CS473 - Algorithms I

Lecture 7 Medians and Order Statistics

Medians and Order Statistics

<u>ith order statistic</u>: ith smallest element of a set of n elements

minimum: first order statistic

<u>maximum</u>: nth order statistic

<u>median</u>: "halfway point" of the set

$$i = \lfloor (n+1)/2 \rfloor$$
 or $\lceil (n+1)/2 \rceil$

Selection Problem

• <u>Selection problem</u>: Select the ith smallest of n elements

• *Naïve algorithm*: Sort the input array A; then return A[i]

$$T(n) = \Theta(nlgn)$$

using e.g. merge sort (but not quicksort)

• Can we do any better?

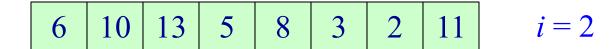
Selection in Expected Linear Time

- Randomized algorithm using divide and conquer
- Similar to randomized quicksort
 - Like quicksort: Partitions input array recursively
 - <u>Unlike quicksort</u>: Makes a single recursive call
 <u>Reminder</u>: Quicksort makes two recursive calls
- Expected runtime: $\Theta(n)$

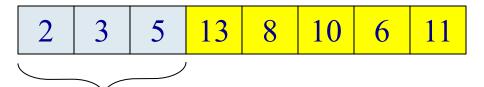
Reminder: Expected runtime of quicksort: $\Theta(nlgn)$

Selection in Expected Linear Time: Example 1

Select the 2nd smallest element:



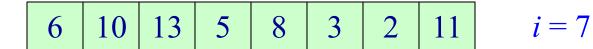
Partition the input array:



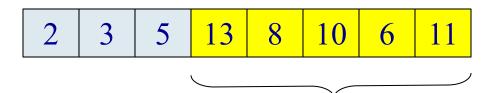
make a recursive call to select the 2nd smallest element in left subarray

Selection in Expected Linear Time: Example 2

Select the 7th smallest element:



Partition the input array:



make a recursive call to select the 4th smallest element in right subarray

Selection in Expected Linear Time

```
R-SELECT(A,p,r,i)

if p = r then

return A[p]

q \leftarrow \text{R-PARTITION}(A, p, r)

k \leftarrow q - p + 1

if i \leq k then

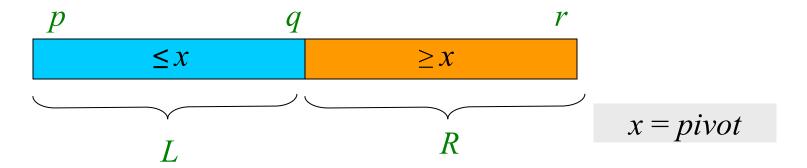
return R-SELECT(A, p, q, i)

else

return R-SELECT(A, q + 1, r, i - k)
```

x = pivot

Selection in Expected Linear Time



- All elements in $L \le all$ elements in R
- L contains |L| = q p + 1 = k smallest elements of A[p...r] if $i \le |L| = k$ then

search L recursively for its *i*-th smallest element else

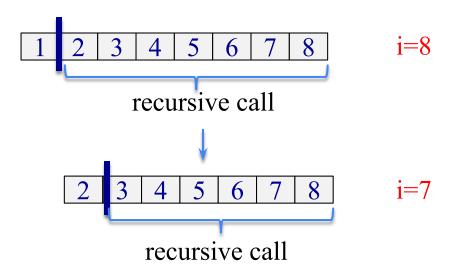
search R recursively for its (i-k)-th smallest element

Runtime Analysis

• Worst case:

Imbalanced partitioning at every level

and the recursive call always to the larger partition



Runtime Analysis

• Worst case:

$$T(n) = T(n-1) + \Theta(n)$$

$$\Rightarrow T(n) = \Theta(n^2)$$

Worse than the naïve method (based on sorting)

