CS473-Algorithms I

Lecture 13

Disjoint Set Operations

1

A disjoint-set data structure

- Maintains a collection $S = \{S_1, ..., S_k\}$ of disjoint dynamic sets
- Each set is identified by a representative which is some member of the set
- In some applications,
- It does not matter which member is used as the representative
- We only care that if we ask for the representative of a set twice without modifying the set between the requests,
 - \checkmark we get the same answer both times

In other applications, there may be a prescribed rule for choosing the representative (e.g., choose the smallest member in the set)

Each element of a set is represented by an object "x"

MAKE-SET(x) creates a new set whose only member is x

- Object *x* is the representative of the set
- *x* is not already a member of any other set

UNION(x, y) unites dynamic sets $S_x \& S_y$ that contain x & y

- $S_x \& S_y$ are assumed to be disjoint prior to the operation
- The new representative is some member of $S_x \cup S_y$

Usually, the representative of either S_x or S_y is chosen as the new representative

We destroy sets S_x and S_y , removing them from the collection *S* since we require the sets in the collection to be disjoint FIND-SET(*x*) returns a pointer to the representative of the unique set containing *x*

We will analyze the running times in terms of two parameters n : The number of MAKE-SET operations m : The total number of MAKE-SET, UNION, and FIND-SET operations

Each union operation reduces the number of sets by one since the sets are disjoint

- Therefore, only one set remains after n 1 union operations
- Thus, the number of union operations is $\leq n 1$

Also note that, $m \ge n$ always hold since MAKE-SET operations are included in the total number of operations

Finding the connected components of an undirected graph G=(V, E)

CONNECTED-COMPONENTS (G) for each vertex v $\epsilon V[G]$ do MAKE-SET(v)

for each edge $(u, v) \in E[G]$ do if FIND-SET $(u) \neq$ FIND-SET(v) then UNION(u, v)

```
SAME-COMPONENT(u,v)
if FIND-SET(u) = FIND-SET(v) then
return TRUE
else
return FALSE
```

Finding the connected components of an undirected graph G=(V,E)

Initial	{a}	{b}	$\{c\}$	$\{d\}$	$\{e\}$	$\{\mathbf{f}\}$	$\{g\}$	$\{h\}$	$\{i\}$	$\{j\}$
(b, d)	{a}	$\{b, d\}$	{c}		{e}	$\{\mathbf{f}\}$	{g}	$\{h\}$	{i}	{j}

Initial	{a}	{b}	$\{c\}$	$\{d\}$	{e}	$\{\mathbf{f}\}$	$\{g\}$	$\{h\}$	$\{i\}$	$\{j\}$
(b, d)	{a}	$\{b, d\}$	$\{c\}$		{e}	$\{f\}$	$\{g\}$	$\{h\}$	$\{i\}$	$\{j\}$
(e, g)	{a}	$\{b, d\}$	{c}		$\{e, g\}$	$\{f\}$		$\{h\}$	{i}	{j}

Initial	{a}	{b}	$\{c\}$	$\{d\}$	{e}	$\{f\}$	$\{g\}$	$\{h\}$	$\{i\}$	$\{j\}$
(b, d)	{a}	$\{b, d\}$	$\{c\}$		{e}	$\{f\}$	$\{g\}$	$\{h\}$	$\{i\}$	$\{j\}$
(e, g)	{a}	$\{b, d\}$	$\{c\}$		$\{e, g\}$	$\{f\}$		$\{h\}$	$\{i\}$	$\{j\}$
(a, c)	$\{a, c\}$	$\{b, d\}$			$\{e,g\}$	$\{f\}$		$\{h\}$	$\{i\}$	$\{j\}$

Initial	{a}	{b}	$\{c\}$	$\{d\}$	{e}	$\{f\}$	$\{g\}$	$\{h\}$	$\{i\}$	$\{j\}$
(b, d)	{a}	$\{b, d\}$	$\{c\}$		{e}	$\{f\}$	$\{g\}$	$\{h\}$	$\{i\}$	{j}
(e, g)	{a}	$\{b, d\}$	$\{c\}$		$\{e,g\}$	$\{f\}$		$\{h\}$	$\{i\}$	$\{j\}$
(a, c)	{a, c	$\{b, d\}$			$\{e, g\}$	$\{f\}$		$\{h\}$	$\{i\}$	$\{j\}$
(h, i)	$\{a, c\}$	$\{b, d\}$			$\{e, g\}$	$\{f\}$		{h, i	}	{j}

Initial	{a}	{b}	$\{c\}$	$\{d\}$	{e}	$\{f\}$	$\{g\}$	$\{h\}$	$\{i\}$	{j}
(b, d)	{a}	$\{b, d\}$	$\{c\}$		{e}	$\{f\}$	$\{g\}$	$\{h\}$	$\{i\}$	$\{j\}$
(e, g)	{a}	$\{b, d\}$	$\{c\}$		$\{e, g\}$	$\{f\}$		$\{h\}$	$\{i\}$	$\{j\}$
(a, c)	{a, c]	$\{b, d\}$			$\{e, g\}$	$\{f\}$		$\{h\}$	$\{i\}$	$\{j\}$
(h, i)	$\{a, c\}$	$\{b, d\}$			$\{e, g\}$	$\{f\}$		{h, i	}	{j}
(a, b)	{a, b,	c, d}			$\{e, g\}$	$\{f\}$		{h, i	}	{j}

