CS473 - Algorithms |

Lecture 8
Heapsort

Cevdet Aykanat and Mustafa Ozdal
CS 473 — Lecture 8 Computer Engineering Department, Bilkent University

Heapsort

e Worst-case runtime: O(nlgn)

e Sorts in-place

e Uses a special data structure (heap) to manage information during
execution of the algorithm

1 Another design paradigm

Cevdet Aykanat and Mustafa Ozdal
CS 473 — Lecture 8 Computer Engineering Department, Bilkent University

Heap Data Structure

The largest element
in any subtree is the root

Refer to Data Structures slides for heap details! ,
element in a max-heap

P

| 14 10,
| 8 & &

ONO

Nearly complete binary tree

) Completely filled on all levels except possibly the lowest level Assume max—heaps

Cevdet Aykanat and Mustafa Ozdal
CS 473 — Lecture 8 Computer Engineering Department, Bilkent University

https://docs.google.com/presentation/d/1C6uLNcI5VFbyZ3nbuuqs5bX5YMA-i0ljcSGvDe_DpnQ/edit?usp=sharing

Heap Operations

e Max(A, n) — O(1)

e Extract(A, n) — O(lgn)
o Heapify(A,1,n) — O(gn)

e Insert(A, key, n) — O(lgn)

e Build-Heap(A,n) — O(n)

e Min(A, n) — O(n)

e Secarch(A, key) — O(n)

e Heap-Increase-Key(A, 1, key)

e Heap-Decrease-Key(A, 1, key)

CS 473 — Lecture 8

— O(lg n)
— O(lgn)

Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent University

Summary: Max Heap

Max(A. n)

Returns the max element of the heap (no modification)

Runtime: O(1)
Heapify(A. i, n)

Works when both child subtrees of node 1 are heaps
“Floats down” node 1 to satisfy the heap property
Runtime: O(Ign)
Extract(A. n)

Returns and removes the max element of the heap
Fills the gap in A[1] with A[n], then calls Heapify(A,1)
Runtime: O(Ign)

Cevdet Aykanat and Mustafa Ozdal
CS 473 — Lecture 8 Computer Engineering Department, Bilkent University

Summary: Max Heap

Build-Heap(A. n)
Given an arbitrary array, builds a heap from scratch
Runtime: O(n)
Min(A. n)

How to return the min element in a max-heap?
Worst case runtime: O(n)
because ~half of the heap elements are leaf nodes

Instead, use a min-heap for efficient min operations

Search(A. key)
For an arbitrary x value, the worst-case runtime: O(n)

Use a sorted array instead for efficient search operations

Cevdet Aykanat and Mustafa Ozdal
CS 473 — Lecture 8 Computer Engineering Department, Bilkent University

Summary: Max Heap

Increase-Kev(A., i, X)

Increase the key of node 1 (from A[i] to x)
“Float up” x until heap property is satisfied
Runtime: O(lg n)

Decrease-Kev(A. i, X)

Decrease the key of node 1 (from A[i] to x)
Call Heapify(A, 1)
Runtime: O(Ig n)

Cevdet Aykanat and Mustafa Ozdal
CS 473 — Lecture 8 Computer Engineering Department, Bilkent University

Heap Increase Key

® Key value of i-th element of heap is increased from A[i] to key

HEAP-INCREASE-KEY (A, i, key)
if key < A[i] then
return error
while i >1 and A[li/21] <key do
Ali] « A[1i/2]]
[« |i/2]
Ali] « key

Cevdet Aykanat and Mustafa Ozdal
CS 473 — Lecture 8 Computer Engineering Department, Bilkent University

Example: HEAP-INCREASE-KEY (A, 9, 15)

HEAP-INCREASE-KEY(A. i, key)
if key < A[i] then
return error
while i >1 and A[li/21] <key do
Ali] « A[1i/2]]
[«— |i/2]
Ali] « key

Cevdet Aykanat and Mustafa Ozdal 9
CS 473 — Lecture 8 Computer Engineering Department, Bilkent University

Example: HEAP-INCREASE-KEY (A, 9, 15)

HEAP-INCREASE-KEY(A. i. key)
if key < A[i] then
return error
while i >1 and A[li/21] <key do
- Ali] « A[1i/2]]
[«— |i/2]
Ali] « key

Cevdet Aykanat and Mustafa Ozdal
CS 473 — Lecture 8 Computer Engineering Department, Bilkent University 10

Example: HEAP-INCREASE-KEY (A, 9, 15)

HEAP-INCREASE-KEY(A. i. key)
if key < A[i] then
return error
while i >1 and A[li/21] <key do
Ali] < Ali/2]]
- [«— i/2]

Ali] « key

Cevdet Aykanat and Mustafa Ozdal
CS 473 — Lecture 8 Computer Engineering Department, Bilkent University

e

S

1

;
10,

S 6 7
& ©

10

key =15

11

Example: HEAP-INCREASE-KEY (A, 9, 15)