• **Best case**: Balanced partitioning at every recursive level

$$T(n) = T(n/2) + \Theta(n)$$

$$\Rightarrow T(n) = \Theta(n)$$

• Avg case: Expected runtime – need analysis

Reminder: Various Outcomes of H-PARTITION

P(rank(x) = i) =
$$1/n$$
 for $1 \le i \le n$

if
$$rank(x) = 1$$
 then $|L| = 1$

if
$$rank(x) > 1$$
 then $|L| = rank(x) - 1$

$$P(|L| = 1) = P(rank(x) = 1) + P(rank(x) = 2)$$

$$P(|L| = 1) = 2/n$$

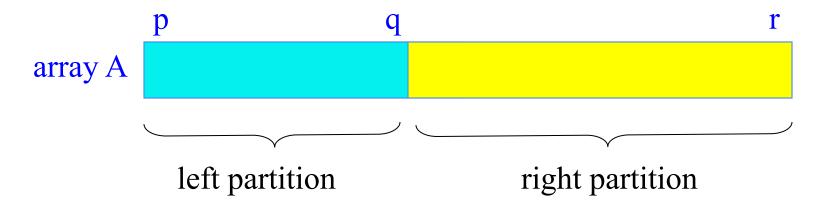
$$P(|L| = i) = P(rank(x) = i+1)$$

for 1 < i < n

$$P(|L| = i) = 1/n$$

for 1< i < n

 To compute the upper bound for the avg case, assume that the ith element always falls into the larger partition.



We will analyze the case where the recursive call is always made to the larger partition

☐ this will give us an upper bound for the avg case

Various Outcomes of H-PARTITION

rank(x)	prob.	T(n)				
			1		n-1	
1	1/n	$\leq T(\max(1, n-1)) + \Theta(n)$				
2	1/n	$\leq T(\max(1, n-1)) + \Theta(n)$	1	n-1		
3	1/n	$\leq T(\max(2, n-2)) + \Theta(n)$	2	n-2		
:	:					
i+1	1/n	≤ T(max(i, n-i)) + Θ(n)		i	n-i	
:	:	:				
n	1/n	$\leq T(\max(n-1, 1)) + \Theta(n)$		n-1 1		

Recall:
$$P(|L|=i) = \begin{cases} 2/n & \text{for } i = 1\\ 1/n & \text{for } i = 2,3,...,n-1 \end{cases}$$

Upper bound: Assume *i*-th element always falls into the larger part

$$T(n) \le \frac{1}{n} T(\max(1, n-1)) + \frac{1}{n} \sum_{q=1}^{n-1} T(\max(q, n-q)) + O(n)$$

Note:
$$\frac{1}{n} T(\max(1, n-1)) = \frac{1}{n} T(n-1) = \frac{1}{n} O(n^2) = O(n)$$

 $T(n) \le \frac{1}{n} \sum_{q=1}^{n-1} T(\max(q, n-q)) + O(n)$

$$T(n) \le \frac{1}{n} \sum_{q=1}^{n-1} T(\max(q, n-q)) + O(n)$$

••
$$T(n) \le \frac{1}{n} \sum_{q=1}^{n-1} T(\max(q, n-q)) + O(n)$$

$$\max(q, n-q) = \begin{cases} q & \text{if } q \ge \lceil n/2 \rceil \\ n-q & \text{if } q < \lceil n/2 \rceil \end{cases}$$

n is odd: T(k) appears twice for $k = \lceil n/2 \rceil + 1, \lceil n/2 \rceil + 2, ..., n-1$

n is even: T(n/2) appears once T(k) appears twice for

$$k = [n/2] + 1[, n/2] + 2,...,n-1$$

Hence, in both cases: $\sum_{q=1}^{n-1} T(\max(q, n-q)) + O(n) \le 2 \sum_{q=\lceil n/2 \rceil}^{n-1} T(q) + O(n)$

$$T(n) \leq \frac{2}{n} \sum_{q=\lceil n/2 \rceil}^{n-1} T(q) + O(n)$$

$$T(n) \leq \frac{2}{n} \sum_{q=\lceil n/2 \rceil}^{n-1} T(q) + O(n)$$

By substitution guess T(n) = O(n)Inductive hypothesis: $T(k) \le ck$, $\forall k < n$

$$T(n) \le (2/n) \sum_{k=\lceil n/2 \rceil}^{n-1} ck + O(n)$$

$$= \frac{2c}{n} \left(\sum_{k=1}^{n-1} k - \sum_{k=1}^{\lceil n/2 \rceil - 1} k \right) + O(n)$$

$$\frac{2c}{n} \left(\frac{1}{2} n (n-1) - \frac{1}{2} \left\lceil \frac{n}{2} \right\rceil \left(\frac{n}{2} - 1 \right) \right) + O(n)$$

$$T(n) \le \frac{2c}{n} \left(\frac{1}{2} n(n-1) - \frac{1}{2} \left\lceil \frac{n}{2} \right\rceil \left(\frac{n}{2} - 1 \right) \right) + O(n)$$

$$\le c(n-1) - \frac{c}{4} n + \frac{c}{2} + O(n)$$

$$= cn - \frac{c}{4} n - \frac{c}{2} + O(n)$$

$$= cn - \left(\frac{c}{4} n + \frac{c}{2} \right) - O(n)$$

since we can choose c large enough so that (cn/4+c/2) dominates O(n)

Summary of Randomized Order-Statistic Selection

- Works fast: linear expected time
- Excellent algorithm in practise
- But, the worst case is very bad: $\Theta(n^2)$

Q: Is there an algorithm that runs in linear time in the worst case?

