
Ugur Dogrusoz, CS Dept, Bilkent U.

Dynamic Programming
& Greedy

Examples

Ugur Dogrusoz, CS Dept, Bilkent U.

Dynamic Programming vs Greedy Approach steps

Dynamic Programming
- Provide a recursive definition

(results in overlapping subproblems)
- Prove this recursive solution exhibits

an optimal substructure
- Provide an iterative bottom-up

algorithm for solving the value of an
optimal solution

- Provide an algorithm for find the
corresponding optimal solution

Greedy Approach
- Provide a greedy choice
- Prove an optimal solution with

greedy choice always exists
- Prove the greedy choice reduces the

problem to a smaller subproblem,
exhibiting an optimal substructure

- Provide a top-down algorithm for
solving the problem

Ugur Dogrusoz, CS Dept, Bilkent U.

Longest Palindromic Subsequence

In a palindromic subsequence, elements read the same backward and forward.

A subsequence is a sequence that can be derived from another sequence by deleting
some or no elements without changing the order of the remaining elements. Longest
Palindromic Subsequence (or LPS) of a given sequence X=<x1,x2,..,xn> is the longest of
all palindromic subsequences of X.

In other words, given a sequence X=<x1,x2,..,xn>, we would like to find the length of its
Longest Palindromic Subsequence (or LPS) Y=<y1,y2,...,ym>, where indices of Y
<i1,i2,...,im> match indices of X <j1,j2,..,jm> with 1≤ j1< j2...< jm≤ n and yj1=yjm ,yj2=yjm-1,...

Ugur Dogrusoz, CS Dept, Bilkent U.

Longest Palindromic Subsequence

Example: for sequence X=<a,a,b,c,d,e,b,a,f>, a LPS of X is Y1=<a,b,d,b,a> with

length 5. Another LPS of X is Y2=<a,b,e,b,a>.

Ugur Dogrusoz, CS Dept, Bilkent U.

Longest Palindromic Subsequence: D-n-C solution

int findLPSLength(X, p, r)

 if p > r return 0

 // a sequence with single element is a palindrome of length 1

 if p == r return 1

 // beginning and end elements are same

 if X[p] == X[r]

 return 2 + findLPSLength(X, p+1, r-1)

 // ignore one non-matching element either from beginning or from end

 l1 = findLPSLength(X, p+1, r)

 l2 = findLPSLength(X, p, r-1)

 return max(l1, l2)

Ugur Dogrusoz, CS Dept, Bilkent U.

Longest Palindromic Subsequence: D-n-C solution

Rather inefficient due to non-independent / duplicate subproblems. For example,
for a sequence X of length 5:

Ugur Dogrusoz, CS Dept, Bilkent U.

Longest Palindromic Subsequence: DP solution

int findLPSLength(X, n)

 L[0..n-1,0..n-1] = {0} // L[i,j]: optimal solution for Xi,j
 for i = n-1 to 0

 L[i,i] = 1

 for j = i+1 to n-1

 if X[i] == X[j]

L[i,j] = L[i+1,j-1] + 2

 else

L[i,j] = max(L[i+1,j],L[i,j-1]

 return L[0][n-1]

Ugur Dogrusoz, CS Dept, Bilkent U.

Longest Palindromic Subsequence: DP solution (memoized)

int findLPSLength(L, X, p, r)

 if p > r return 0

 if p == r return 1

 if L[p][r] == null // if not already solved

 if X[p] == X[r]

 L[p][r] = 2 + findLPSLength(L, X, p+1, r-1)

 else

 c1 = findLPSLength(L, X, p+1, r)

 c2 = findLPSLength(L, X, p, r-1)

 L[p][r] = max(c1, c2)

 return L[p][r]

Ugur Dogrusoz, CS Dept, Bilkent U.

Subset Sum Problem

Given a set of integers X = {x1, x2, …, xn}, and an integer B, find a subset of X that
has maximum sum not exceeding B.

Sn,B = <{x1, x2, …, xn} : B> is the subset-sum problem, where we choose from
integers xi to obtain the desired sum B.

Example: S12,59: <X={10, 20, 4, 60, 30, 40, 5, 15, 70, 50, 0, 85} : B=59>

An optimal solution: {10, 4, 30, 15} with 10+4+30+15=59

Ugur Dogrusoz, CS Dept, Bilkent U.

Subset Sum Problem: DP solution

c[i, b]: the value of an optimal solution for Si,b = {x1,…, xi: b}

Similar to? 0-1 Knapsack problem

Ugur Dogrusoz, CS Dept, Bilkent U.

