

p(wi)
t
∏

j=1

p(xj |wi).
(12)

Classification examples from the PRISM dataset are given in
Figs. 7–9. We used four training images for each of the classes
defined as “clouds”, “residential areas with a coastline”, “tree
covered islands”, “snow covered mountains”, “fields” and
“high-altitude forests”. Commonly used statistical classifiers
require a lot of training data to effectively compute the
spectral and textural signatures for pixels and also cannot do
classification based on high-level user concepts because of the
lack of spatial information. Rule-based classifiers also require
significant amount of user involvement every time a new class
is introduced to the system. The classes listed above provide a
challenge where a mixture of spectral, textural, elevation and
spatial information is required for correct identification of the
scenes. For example, pixel level classifiers often misclassify
clouds as snow and shadows as water. On the other hand, the
Bayesian classifier described above can successfully eliminate
most of the false alarms by first recognizing regions that
belong to cloud and shadow prototypes and then verify these
region groups according to the fact that clouds are often
accompanied by their shadows in a LANDSAT scene. Other
scene classes like residential areas with a coastline or tree
covered islands cannot be identified by pixel level or scene
level algorithms that do not use spatial information. The visual
grammar classifiers automatically learned the distinguishing
region groups that were frequently found in particular classes
of scenes but rarely existed in other classes.

VI. CONCLUSIONS

We described a visual grammar that aims to bridge the
gap between low-level features and high-level semantic inter-
pretation of images. The system uses naive Bayes classifiers
to learn models for region segmentation and classification
from automatic fusion of features, fuzzy modeling of region
spatial relationships to describe high-level user concepts, and
Bayesian classifiers to learn image classes based on automatic
selection of distinguishing (e.g. frequently occurring, rarely
occurring) relations between regions.

The visual grammar overcomes the limitations of traditional
region or scene level image analysis algorithms which assume

(a) Training images

(b) Images classified as containing clouds

Fig. 7. Classification results for the “clouds” class which is automatically
modeled by the distinguishing relationships of white regions (clouds) with
their neighboring dark regions (shadows).

(a) Training images

(b) Images classified as containing tree covered islands

Fig. 8. Classification results for the “tree covered islands” class which is
automatically modeled by the distinguishing relationships of green regions
(lands covered with conifer and deciduous trees) surrounded by blue regions
(water).



(a) Training images

(b) Images classified as containing residential areas with a coastline

Fig. 9. Classification results for the “residential areas with a coastline” class
which is automatically modeled by the distinguishing relationships of regions
containing a mixture of concrete, grass, trees and soil (residential areas) with
their neighboring blue regions (water).

that the regions or scenes consist of uniform pixel feature
distributions. Furthermore, it can distinguish different interpre-
tations of two scenes with similar regions when the regions
have different spatial arrangements. The system requires only
a small amount of training data expressed as positive and

negative examples for the classes defined by the user. We
demonstrated our system with classification scenarios that
could not be handled by traditional pixel, region or scene level
approaches but where the visual grammar provided accurate
and effective models.
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