A: Yes, due to Blum, Floyd, Pratt, Rivest & Tarjan [1973]

Idea: Generate a good pivot recursively..

Selection in Worst Case Linear Time

```
SELECT(S, n, i) return i-th element in set S with n elements
     if n \leq 5 then
           SORT S and return the i-th element
     DIVIDE S into \lceil n/5 \rceil groups
       first | n/5 | groups are of size 5, last group is of size n \mod 5
     FIND median set M={m_1, ..., m_{\lceil n/5 \rceil}} m_j: median of j-th group
     x \leftarrow \text{SELECT}(M, \lceil n/5 \rceil, (\lfloor \lceil n/5 \rceil + 1)/2 \rfloor)
     PARTITION set S around the pivot x into L and R
     if i \leq |L| then
          return SELECT(L, |L|, i)
     else
          return SELECT(R, n-|L|, i-|L|)
```

Input: Array S and index i

Output: The ith smallest value

S = {25 9 16 8 11 27 39 42 15 6 32 14 36 20 33 22 31 4 17 3 30 41 2 13 19 7 21 10 34 1 37 23 40 5 29 18 24 12 38 28 26 35 43}

Step 1: Divide the input array into groups of size 5

25	27	32	22	30	7	37	18	26
9	39	14	31	41	21	23	24	35
16	42	36	4	2	10	40	12	43
8	15	20	17	13	34	5	38	
11	6	33	3	19	1	29	28	

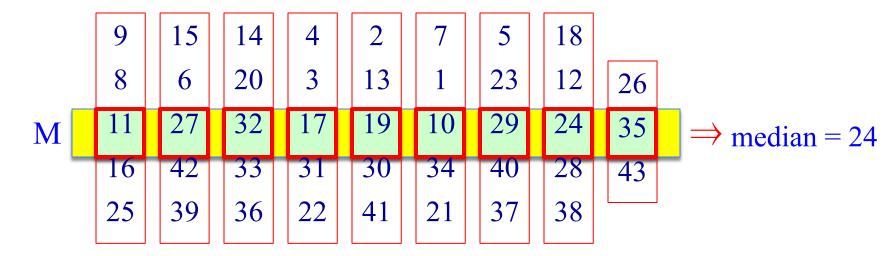
Step 2: Compute the median of each group $\Rightarrow \Theta(n)$

Let M be the set of the medians computed:

$$M = \{11, 27, 32, 17, 19, 10, 29, 24, 35\}$$

Step 3: Compute the median of the median group M

$$x \leftarrow SELECT(M, |M|, \lfloor (|M|+1)/2 \rfloor)$$
 where $|M| = \lfloor n/5 \rfloor$



The runtime of the recursive call: $T(|M|) = T(\lceil n/5 \rceil)$

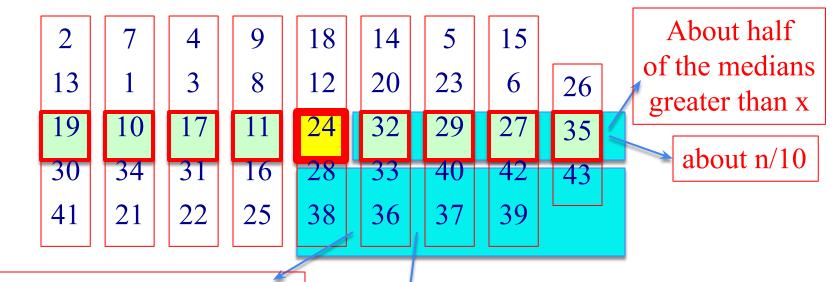
CS 473 – Lecture 7

Step 4: Partition the input array S around the median-of-medians x

Partition S around x = 24

<u>Claim</u>: Partitioning around x is guaranteed to be well-balanced.

<u>Claim</u>: Partitioning around x=24 is guaranteed to be <u>well-balanced</u>.

