
CS 202, Fall 2020
Homework #1 – Algorithm Efficiency and Sorting

Due Date: October 19, 2020

Important Notes

Please do not start the assignment before reading these notes.

• Before 23:55, October 19, upload your solutions in a single ZIP archive using Moodle
submission form. Name the file as studentID_hw1.zip.

• Your ZIP archive should contain the following files:

– hw1.pdf, the file containing the answers to Questions 1, 2 and 3.

– sorting.cpp, sorting.h, main.cpp files which contain the C++ source codes,
and the Makefile.

– Do not forget to put your name, student id, and section number in all of these
files. Well comment your implementation. Add a header as in Listing 1 to the
beginning of each file:

Listing 1: Header style

/**

* Title: Algorithm Efficiency and Sorting

* Author: Name Surname

* ID: 21000000

* Section: 1

* Assignment: 1

* Description: description of your code

*/

– Do not put any unnecessary files such as the auxiliary files generated from your
favorite IDE. Be careful to avoid using any OS dependent utilities (for example
to measure the time).

– You should prepare the answers of Questions 1 and 3 using a word processor
(in other words, do not submit images of handwritten answers).

1

Fundamental Structures of Computer Science II

– Use the exact algorithms shown in lectures.

• Although you may use any platform or any operating system to implement your
algorithms and obtain your experimental results, your code should work on the
dijkstra server (dijkstra.ug.bcc.bilkent.edu.tr). We will compile and test your pro-
grams on that server. Please make sure that you are aware of the homework grading
policy that is explained in the rubric for homeworks.

• This homework will be graded by your TA, Mubashira Zaman. Thus, please contact
her directly for any homework related questions.

Attention: For this assignment, you are allowed to use the codes given in our text-
book and/or our lecture slides. However, you ARE NOT ALLOWED to use any codes
from other sources (including the codes given in other textbooks, found on the Internet,
belonging to your classmates, etc.). Furthermore, you ARE NOT ALLOWED to use any
data structure or algorithm related function from the C++ standard template library
(STL).

Do not forget that plagiarism and cheating will be heavily punished. Please

do the homework yourself.

Question 1 – 25 points

(a) [10 points] Find the asymptotic running times in big O notation of the following
recurrence equations by using the repeated substitution method. Show your steps in
detail.

• T (n) = 5T (n/3) + n.logn, where T(1) = 1 and n is an exact power of 3.

• T (n) = T (n− 1) + n2, where T(1) = 1.

(b) [10 points] Trace the following sorting algorithms to sort the array [44, 937, 13, 69,
37, 80, 472, 49, 300, 183] in ascending order. Use the array implementation of the
algorithms as described in the textbook and show all major steps.

• Merge sort

• Insertion sort

(c) [5 points] Write the recurrence relation of quick sort algorithm for the worst case, and
solve it. Show all the steps clearly.

Page 2

https://docs.google.com/document/d/1jyGik6lsghu7KdSk75wwAcjTwo__4nbtIXrWK4_L75w/edit?usp=sharing
mailto:mubashira.zaman@bilkent.edu.tr?subject=CS 202 - Homework 2
mailto:mubashira.zaman@bilkent.edu.tr?subject=CS 202 - Homework 2

Fundamental Structures of Computer Science II

Question 2 – 60 points

Implement the following methods in the sorting.cpp file:

(a) [40 points] Implement the quick sort, insertion sort and hybrid sort algorithms. Your
functions should take an array of integers and the size of that array or the first and
last index of the array and then sort it in the ascending order. Add two counters to
count and return the number of key comparisons and the number of data moves for
all sorting algorithms. Your functions should have the following prototypes:

void quickSort(int *arr, int f ,int l, int &compCount, int &moveCount);

void insertionSort(int *arr, int size, int &compCount, int &moveCount);

void hybridSort(int *arr, int size, int &compCount, int &moveCount);

The hybrid sort algorithm starts with the quick sort (take the first element of the
array as pivot), but when the partition size becomes less than or equal to 10, it sorts
that partition with the insertion sort. Please see a sample implementation in LISTING
11-5 of the textbook. For key comparisons, you should count each comparison like
k1 < k2 as one comparison, where k1 and k2 correspond to the value of an array entry
(that is, they are either an array entry like arr[i] or a local variable that temporarily
keeps the value of an array entry).
For data moves, you should count each assignment as one move, where either the
right-hand side of this assignment or its left-hand side or both of its sides correspond
to the value of an array entry (e.g. a swap function mostly has 3 data moves).

(b) [5 points] Implement a function that prints the elements in an array.
void printArray(int *arr, int size);

(c) [10 points] In this part, you will analyze the performance of the sorting algorithms
that you implemented in part a by writing a function named performanceAnalysis.
This function will create three identical arrays of 2000 random integers. Use one
of the arrays for the quick sort, second for the insertion sort and third for the hybrid
sort.

Page 3

Fundamental Structures of Computer Science II

Listing 2: Sample output

Part a - Time analysis of Quick Sort

Array Size Time Elapsed compCount moveCount

2000 x ms x x

4000 x ms x x

...

Part b - Time analysis of Insertion Sort

Array Size Time Elapsed compCount moveCount

2000 x ms x x

4000 x ms x x

...

Part c - Time analysis of Hybrid Sort

Array Size Time Elapsed compCount moveCount

2000 x ms x x

4000 x ms x x

...

Output the elapsed time (in milliseconds), the number of key comparisons and the
number of data moves. Repeat the experiment for the following sizes: 4000, 6000,
8000, 10000, 12000, 14000, 16000, 18000, 20000. When the performanceAnalysis

function is called, it needs to produce an output similar to Listing 2.

(d) [5 points, mandatory] Create a main.cpp file which does the following in order:

• Creates 3 identical arrays of the following numbers: {20, 1, 100, 57, 92, 43, 99, 93,
17, 58}

• On the 1st array, calls the quickSort method and the printArray() method

• On the 2nd array, calls the insertionSort method and the printArray() method

• On the 3rd array, calls the hybridSort method and the printArray() method

• Call the performanceAnalysis() method

At the end, write a basic Makefile which compiles all of your code and creates an
executable file named hw1. Check out these tutorials for writing a simple make file:

Page 4

Fundamental Structures of Computer Science II

tutorial 1, tutorial 2. Please make sure that your Makefile works properly, otherwise
you will not get any points from Question 2.

Important note: Add the screenshot of the console output of Question

2 to the pdf submission.

Question 3 – 15 points

After running your programs, you are expected to prepare a single page report about the
experimental results that you obtained in Question 2 c. With the help of a spreadsheet
program (Microsoft Excel, Matlab or other tools), plot elapsed time versus the size of
array for each sorting algorithm implemented in question 2. Combine the outputs of each
sorting algorithm in a single graph. A sample figure is given in Figure 1 (these values do
not reflect real values).

In your report, you need to discuss the following points:

• Interpret and compare your empirical results with the theoretical ones. Explain any
differences between the empirical and theoretical results, if any.

• Does hybrid sort algorithm have any advantages/disadvantages over the quick sort
algorithm? Explain the reasons, if any.

Figure 1: Sample figure for Sorting Performance Analysis

Page 5

http://mrbook.org/blog/tutorials/make/
http://www.cs.colby.edu/maxwell/courses/tutorials/maketutor/

	Important Notes
	Question 1 – 25 points
	Question 2 – 60 points
	Question 3 – 15 points

