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A disjoint-set data structure
• Maintains a collection S={S1,...,Sk} of disjoint dynamic 

sets
• Each set is identified by a representative which is some 

member of the set
In some applications,
• It does not matter which member is used as the   

representative
• We only care that if we ask for the representative of a set 

twice without modifying the set between the requests,
✓ we get the same answer both times

Disjoint Set Operations
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In other applications, there may be a prescribed rule for 
choosing the representative (e.g., choose the smallest 
member in the set)
Each element of a set is represented by an object “x”
MAKE-SET(x) creates a new set whose only member is x
- Object x is the representative of the set
- x is not already a member of any other set

UNION(x, y) unites dynamic sets Sx & Sy that contain x & y
- Sx & Sy are assumed to be disjoint prior to the operation
- The new representative is some member of Sx ∪ Sy

Disjoint Set Operations
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Usually, the representative of either Sx or Sy is chosen as the 
new representative

We destroy sets Sx and Sy, removing them from the collection S 
since we require the sets in the collection to be disjoint
FIND-SET(x) returns a pointer to the representative of the 

                 unique set containing x

We will analyze the running times in terms of two parameters
n  : The number of MAKE-SET operations
m : The total number of MAKE-SET, UNION, and 
FIND-SET operations

Disjoint Set Operations
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Each union operation reduces the number of sets by one        
since the sets are disjoint
- Therefore, only one set remains after  n - 1 union 

operations
- Thus, the number of union operations is ≤ n – 1

Also note that, m ≥ n  always hold since MAKE-SET 
operations are included in the total number of operations

Disjoint Set Operations
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Finding the connected components of an undirected graph G=(V, E)

CONNECTED-COMPONENTS (G)
for each vertex v 𝟄 V[G] do

   MAKE-SET(v)

for each edge (u, v) 𝟄 E[G] do
      if   FIND-SET(u) ≠ FIND-SET(v) then
           UNION(u, v)

SAME-COMPONENT(u,v)
if FIND-SET(u) = FIND-SET(v) then 

return TRUE
elsereturn FALSE

An Application of Disjoint-Set Data Structures 
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Finding the connected components of an undirected graph G=(V,E)
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Linked-List Representation of Disjoint Sets

Represent  each set by a linked-list
The first object in the linked-list serves as its set 
representative
Each object in the linked-list contains
- A set member
- A pointer to the object containing the next set member
- A pointer back to the representative

MAKE-SET(x) : O(1) 

FIND-SET(x) : We return the representative pointer of x

Set/representative pointer
x
/ Next object pointer
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A Simple Implementation of Union : UNION(x,y) 
APPEND x's list to the end of y 's list
The representative of y 's list becomes the new representative
UPDATE the representative pointer of each object originally on 
x's list which takes time linear in the length of  x's list

Linked-List Representation of Disjoint Sets
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•  A sequence of m operations that requires O(m2) time
•  Suppose that we have n objects {x1,x2,...,xn} and let m = 2n - 1

Analysis of Simple Union Implementation
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Analysis of Simple Union Implementation
Operation Number of 

objects updated
Updated objects 

(denoted in bold green)

MAKE-SET(x1) 1 {x1}

MAKE-SET(x2)
…

1
…

{x2}
…

MAKE-SET(xn) 1 {xn}

UNION(x1,x2) 1 {x1} ∪ {x2} = {x1,x2}

UNION(x2,x3) 2 {x1,x2} ∪ {x3} = {x1,x2,x3}

UNION(x3,x4)
…

3
…

{x1,x2,x3} ∪ {x4} = {x1,x2,x3,x4}
…

UNION(xn-1,xn) n - 1 {x1,x2,...,xn-1} ∪ {xn} = 
{x1,x2,...,xn}
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The total number of representative pointer updates

      = Θ(m2) since n=⌈m/2⌉

Thus, on the average, each operation requires Θ(m) time
That is, the amortized time of an operation is Θ(m)

MAKE-SET 
operations

UNION 
operations

Analysis of Simple Union Implementation
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A Weighted-Union Heuristic
The simple implementation is inefficient because
- we may be appending a longer list to a shorter list during 

a UNION operation 
- so that we must update the representative pointer of each 

member of the longer list

The weighted-union heuristic
- Maintains the length of each list
- Always appends the smaller list to the longer list (with ties 

broken arbitrarily)
‼ A single UNION can still take Ω(m) time if both sets have 

Ω(m) members
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Theorem: A sequence of m MAKE-SET, UNION & 
FIND-SET operations, n of which are MAKE-SET 
operations, takes O(m+n lg n) time