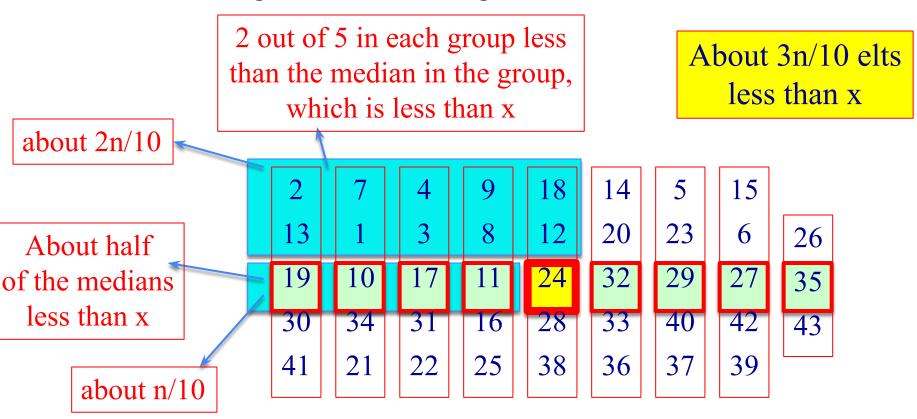


2 out of 5 in each group greater than the median in the group, which is greater than x

about 2n/10

About 3n/10 elts greater than x

<u>Claim</u>: Partitioning around x=24 is guaranteed to be well-balanced.



```
S = {25 9 16 8 11 27 39 42 15 6 32 14 36 20 33 22 31 4 17 3 30 41 2 13 19 7 21 10 34 1 37 23 40 5 29 18 24 12 38 28 26 35 43}
```

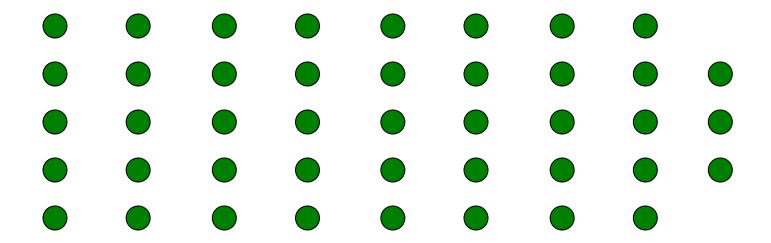
Partitioning S around x = 24 will lead to partitions of sizes $\sim 3n/10$ and $\sim 7n/10$ in the worst case.

Step 5: Make a recursive call to one of the partitions

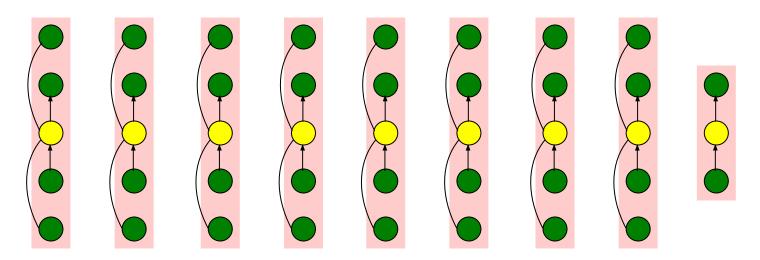
```
if i \le |L| then
return SELECT(L, |L|, i)
else
return SELECT(R, n-|L|, i-|L|)
```

Selection in Worst Case Linear Time

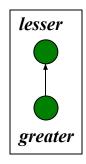
```
SELECT(S, n, i) return i-th element in set S with n elements
     if n \leq 5 then
           SORT S and return the i-th element
     DIVIDE S into \lceil n/5 \rceil groups
       first | n/5 | groups are of size 5, last group is of size n \mod 5
     FIND median set M={m_1, ..., m_{\lceil n/5 \rceil}} m_j: median of j-th group
     x \leftarrow \text{SELECT}(M, \lceil n/5 \rceil, (\lfloor \lceil n/5 \rceil + 1)/2 \rfloor)
     PARTITION set S around the pivot x into L and R
     if i \leq |L| then
          return SELECT(L, |L|, i)
     else
          return SELECT(R, n-|L|, i-|L|)
```