Initial	{a}	{b}	$\{c\}$	$\{d\}$	{e}	$\{f\}$	$\{g\}$	$\{h\}$	{i}	{j}
(b, d)	{a}	$\{b, d\}$	$\{c\}$		{e}	$\{f\}$	$\{g\}$	$\{h\}$	$\{i\}$	$\{j\}$
(e, g)	{a}	$\{b, d\}$	$\{c\}$		$\{e, g\}$	$\{f\}$		$\{h\}$	$\{i\}$	{j}
(a, c)	{a, c	$\{b, d\}$			$\{e, g\}$	$\{f\}$		$\{h\}$	$\{i\}$	$\{j\}$
(h, i)	{a, c}	$\{b, d\}$			$\{e, g\}$	$\{f\}$		{h, i	}	{j}
(a, b)	{a, b,	c, d}			$\{e, g\}$	$\{f\}$		{h, i	}	{j}
(e, f)	{a, b,	, c, d}			{e, f, g	y }		{h, i	}	$\{j\}$

Initial	{a}	{b}	$\{c\}$	$\{d\}$	{e}	$\{f\}$	{ g }	$\{h\}$	{i}	{j}
(b, d)	{a}	$\{b, d\}$	$\{c\}$		{e}	$\{f\}$	$\{g\}$	$\{h\}$	$\{i\}$	{j}
(e, g)	{a}	$\{b, d\}$	$\{c\}$		$\{e,g\}$	$\{f\}$		$\{h\}$	$\{i\}$	{j}
(a, c)	{a, c]	$\{b, d\}$			$\{e,g\}$	$\{\mathbf{f}\}$		$\{h\}$	$\{i\}$	{j}
(h, i)	$\{a, c\}$	$\{b, d\}$			$\{e,g\}$	$\{f\}$		{h, i}		
(a)b)	{a, b,	c, d}			$\{e,g\}$	$\{f\}$	{h, i}			
(i) f)	{a, b,	, c, d}			$\{e, f, g\}$			{h, i}		
(b); c)	{a, b,	c, d}			{e, f, g	5 }		{h, i	}	
{j}										

Linked-List Representation of Disjoint Sets

Represent each set by a linked-list

The first object in the linked-list serves as its set representative

Each object in the linked-list contains

- A set member
- A pointer to the object containing the next set member
- A pointer back to the representative

MAKE-SET(x) : O(1)

FIND-SET(x) : We return the representative pointer of x

Linked-List Representation of Disjoint Sets

A Simple Implementation of Union : UNION(x,y)APPEND *x*'s list to the end of *y* 's list The representative of *y* 's list becomes the new representative UPDATE the representative pointer of each object originally on *x*'s list which takes time linear in the length of *x*'s list

Analysis of Simple Union Implementation

- A sequence of *m* operations that requires $O(m^2)$ time
- Suppose that we have *n* objects $\{x_1, x_2, ..., x_n\}$ and let m = 2n 1

Analysis of Simple Union Implementation

Operation	Number of objects updated	Updated objects (denoted in bold green)
MAKE-SET (x_1)	1	$\{x_1^{}\}$
MAKE-SET (x_2)	1	$\{x_{2}^{}\}$
•••	•••	•••
MAKE-SET (x_n)	1	$\{x_n\}$
UNION (x_1, x_2)	1	$\{x_1\} \cup \{x_2\} = \{x_1, x_2\}$
UNION (x_2, x_3)	2	$\{x_{1}, x_{2}\} \cup \{x_{3}\} = \{x_{1}, x_{2}, x_{3}\}$
UNION (x_3, x_4)	3	$\{x_{1}, x_{2}, x_{3}\} \cup \{x_{4}\} = \{x_{1}, x_{2}, x_{3}, x_{4}\}$
•••	•••	•••
UNION (x_{n-l}, x_n)	<i>n</i> - 1	$ \{x_{1}, x_{2}, \dots, x_{n-1}\} \cup \{x_{n}\} = \{x_{1}, x_{2}, \dots, x_{n}\} $

Analysis of Simple Union Implementation

The total number of representative pointer updates

$$= n + \sum_{i=1}^{n-1} i = n + \frac{1}{2}(n-1)n = \frac{1}{2}n^2 + \frac{1}{2}n = \Theta(n^2)$$
MAKE-SET UNION operations operations

$$= \Theta(m^2)$$
 since $n = \lceil m/2 \rceil$

Thus, on the average, each operation requires $\Theta(m)$ time That is, the amortized time of an operation is $\Theta(m)$

A Weighted-Union Heuristic

The simple implementation is inefficient because

- We may be appending a longer list to a shorter list during a UNION operation
- so that we must update the representative pointer of each member of the longer list

The weighted-union heuristic

- Maintains the length of each list
- Always appends the smaller list to the longer list (with ties broken arbitrarily)
- **!!** A single UNION can still take $\Omega(m)$ time if both sets have $\Omega(m)$ members

