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Dynamic Programming vs Greedy Approach steps

Dynamic Programming
- Provide a recursive definition 

(results in overlapping subproblems)
- Prove this recursive solution exhibits 

an optimal substructure
- Provide an iterative bottom-up 

algorithm for solving the value of an 
optimal solution

- Provide an algorithm for find the 
corresponding optimal solution

Greedy Approach
- Provide a greedy choice
- Prove an optimal solution with 

greedy choice always exists
- Prove the greedy choice reduces the 

problem to a smaller subproblem, 
exhibiting an optimal substructure

- Provide a top-down algorithm for 
solving the problem
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Longest Palindromic Subsequence

In a palindromic subsequence, elements read the same backward and forward. 

A subsequence is a sequence that can be derived from another sequence by deleting 
some or no elements without changing the order of the remaining elements. Longest 
Palindromic Subsequence (or LPS) of a given sequence X=<x1,x2,..,xn> is the longest of 
all palindromic subsequences of X.

In other words, given a sequence X=<x1,x2,..,xn>, we would like to find the length of its 
Longest Palindromic Subsequence (or LPS) Y=<y1,y2,...,ym>, where indices of Y 
<i1,i2,...,im> match indices of X <j1,j2,..,jm> with 1≤ j1< j2...< jm≤ n and yj1=yjm ,yj2=yjm-1,... 
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Longest Palindromic Subsequence

Example: for sequence X=<a,a,b,c,d,e,b,a,f>, a LPS of X is Y1=<a,b,d,b,a> with 

length 5. Another LPS of X is Y2=<a,b,e,b,a>.
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Longest Palindromic Subsequence: D-n-C solution

int findLPSLength(X, p, r)

    if p > r return 0

    // a sequence with single element is a palindrome of length 1

    if p == r return 1

    // beginning and end elements are same

    if X[p] == X[r]

        return 2 + findLPSLength(X, p+1, r-1)

    // ignore one non-matching element either from beginning or from end

    l1 = findLPSLength(X, p+1, r)

    l2 = findLPSLength(X, p, r-1)

    return max(l1, l2)
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Longest Palindromic Subsequence: D-n-C solution

Rather inefficient due to non-independent / duplicate subproblems. For example, 
for a sequence X of length 5:



Ugur Dogrusoz, CS Dept, Bilkent U.

Longest Palindromic Subsequence: DP solution

int findLPSLength(X, n)

    L[0..n-1,0..n-1] = {0} // L[i,j]: optimal solution for Xi,j
    for i = n-1 to 0

        L[i,i] = 1

        for j = i+1 to n-1

            if X[i] == X[j]

L[i,j] = L[i+1,j-1] + 2

            else

L[i,j] = max(L[i+1,j],L[i,j-1]

    return L[0][n-1]
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Longest Palindromic Subsequence: DP solution (memoized)

int findLPSLength(L, X, p, r)

    if p > r return 0

    if p == r return 1

    if L[p][r] == null // if not already solved

        if X[p] == X[r]

            L[p][r] = 2 + findLPSLength(L, X, p+1, r-1)

        else

            c1 = findLPSLength(L, X, p+1, r)

            c2 = findLPSLength(L, X, p, r-1)

            L[p][r] = max(c1, c2)

    return L[p][r]
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Subset Sum Problem

Given a set of integers X = {x1, x2, …, xn}, and an integer B, find a subset of X that 
has maximum sum not exceeding B.

Sn,B = <{x1, x2, …, xn} : B> is the subset-sum problem, where we choose from 
integers xi to obtain the desired sum B.

Example: S12,59: <X={10, 20, 4, 60, 30, 40, 5, 15, 70, 50, 0, 85} : B=59>

An optimal solution: {10, 4, 30, 15} with 10+4+30+15=59
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Subset Sum Problem: DP solution

c[i, b]: the value of an optimal solution for Si,b = {x1,…, xi: b}

Similar to? 0-1 Knapsack problem
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Subset Sum Problem: DP solution

int findSubsetSum(X, n, B)

    for b=0 to B do // no numbers available for making sum b

        c[0,b]=0

    for i=1 to n do // trying to make a sum of zero with available numbers

        c[i,0]=0

    for i=1 to n do

        for b=1 to B do

            if X[i] ≤ b then

                c[i,b]=max{X[i]+c[i-1,b-X[i]], c[i-1,b]}

            else // choosing xi would make sum exceed b

            c[i,b]=c[i-1,b]

    return c[n,B]
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Coin Change Problem

Given (unlimited number of) coins with different denominations like 1¢, 5¢ and 
10¢, we want to make an amount by using these coins such that a minimum 
number of coins is used.