Subset Sum Problem: DP solution

int findSubsetSum(X, n, B)

 for b=0 to B do // no numbers available for making sum b

 c[0,b]=0

 for i=1 to n do // trying to make a sum of zero with available numbers

 c[i,0]=0

 for i=1 to n do

 for b=1 to B do

 if X[i] ≤ b then

 c[i,b]=max{X[i]+c[i-1,b-X[i]], c[i-1,b]}

 else // choosing xi would make sum exceed b

 c[i,b]=c[i-1,b]

 return c[n,B]

Ugur Dogrusoz, CS Dept, Bilkent U.

Coin Change Problem

Given (unlimited number of) coins with different denominations like 1¢, 5¢ and
10¢, we want to make an amount by using these coins such that a minimum
number of coins is used.

Example: d1=1¢ < d2=5¢ < d3=10¢, 11¢ can be made in following ways:

- all 1¢’s (11 coins)
- 5¢+1¢+1¢+1¢+1¢+1¢+1¢ (7 coins)
- 5¢+5¢+1¢ (3 coins)
- 10¢+1¢ (2 coins) <= optimal

Ugur Dogrusoz, CS Dept, Bilkent U.

Coin Change Problem

Given denominations d1< d2< ... < dk and an amount n, let m[i], 1 ≤ i ≤ n, denote
the minimum number of denominations to make n, and m[0]=0.

Then, m[i] = min1≤j≤k(m[i-dj]+1)

Ugur Dogrusoz, CS Dept, Bilkent U.

Coin Change Problem

Simple D-n-C will not be efficient due to redundancies

Will greedy work? Not always

Ugur Dogrusoz, CS Dept, Bilkent U.

Coin Change Problem

In real-life, choice of denominations allow a greedy approach to work nicely.
Arbitrary choice of denominations, however, will not work.

Example: 1¢, 3¢, and 4¢, greedy approach will find 4¢+1¢+1¢ for 6¢, whereas 3¢
+3¢ works as well.

Need the DP approach!

Ugur Dogrusoz, CS Dept, Bilkent U.

Coin Change Problem: Greedy solution example

Use <1¢,5¢,10¢> to make change for 37¢

37¢=3 x 10¢ + 1 x 5¢ + 2 x 1¢

Greedy algorithm run time complexity?

Ugur Dogrusoz, CS Dept, Bilkent U.

Coin Change Problem: DP solution example

Use <1¢,3¢,4¢> to make change for 12¢

DP algorithm run time complexity?

0¢ 1¢ 2¢ 3¢ 4¢ 5¢ 6¢ 7¢ 8¢ 9¢ 10¢ 11¢ 12¢

0 1 2 1 1 2 2 2 2 3 3 3 3

+1¢
+3¢

+4¢

Optimal for 6¢[2]+4¢[1] or 7¢[2]+3¢[1], not 9¢[3]+1¢[1]

Ugur Dogrusoz, CS Dept, Bilkent U.

Coin Change Problem: DP algorithm

in makeChange(d, k, n) // make n from denominations d=<d1,d2,...,dk>

 m[0] = 0

 for i in 1 to n

 min = INF

 for j in 1 to k

 if i >= d[j]

 min = min(min, 1+m[i-d[j]]) // min1≤j≤k(m[i-dj]+1)

 m[i] = min

 return m[n]

Ugur Dogrusoz, CS Dept, Bilkent U.

Maximizing Tasks

Given n different tasks with different time requirements, your goal is to perform a
maximum number of tasks in a given period of time.

A greedy algorithm for this is to always perform a task requiring the least amount
of time. This algorithm allows you to maximize the number of tasks performed.

1
2
3
4
5

Ugur Dogrusoz, CS Dept, Bilkent U.

Maximizing Profits

Suppose now we also have a varying income for each task described in the previous
example and we would like to maximize our profit within specified time interval.

Tasks can be performed in fractions?

- Yes: a greedy algorithm (similar to fractional knapsack problem) for this is to always
perform a task rewarding the most profit with per unit of time.

- No: a DP algorithm (similar to 0-1 knapsack problem)

1
2
3
4
5

I1
I2

I3
I4

I5

Ugur Dogrusoz, CS Dept, Bilkent U.

Maximizing Fixed-Time Task Profits

Suppose for the previous problem, now we also have fixed, specified time periods
for each task (cannot do them when we like!) and the income is the same.

A greedy algorithm (similar to activity selection problem) for this is to choose a
task with earliest finish time.

1
4

3
2

5

Ugur Dogrusoz, CS Dept, Bilkent U.

Maximizing Profit w/ Varying-Time Tasks w/ Varying Profits

Now we have different scheduled events to choose from, but each event yields a different
profit (activity selection with varying rewards).

The greedy approach will not work for this problem. DP can be used as follows:

- OPT(j) = value of optimal solution to problem with events {1, 2, . . . , j } ordered w.r.t.
finish times

- qj=largest index i < j such that event i is compatible with j
- OPT(0)=0 and OPT(j)=max(Ij+OPT(qj), OPT(j-1))

1
4

3
2

5

I1
I4

I3
I2

I5