Proof: Try to compute an upper bound on the number of 
representative pointer updates for each object in a set of 
size n

Weighted Union Heuristic

Consider a fixed object x. Each time x’s R-PTR was updated, x 
was a  member of the smaller set:
{x} ∪{v} ={/,v}        1st update  |Sx| ≥ 2
{x, v} ∪{w1, w2} = {/, v, w1,w2}     2nd update |Sx| ≥ 4

 {x,v,w1,w2} ∪ {z1,z2,z3,z4} = {/, v, w1,w2,z1,z2,z3,z4}; |Sx| ≥ 4
 3rd update |S| ≥ 8

χ

21



Cevdet Aykanat
Computer Engineering Department, Bilkent UniversityCS 473 – Lecture 13

• For any k ≤ n, after x’s R-PTR has been updated  ⌈lg k⌉        
times, the resulting set must have at least k members

• R-PTR of each object can be updated at most ⌈lg n⌉ time 
over all UNION operations

• The figure below illustrates a worst case sequence for a 
set with n = 16 objects

• The total number of R-PTR updates

Weighted Union Heuristic - Analysis

lg n
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Each MAKE-SET & FIND-SET operation takes O(1) time, 
and there are O(m) of them
The total time for the entire sequence 

= O(m+n lg n)

Disjoint Set Forests
In a faster implementation, we represent sets by rooted trees

– Each node contains one member
– Each tree represents one set
– Each member points only to its parent
– The root of each tree contains the representative
– Each root is its own parent

Weighted Union Heuristic - Analysis
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UNION(x, y)
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Disjoint Set Forests
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MAKE-SET : Simply creates a tree with just one node : O(1)
FIND-SET   : Follows parent pointers until the root node is found 

          The nodes visited on this path toward the root            
constitute the FIND-PATH

UNION        : Makes the root of one tree to point to the other one

Disjoint Set Forests
Straightforward Implementation 

Heuristics To Improve the Running Time
• Straightforward implementation is no faster than ones that use 

the linked-list representation
• A sequence of n – 1 UNIONs, following a sequence of n 

MAKE-SETs, may create a tree, which is just a linear chain of 
n nodes 
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First Heuristic : UNION by Rank
• Similar to the weighted-union used for the linked-list 

representation
• The idea is to make the root of the tree with fewer nodes 

point to the root of the tree with more nodes

Heuristics To Improve the Running Time

•   Rather than explicitly keeping the size of the subtree  rooted 
at each node

We maintain a rank 
–  that approximates the logarithm of the subtree size 
–  and is also an upper bound on the height of the node

•  During a UNION operation 
–  make the root with smaller rank to point to the 
root with larger rank
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Second Heuristic : Path Compression
• Use it during the FIND-SET operations 
• Make each node on the FIND-PATH to point directly to 

the root

a
b

c
d

e
f

FIND-SET(b)

Heuristics To Improve the Running Time
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Path Compression During FIND-SET(b) Operation
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Heuristics To Improve the Running Time
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Pseudocodes For the Heuristics
Implementation of UNION-BY-RANK Heuristic
p[x] : Pointer to the parent of the node x
rank[x] : An upper bound on the height of node x in the tree

MAKE-SET(x)                     UNION(x,y)
p[x] ← x                             LINK(FIND-SET(x),FIND-SET(y))
rank[x] ← 0

LINK(x,y)
    if rank[x] > rank[y] then
         p[y] ← x
    else

  p[x] ← y
     if rank[x] = rank[y]  then

  rank[y] = rank[y] + 1
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Implementation of UNION-BY-RANK Heuristic

– When a singleton set is created by a MAKE-SET
the initial rank of the single node in the tree is zero 

– Each FIND-SET operation leaves all ranks unchanged 

– When applying a UNION to two trees,
            we make the root of tree with higher rank 

    the parent of the root of lower rank

   Ties are broken arbitrarily 
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Iterative Version:
FIND-SET(x)

y ← x
while y ≠ p[y]  do
       y ← p[y]

root ← y
while x ≠ p[x]  do
       parent ← p[x]
       p[x] ← root
       x ← parent
return root

Implementation of the Path-Compression Heuristic
The FIND-SET procedure with Path-Compression

Recursive Version:
FIND-SET(x)
       if  x ≠ p[x]  then
            p[x] ← FIND-SET(p[x])
       return p[x]
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