
CS 202, Fall 2020
Homework #4 – Balanced Search Trees and Hashing

Due Date: December 22, 2020

Important Notes

Please do not start the assignment before reading these notes.

• Before 23:55, December 22, upload your solutions in a single ZIP archive using
Moodle submission form. Name the file as studentID_hw4.zip.

• Your ZIP archive should contain the following files:

– hw4.pdf, the file containing the answers to Questions 1, 2 and 3,

– Person.h, Person.cpp, PersonHashing.h, PersonHashing.cpp, Friendship.h,
Friendship.cpp, FriendshipHashing.h, FriendshipHashing.cpp, main.cpp
files which contain the C++ source codes, and the Makefile.

– Do not forget to put your name, student id, and section number in all of these
files. Well comment your implementation. Add a header as in Listing 1 to the
beginning of each file:

Listing 1: Header style

/**

* Title: Balanced Search Trees and Hashing

* Author: Name Surname

* ID: 21000000

* Section: 0

* Assignment: 4

* Description: description of your code

*/

– Do not put any unnecessary files such as the auxiliary files generated from your
favorite IDE. Be careful to avoid using any OS dependent utilities.

– You should prepare the answers of Questions 1, 2 and 3 using a

word processor (in other words, do not submit images of handwritten

answers).

1

Fundamental Structures of Computer Science II

• Please use the algorithms as exactly shown in lectures.

• Although you may use any platform or any operating system to implement your
algorithms and obtain your experimental results, your code should work on the
dijkstra server (dijkstra.ug.bcc.bilkent.edu.tr). We will compile and test your pro-
grams on that server. Please make sure that you are aware of the homework grading
policy that is explained in the rubric for homeworks.

• This homework will be graded by your TA, Hasan Balcı. Thus, please contact him
directly for any homework related questions.

Attention: For this assignment, you are allowed to use the codes given in our text-
book and/or our lecture slides. However, you ARE NOT ALLOWED to use any codes
from other sources (including the codes given in other textbooks, found on the Internet,
belonging to your classmates, etc.). Furthermore, you ARE NOT ALLOWED to use any
data structure or algorithm related function from the C++ standard template library
(STL).

Do not forget that plagiarism and cheating will be heavily punished. Please

do the homework yourself.

Question 1 – 10 points

(a) [5 points]

Figure 1: 2-3-4 tree

Draw an equivalent red-black tree of the 2-3-4 tree in Figure 1. Clearly indicate red
and black nodes.

(b) [5 points] Draw the resulting 2-3-4 tree after inserting 50 into the original 2-3-4 tree
in Figure 1.

Page 2

https://docs.google.com/document/d/1jyGik6lsghu7KdSk75wwAcjTwo__4nbtIXrWK4_L75w/edit
mailto:hasan.balci@bilkent.edu.tr?subject=CS 202 - Homework 4
mailto:hasan.balci@bilkent.edu.tr?subject=CS 202 - Homework 4

Fundamental Structures of Computer Science II

Question 2 – 10 points

(a) [3 points] What is the maximum number of keys that a 2-3 tree of height h can hold?

(b) [3 points] If you start with an empty 2-3-4 tree and insert the letters in English
alphabet A, B, C, D, . . . in alphabetical order, the first time the tree would grow to
height 2 would be after inserting D. After inserting which letter would the tree grow
to height 3 for the first time? Show the 2-3-4 tree before and after inserting that
letter.

(c) [2 points] Assuming you have a red-black tree with n elements, how fast can you sort
those elements using the tree?

(d) [2 points] Is every subtree of a red-black tree also a red-black tree? Explain your
answer with one sentence.

Question 3 – 15 points

(a) [5 points] Assume that you have an array of length N that consists of unique integers.
Describe an algorithm in plain English (no pseudo-code is needed) to find two integers
in this array such that their sum is equal to a given target integer. Your algorithm
must work in expected time O(N). You can assume that exactly one pair of elements
in the array sums to the given target integer.

(b) [10 points] Insert the keys 22, 14, 30, 15, 11 and 18 into a hash table with 7 slots in
the given order by using the following hash function h1():
int h1 (key) {

int x = (key + 5) ∗ (key + 5);

x = x/20;

x = x+ key;

x = x mod 7; // take mod 7
return x;

}
Resolve the collisions with Linear Probing (5 points) and Quadratic Probing (5
points). When necessary, use the conventions in the related lecture slides. Show the
final content of the hash tables in the following form:

Slot 0 1 2 3 4 5 6

Content

Page 3

Fundamental Structures of Computer Science II

Question 4 – 65 points

In this part, you will use hash tables to implement a simple social network application.
Remember that insertion, deletion, and retrieval operations are to run in expected con-
stant time for hash tables.