Weighted Union Heuristic

- Theorem: A sequence of *m* MAKE-SET, UNION & FIND-SET operations, *n* of which are MAKE-SET operations, takes $O(m+n \lg n)$ time
- **Proof:** Try to compute an upper bound on the number of representative pointer updates for each object in a set of size *n*
- Consider a fixed object x. Each time x's **R-PTR** was updated, x was a member of the smaller set:

$$\{x\} \cup \{v\} = \{/,v\} \qquad 1^{st} \text{ update } |S_x| \ge 2 \{x,v\} \cup \{w_1, w_2\} = \{/, v, w_1, w_2\} \qquad 2^{nd} \text{ update } |S_x| \ge 4 \{x,v,w_1, w_2\} \cup \{z_1, z_2, z_3, z_4\} = \{/, v, w_1, w_2, z_1, z_2, z_3, z_4\}; |S_x| \ge 4 3^{rd} \text{ update } |S| \ge 8$$

CS 473 – Lecture 13

- For any $k \le n$, after *x*'s **R-PTR** has been updated $\lceil lg k \rceil$ times, the resulting set must have at least *k* members
- **R-PTR** of each object can be updated at most $\lceil lg n \rceil$ time over all **UNION** operations
- The figure below illustrates a worst case sequence for a set with *n* = 16 objects
- The total number of **R-PTR** updates

$$=\frac{16}{2} \times 1 + \frac{16}{4} \times 2 + \frac{16}{8} \times 4 + \frac{16}{16} \times 8 = 8 \times 1 + 4 \times 2 + 2 \times 4 + 1 \times 8 = 8 \times 4 = 32$$

$$= \frac{n}{2} + \frac{n}{2} + \dots + \frac{n}{2} = \frac{n}{2} lg n = O(n lg n)$$

lg n

CS 473 – Lecture 13

Cevdet Aykanat Computer Engineering Department, Bilkent University

Weighted Union Heuristic - Analysis Each MAKE-SET & FIND-SET operation takes O(1) time, and there are O(m) of them

The total time for the entire sequence

= O(m+n lg n)

Disjoint Set Forests

In a faster implementation, we represent sets by rooted trees

- Each node contains one member
- Each tree represents one set
- Each member points only to its parent
- The root of each tree contains the representative
- Each root is its own parent

Disjoint Set Forests

Disjoint Set Forests Straightforward Implementation

MAKE-SET : Simply creates a tree with just one node : O(1)FIND-SET : Follows parent pointers until the root node is foundThe nodes visited on this path toward the rootconstitute the FIND-PATH

UNION : Makes the root of one tree to point to the other one

Heuristics To Improve the Running Time

- Straightforward implementation is no faster than ones that use the linked-list representation
- A sequence of n 1 UNIONs, following a sequence of n MAKE-SETs, may create a tree, which is just a linear chain of n nodes

Heuristics To Improve the Running Time First Heuristic : UNION by Rank

- Similar to the weighted-union used for the linked-list representation
- The idea is to make the root of the tree with fewer nodes point to the root of the tree with more nodes
- Rather than explicitly keeping the size of the subtree rooted at each node

We maintain a rank

- that approximates the logarithm of the subtree size
- and is also an upper bound on the height of the node
- During a **UNION** operation
 - make the root with smaller rank to point to the root with larger rank

Heuristics To Improve the Running Time

Second Heuristic : Path Compression

- Use it during the FIND-SET operations
- Make each node on the FIND-PATH to point directly to the root

Heuristics To Improve the Running Time

Path Compression During FIND-SET(b) Operation

Pseudocodes For the Heuristics Implementation of UNION-BY-RANK Heuristic p[x]: Pointer to the parent of the node x rank[x]: An upper bound on the height of node x in the tree

MAKE-SET(x)UNION(x, y) $p[x] \leftarrow x$ LINK(FIND-SET(x),FIND-SET(y)) $rank[x] \leftarrow 0$ LINK((x, y))if rank[x] > rank[y] then $p[y] \leftarrow x$ else $p[x] \leftarrow y$ if rank[x] = rank[y] then

 $\operatorname{rank}[y] = \operatorname{rank}[y] + 1$

Implementation of UNION-BY-RANK Heuristic

- When a singleton set is created by a MAKE-SET
 the initial rank of the single node in the tree is zero
- Each FIND-SET operation leaves all ranks unchanged
- When applying a UNION to two trees, we make the root of tree with higher rank the parent of the root of lower rank

Ties are broken arbitrarily

Implementation of the Path-Compression Heuristic The FIND-SET procedure with Path-Compression

Iterative Version: FIND-SET(*x*)

> $y \leftarrow x$ while $y \neq p[y]$ do $y \leftarrow p[y]$

```
root \leftarrow y
while x \neq p[x] do
parent \leftarrow p[x]
p[x] \leftarrow root
x \leftarrow parent
return root
```

Recursive Version: FIND-SET(x) if $x \neq p[x]$ then $p[x] \leftarrow FIND-SET(p[x])$ return p[x]