Example: d1=1¢ < d2=5¢ < d3=10¢, 11¢ can be made in following ways:

- all 1¢’s (11 coins)
- 5¢+1¢+1¢+1¢+1¢+1¢+1¢ (7 coins)
- 5¢+5¢+1¢ (3 coins)
- 10¢+1¢ (2 coins) <= optimal
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Coin Change Problem

Given denominations d1< d2< ... < dk and an amount n, let m[i], 1 ≤ i ≤ n, denote 
the minimum number of denominations to make n, and m[0]=0.

Then, m[i] = min1≤j≤k(m[i-dj]+1)
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Coin Change Problem

Simple D-n-C will not be efficient due to redundancies

Will greedy work? Not always
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Coin Change Problem

In real-life, choice of denominations allow a greedy approach to work nicely. 
Arbitrary choice of denominations, however, will not work.

Example: 1¢, 3¢, and 4¢, greedy approach will find 4¢+1¢+1¢ for 6¢, whereas 3¢
+3¢ works as well.

Need the DP approach!
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Coin Change Problem: Greedy solution example

Use <1¢,5¢,10¢> to make change for 37¢

37¢=3 x 10¢ + 1 x 5¢ + 2 x 1¢

Greedy algorithm run time complexity?
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Coin Change Problem: DP solution example

Use <1¢,3¢,4¢> to make change for 12¢

DP algorithm run time complexity?

0¢ 1¢ 2¢ 3¢ 4¢ 5¢ 6¢ 7¢ 8¢ 9¢ 10¢ 11¢ 12¢

0 1 2 1 1 2 2 2 2 3 3 3 3

+1¢
+3¢

+4¢

Optimal for 6¢[2]+4¢[1] or 7¢[2]+3¢[1], not 9¢[3]+1¢[1]
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Coin Change Problem: DP algorithm

in makeChange(d, k, n) // make n from denominations d=<d1,d2,...,dk>

    m[0] = 0

    for i in 1 to n

        min = INF

        for j in 1 to k

            if i >= d[j]

                min = min(min, 1+m[i-d[j]]) // min1≤j≤k(m[i-dj]+1)

        m[i] = min

    return m[n]
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Maximizing Tasks

Given n different tasks with different time requirements, your goal is to perform a 
maximum number of tasks in a given period of time.

A greedy algorithm for this is to always perform a task requiring the least amount 
of time. This algorithm allows you to maximize the number of tasks performed.

1
2
3
4
5
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Maximizing Profits

Suppose now we also have a varying income for each task described in the previous 
example and we would like to maximize our profit within specified time interval.

Tasks can be performed in fractions?

- Yes: a greedy algorithm (similar to fractional knapsack problem) for this is to always 
perform a task rewarding the most profit with per unit of time.

- No: a DP algorithm (similar to 0-1 knapsack problem)

1
2
3
4
5

I1
I2

I3
I4

I5
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Maximizing Fixed-Time Task Profits

Suppose for the previous problem, now we also have fixed, specified time periods 
for each task (cannot do them when we like!) and the income is the same.

A greedy algorithm (similar to activity selection problem) for this is to choose a 
task with earliest finish time.

1
4

3
2

5
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Maximizing Profit w/ Varying-Time Tasks w/ Varying Profits

Now we have different scheduled events to choose from, but each event yields a different 
profit (activity selection with varying rewards).

The greedy approach will not work for this problem. DP can be used as follows:

- OPT(j) = value of optimal solution to problem with events {1, 2, . . . , j } ordered w.r.t. 
finish times

- qj=largest index i < j such that event i is compatible with j
- OPT(0)=0 and OPT(j)=max(Ij+OPT(qj), OPT(j-1))
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