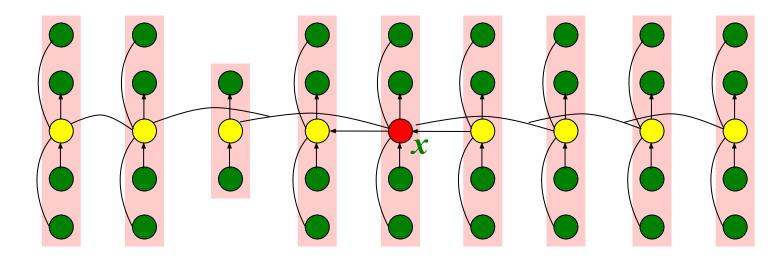


1. Divide S into groups of size 5

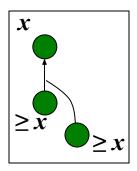


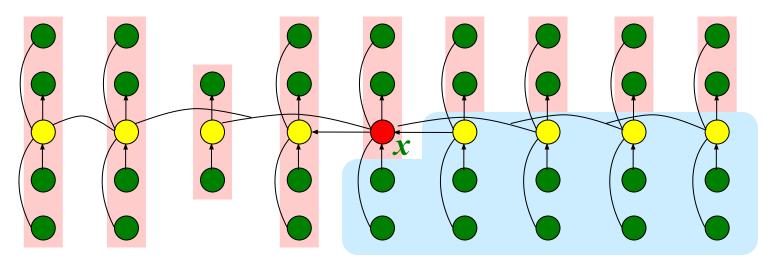
- 1. Divide S into groups of size 5
- 2. Find the median of each group





- 1. Divide S into groups of size 5
- 2. Find the median of each group
- 3. Recursively select the median x of the medians

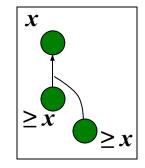




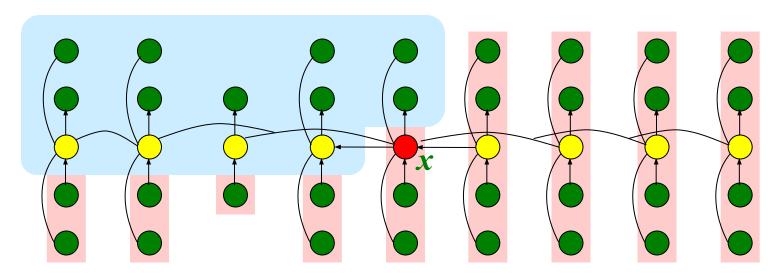
At least half of the medians $\geq x$

Thus $m = \lceil n/5 \rceil / 2 \rceil$ groups contribute 3 elements to R except possibly the last group and the group that contains x

the group that contains
$$x$$
 $|R| \ge 3(m-2) \ge \frac{3n}{10} - 6$



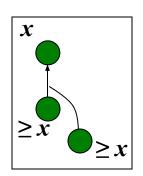
Analysis



$$|L| \ge \frac{3n}{10} - 6$$

Similarly $|L| \ge \frac{3n}{10} - 6$ Therefore, SELECT is recursively called on at most $n - \left(\frac{3n}{10} - 6\right) = \frac{7n}{10} + 6$ elements

$$n - \left(\frac{3n}{10} - 6\right) = \frac{7n}{10} + 6$$
 elements



Selection in Worst Case Linear Time

```
SELECT(S, n, i) return i-th element in set S with n elements
                         if n \le 5 then
           SORT S and return the i-th element DIVIDE S into \lceil n/5 \rceil groups
                             first \lceil n/5 \rceil groups are of size 5, last group is of size n \mod 5
            \Theta(n) { FIND median set M={m_1, ..., m_{\lceil n/5 \rceil} } m_j: median of j-th group
   T(\lceil n/5 \rceil) \left\{ x \leftarrow \text{SELECT}(M, \lceil n/5 \rceil, (\lfloor \lceil n/5 \rceil + 1)/2 \rfloor) \right\}
\Theta(n) \left\{ \text{PARTITION set S around the pivot } x \text{ into L and R} \right\}
T(\frac{7n}{10} + 6) \begin{cases} \text{if } i \leq |L| \text{ then} \\ \text{return } \mathbf{SELECT}(L, |L|, i) \\ \text{else} \end{cases}
\text{return } \mathbf{SELECT}(R, n-|L|, i-|L|)
```

Selection in Worst Case Linear Time

Thus recurrence becomes

$$T(n) \le T\left(\left\lceil \frac{n}{5}\right\rceil\right) + T\left(\frac{7n}{10} + 6\right) + \Theta(n)$$

Guess T(n) = O(n) and prove by induction

Inductive step:
$$T(n) \le c \lceil n/5 \rceil + c (7n/10+6) + \Theta(n)$$

 $\le cn/5 + c + 7cn/10 + 6c + \Theta(n)$
 $= 9cn/10 + 7c + \Theta(n)$
 $= cn - \lceil c(n/10 - 7) - \Theta(n) \rceil \le cn \text{ for large } c$

Work at each level of recursion is a constant factor (9/10) smaller