Your program will accept a sequence of commands of the following forms as input, one
command to a line:

• P <name> – Create a person record of the specified name. You may assume that
no two people have the same name.

• F <name1> <name2> — Record that the two specified people are friends.

• U <name1> <name2>— Record that the two specified people are no longer friends.

• L <name> — Print out the friends of the specified person.

• Q <name1> <name2> — Check whether the two people are friends. If so, print
“Yes”; if not, print “No”.

• X – terminate the program.

For instance, this is one possible input:

P Ali
P Veli
P Ahmet
P Mehmet
F Ali Veli
F Ahmet Mehmet
F Mehmet Ali
F Mehmet Veli
L Mehmet
L Veli
U Mehmet Ahmet
L Mehmet
Q Ali Veli
Q Ahmet Mehmet
X

and this is the corresponding output:

Veli Ali Ahmet

Page 4

Fundamental Structures of Computer Science II

Mehmet Ali
Veli Ali
Yes
No

You must

• Define Person class which has at least two fields; one field for the name and one
field for the linked list of friends.

• Store the friends of each person in a linked list, not in an array. The list must be a
list of Person objects, not a list of their names, as strings.

• Define PersonHashing class that creates a hash table which indexes each Person

object by using the name field as key. This hash table implementation will use
separate chaining and table size will be 11. The hash function will be h(x) = (sum
of the ASCII codes of each letter in the name) mod (table size).

• Define Friendship class which has at least three fields. First field is for the friend-
ship name. The friendship name will be the concatenation of the names of two
people in the friendship in alphabetical order. For example, the friendship name of
"Veli" and "Ali" will be "AliVeli". The second field will be a pointer to the node
corresponding to Ali in the linked list of Veli’s friends, and the third field will be
a pointer to the node corresponding to Veli in the linked list of Ali’s friends. The
goal here is to quickly locate a neighbor node in an adjacency list.

• Define FriendshipHashing class that creates a hash table which indexes each
Friendship object by using the friendship name field as key. This hash table
implementation will use quadratic probing and table size will be 71. The hash
function will be h(x) = (sum of the ASCII codes of each letter in the friendship
name) mod (table size).

Executing commands

To execute a “P” command, create a Person object for the name, and save it in the
PersonHashing hash table by using the name as key.

To execute an “F” command:

– Find two Person objects in the PersonHashing hash table.

– Add each person to the front of the linked list of the friends of the other person.

– Construct the friendship name by using two names.

Page 5

Fundamental Structures of Computer Science II

– Create a Friendship object for the friendship name. Connect the first pointer to
the node corresponding to the second name in the linked list of first name’s friends,
and connect the second pointer to the node corresponding to the first name in the
linked list of second name’s friends.

– Save this Friendship object to the FriendshipHashing hash table by using the
friendship name as key.

To execute a “U” command:

– Construct the friendship name by using two names.

– Find the Friendship object in the FriendshipHashing hash table by using friend-
ship name as key.

– Find two Person objects by using the appropriate pointers and delete both person
from each other’s friend list. (Hint : to make the deletions in constant time, think
about your linked-list structure)

– Delete the Friendship object from FriendshipHashing hash table.

To execute an “L” command”, find the Person object in the PersonHashing hash
table, and loop through the list of friends.

To execute a “Q” command, construct the friendship name by using two names and
look it up in the Friendship hash table by using the friendship name as key.

Input/Output

You may assume that the input is correctly formatted. That is:

• Each line consists of a command character ‘P’, ’F’, ’U’, ‘L’, ’Q’, or ’X’ followed by
a blank followed by one or two names separated by a blank. A name is a sequence
of alphabetic characters.

• Any name mentioned in an F, U, L, or Q command has been already created by a
P command.

• The sequence of commands ends with X.

What, if anything, you want to do about invalid inputs is up to you. However, the
program should do the right thing under the following circumstances:

• A person friends or unfriends himself. In this case, the program should do nothing;
it should not add the person to his own list of friends.

Page 6

Fundamental Structures of Computer Science II

• A person unfriends someone who is not a friend. In that case, the program should
do nothing.

Your main.cpp file must take its input from a text file named “input.txt” in the same
directory as the program and execute each command in the text file in order.

At the end, write a basic Makefile which compiles all your code and creates an exe-
cutable file named hw4. Check out these tutorials for writing a simple make file: tutorial
1, tutorial 2. Please make sure that your Makefile works properly, otherwise you will
not get any points from Question 4.

Page 7

http://mrbook.org/blog/tutorials/make/
http://mrbook.org/blog/tutorials/make/
http://www.cs.colby.edu/maxwell/courses/tutorials/maketutor/

	Important Notes
	Question 1 – 10 points
	Question 2 – 10 points
	Question 3 – 15 points
	Question 4 – 65 points