HEAP-INCREASE-KEY(A. i. key)
if key < A[i] then
return error
while i >1 and A[li/21] <key do
Ali] < Ali/2]]
- [«— i/2]

Ali] « key

Cevdet Aykanat and Mustafa Ozdal
CS 473 — Lecture 8 Computer Engineering Department, Bilkent University

key =15

12

Example: HEAP-INCREASE-KEY (A, 9, 15)

HEAP-INCREASE-KEY(A. i. key)
if key < A[i] then
return error
while i >1 and A[li/21] <key do
Ali] < Ali/2]]
[«— 1i/2]

- Ali] « key

Cevdet Aykanat and Mustafa Ozdal
CS 473 — Lecture 8 Computer Engineering Department, Bilkent University

key =15

13

Example Application: Phone Operator

A phone operator answering n phones

Each phone 1 has x. people waiting in
: @i = line for their calls to be answered.

Phone operator needs to answer the
phone with the largest number of
people waiting in line.

-

o
€ 4
-

New calls come continuously, and

some people hang up after waiting.

Cevdet Aykanat and Mustafa Ozdal 14
CS 473 — Lecture 8 Computer Engineering Department, Bilkent University

Solution

Step 1: Define the following array:

A .. -th .
key id A[1]: the 1™ element 1n heap
: A[i].id: the index of the
corresponding phone
A[1].key: # of people waiting in line
for phone with index A[i].1d
n

Cevdet Aykanat and Mustafa Ozdal
CS 473 — Lecture 8 Computer Engineering Department, Bilkent University

15

Solution

Step 2: Build-Max-Heap (A, n)

Execution:

When the operator wants to answer a phone:
id=A[1].1d
Decrease-Key(A, 1, A[1].key-1)

answer phone with index 1d

When a new call comes in to phone i1:
Increase-Key(A, 1, A[1].key+1)

When a call drops from phone 1i:
Decrease-Key(A, 1, A[1].key-1)

Cevdet Aykanat and Mustafa Ozdal
CS 473 — Lecture 8 Computer Engineering Department, Bilkent University

16

Heapsort Algorithm

(1) Build a heap on array A[1...n] by calling BUILD-HEAP(A, n)
(2) The largest element 1s stored at the root A[1]
Put 1t into its correct final position A[n] by A[1] <> A[n]
(3) Discard node »n from the heap
(4) Subtrees (S, & S,) rooted at children of root remain as heaps
but the new root element may violate the heap property
Make A[l...n — 1] a heap by calling HEAPIFY(A, 1,n—1)
S)ne—n-—1
(6) Repeat steps 2—4 until n =2

Cevdet Aykanat and Mustafa Ozdal
CS 473 — Lecture 8 Computer Engineering Department, Bilkent University

17

HEAPSORT(A, n)

Heapsort Algorithm

BUILD-HEAP(A, n)
for i <— n downto 2 do

—-—) exchange A[l] < A[i]
HEAPIFY(A, 1,i—1)
1 2 3 6 7 8 9 10
A |16]14 10 9131241

CS 473 — Lecture 8

Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent University

18

HEAPSORT(A, n)

Heapsort Algorithm

BUILD-HEAP(A, n)
for i <— n downto 2 do
exchange A[l] < A[i]

mw) HEAPIFY(A, 1,i-1)
1 2 3 6 7 8 9 10
Al [14]10 9132416

CS 473 — Lecture 8

Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent University

19

Heapsort Algorithm

HEAPSORT(A, n)
BUILD-HEAP(A, n)
for i <— n downto 2 do

— exchange A[l] < A[i]
HEAPIFY(A, 1,i—1)

Cevdet Aykanat and Mustafa Ozdal
CS 473 — Lecture 8 Computer Engineering Department, Bilkent University 20

Heapsort Algorithm

HEAPSORT(A, n)
BUILD-HEAP(A, n)
for i — n downto 2 do
exchange A[l] < A[i]
m» HEAPIFY(A,1,i-1)

Cevdet Aykanat and Mustafa Ozdal
CS 473 — Lecture 8 Computer Engineering Department, Bilkent University 21

Heapsort Algorithm

HEAPSORT(A, n)
BUILD-HEAP(A, n)
for i <— n downto 2 do

mmp exchange A[l] & Afi]
HEAPIFY(A, 1,i—1)

Cevdet Aykanat and Mustafa Ozdal
CS 473 — Lecture 8 Computer Engineering Department, Bilkent University 22

Heapsort Algorithm

HEAPSORT(A, n)

BUILD-HEAP(A, n)
for i <— n downto 2 do
exchange A[l] < A[i]

mm) HEAPIFY(A, 1,i-1)

113110 14|16

CS 473 — Lecture 8

Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent Univers

ity

23

Heapsort Algorithm

HEAPSORT(A, n)

BUILD-HEAP(A, n)

for i <— n downto 2 do 4

mm) exchange A[1] & A[] e

HEAPIFY(A, 1,i 1)

1 121]10 14| 16

CS 473 — Lecture 8

Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent University

24

Heapsort Algorithm

HEAPSORT(A, n)

BUILD-HEAP(A, n) 6

for i — n downto 2 do 4 5
exchange A[1] < A[{] e

mm) HEAPIFY(A, 1,i-1)

119110 14| 16

CS 473 — Lecture 8

Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent University

25

Heapsort Algorithm

HEAPSORT(A, n)

BUILD-HEAP(A, n)

for i <— n downto 2 do 4

mm) exchange A[1] & A[] e

HEAPIFY(A, 1,i 1)

119110 14| 16

CS 473 — Lecture 8

Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent University

26

Heapsort Algorithm

HEAPSORT(A, n) 2~
BUILD-HEAP(A, n) 0
for i <— n downto 2 do 4 5
exchange A[1] < A[{] e

mm) HEAPIFY(A, 1,i-1)

819 1|10 14 16

CS 473 — Lecture 8

Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent University

27

Heapsort Algorithm

HEAPSORT(A, n)

BUILD-HEAP(A, n)

for i <— n downto 2 do

4
mm) exchange A[1] & A[] a
HEAPIFY(A, 1,i—1)

819 1|10 14 16

CS 473 — Lecture 8

Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent University

28

Heapsort Algorithm

HEAPSORT(A, n)

BUILD-HEAP(A, n) e

for i <— n downto 2 do 4
exchange A[1] < A[] a

mwp HEAPIFY(A, 1,i-1)

819 1|10 14 16

CS 473 — Lecture 8

Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent University

29

Heapsort Algorithm

HEAPSORT(A, n)

BUILD-HEAP(A, n)
for i <— n downto 2 do 4

— exchange A[l] < A[i]
HEAPIFY(A, 1,i—1)

819 1|10 14 16

CS 473 — Lecture 8

Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent University

30

Heapsort Algorithm

HEAPSORT(A, n)

2
BUILD-HEAP(A, n) @

for i <— n downto 2 do

4 5
exchange A[1] < A[i] @ @

) HEAPIFY(A, 1,i-1)

819 1|10 14 16

CS 473 — Lecture 8

Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent University

31

Heapsort Algorithm

HEAPSORT(A, n)

BUILD-HEAP(A, n)

for i <— n downto 2 do

4
mm) exchange A[1] & A[f] @

HEAPIFY(A, 1,i 1)

819 1|10 14 16

CS 473 — Lecture 8

Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent University

32

Heapsort Algorithm

HEAPSORT(A, n)

2
BUILD-HEAP(A, n) @
for i <— n downto 2 do
exchange A[l] < A[i]

mm) HEAPIFY(A, 1,i-1)

819 1|10 14 16

CS 473 — Lecture 8

Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent University

33

Heapsort Algorithm

HEAPSORT(A, n)

BUILD-HEAP(A, n)

for i <— n downto 2 do

4
mm) cxchange A[1] < A[i] @

HEAPIFY(A, 1,i 1)

819 1|10 14 16

CS 473 — Lecture 8

Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent University

34

Heapsort Algorithm

HEAPSORT(A, n)

BUILD-HEAP(A, n) @

for i <— n downto 2 do
exchange A[l] < A[i]

mmd HEAPIFY(A, 1,i—1)

819 1|10 14 16

CS 473 — Lecture 8

Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent University

35

Heapsort Algorithm

HEAPSORT(A, n)

BUILD-HEAP(A, n)

for i <— n downto 2 do

4
exchange A[1] < A[i] @
HEAPIFY(A, 1,i—1)

819 1|10 14 16

CS 473 — Lecture 8

Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent University

36

Heapsort Algorithm: Runtime Analysis

HEAPSORT(A, n)
BUILD-HEAP(A,n) - ____. ®(n)

for i <— n downto 2 do
exchange A[1] < Ali]

HEAPIFY(A, 1,i-1) o
i
L i) O(lg(i-1))

T'(n)=0(n)+ i()(lgi) =0O(n)+ O(O(lg n)] =0(nlgn)

n
i:2 =

=2

Cevdet Aykanat and Mustafa Ozdal

CS 473 — Lecture 8 Computer Engineering Department, Bilkent University 37

Heapsort Algorithm: Performance

e Heapsort is a very good algorithm but, a good implementation
of quicksort always beats heapsort in practice

e However, heap data structure has many popular applications,
and it can be efficiently used for implementing priority queues

Cevdet Aykanat and Mustafa Ozdal
CS 473 — Lecture 8 Computer Engineering Department, Bilkent University

38

