
Cevdet Aykanat
Computer Engineering Department, Bilkent UniversityCS 473 – Lecture 13

CS473-Algorithms I

Lecture 13

Disjoint Set Operations

1

Cevdet Aykanat
Computer Engineering Department, Bilkent UniversityCS 473 – Lecture 13

A disjoint-set data structure
• Maintains a collection S={S1,...,Sk} of disjoint dynamic

sets
• Each set is identified by a representative which is some

member of the set
In some applications,
• It does not matter which member is used as the

representative
• We only care that if we ask for the representative of a set

twice without modifying the set between the requests,
✓ we get the same answer both times

Disjoint Set Operations

2

Cevdet Aykanat
Computer Engineering Department, Bilkent UniversityCS 473 – Lecture 13

In other applications, there may be a prescribed rule for
choosing the representative (e.g., choose the smallest
member in the set)
Each element of a set is represented by an object “x”
MAKE-SET(x) creates a new set whose only member is x
- Object x is the representative of the set
- x is not already a member of any other set

UNION(x, y) unites dynamic sets Sx & Sy that contain x & y
- Sx & Sy are assumed to be disjoint prior to the operation
- The new representative is some member of Sx ∪ Sy

Disjoint Set Operations

3

Cevdet Aykanat
Computer Engineering Department, Bilkent UniversityCS 473 – Lecture 13

Usually, the representative of either Sx or Sy is chosen as the
new representative

We destroy sets Sx and Sy, removing them from the collection S
since we require the sets in the collection to be disjoint
FIND-SET(x) returns a pointer to the representative of the

 unique set containing x

We will analyze the running times in terms of two parameters
n : The number of MAKE-SET operations
m : The total number of MAKE-SET, UNION, and
FIND-SET operations

Disjoint Set Operations

4

Cevdet Aykanat
Computer Engineering Department, Bilkent UniversityCS 473 – Lecture 13

Each union operation reduces the number of sets by one
since the sets are disjoint
- Therefore, only one set remains after n - 1 union

operations
- Thus, the number of union operations is ≤ n – 1

Also note that, m ≥ n always hold since MAKE-SET
operations are included in the total number of operations

Disjoint Set Operations

5

Cevdet Aykanat
Computer Engineering Department, Bilkent UniversityCS 473 – Lecture 13

Finding the connected components of an undirected graph G=(V, E)

CONNECTED-COMPONENTS (G)
for each vertex v 𝟄 V[G] do

 MAKE-SET(v)

for each edge (u, v) 𝟄 E[G] do
 if FIND-SET(u) ≠ FIND-SET(v) then
 UNION(u, v)

SAME-COMPONENT(u,v)
if FIND-SET(u) = FIND-SET(v) then

return TRUE
elsereturn FALSE

An Application of Disjoint-Set Data Structures

6

Cevdet Aykanat
Computer Engineering Department, Bilkent UniversityCS 473 – Lecture 13

a b

c d

j

g

fe h

i

Initial {a} {b} {c} {d} {e} {f} {g} {h} {i} {j}

An Application of Disjoint-Set Data Structures
Finding the connected components of an undirected graph G=(V,E)

7

Cevdet Aykanat
Computer Engineering Department, Bilkent UniversityCS 473 – Lecture 13

Initial {a} {b} {c} {d} {e} {f} {g} {h} {i} {j}

(b, d) {a} {b, d} {c} {e} {f} {g} {h} {i} {j}

a b

c d

j

g

fe h

i

An Application of Disjoint-Set Data Structures
Finding the connected components of an undirected graph G=(V,E)

8

Cevdet Aykanat
Computer Engineering Department, Bilkent UniversityCS 473 – Lecture 13

Initial {a} {b} {c} {d} {e} {f} {g} {h} {i} {j}

(b, d) {a} {b, d} {c} {e} {f} {g} {h} {i} {j}

 (e, g) {a} {b, d} {c} {e, g} {f} {h} {i} {j}

a b

c d

j

g

fe h

i

An Application of Disjoint-Set Data Structures
Finding the connected components of an undirected graph G=(V,E)

9

Cevdet Aykanat
Computer Engineering Department, Bilkent UniversityCS 473 – Lecture 13

Initial {a} {b} {c} {d} {e} {f} {g} {h} {i} {j}

(b, d) {a} {b, d} {c} {e} {f} {g} {h} {i} {j}

 (e, g) {a} {b, d} {c} {e, g} {f} {h} {i} {j}
(a, c) {a, c} {b, d} {e, g} {f} {h} {i} {j}

a b

c d

j

g

fe h

i

An Application of Disjoint-Set Data Structures
Finding the connected components of an undirected graph G=(V,E)

10

Cevdet Aykanat
Computer Engineering Department, Bilkent UniversityCS 473 – Lecture 13

Initial {a} {b} {c} {d} {e} {f} {g} {h} {i} {j}

(b, d) {a} {b, d} {c} {e} {f} {g} {h} {i} {j}

 (e, g) {a} {b, d} {c} {e, g} {f} {h} {i} {j}
(a, c) {a, c} {b, d} {e, g} {f} {h} {i} {j}
(h, i) {a, c} {b, d} {e, g} {f} {h, i} {j}

a b

c d

j

g

fe h

i

An Application of Disjoint-Set Data Structures
Finding the connected components of an undirected graph G=(V,E)

11

Cevdet Aykanat
Computer Engineering Department, Bilkent UniversityCS 473 – Lecture 13

Initial {a} {b} {c} {d} {e} {f} {g} {h} {i} {j}

(b, d) {a} {b, d} {c} {e} {f} {g} {h} {i} {j}

 (e, g) {a} {b, d} {c} {e, g} {f} {h} {i} {j}
(a, c) {a, c} {b, d} {e, g} {f} {h} {i} {j}
(h, i) {a, c} {b, d} {e, g} {f} {h, i} {j}
(a, b) {a, b, c, d} {e, g} {f} {h, i} {j}

a b

c d

j

g

fe h

i

An Application of Disjoint-Set Data Structures
Finding the connected components of an undirected graph G=(V,E)

12

Cevdet Aykanat
Computer Engineering Department, Bilkent UniversityCS 473 – Lecture 13

Initial {a} {b} {c} {d} {e} {f} {g} {h} {i} {j}

(b, d) {a} {b, d} {c} {e} {f} {g} {h} {i} {j}

 (e, g) {a} {b, d} {c} {e, g} {f} {h} {i} {j}
(a, c) {a, c} {b, d} {e, g} {f} {h} {i} {j}
(h, i) {a, c} {b, d} {e, g} {f} {h, i} {j}
(a, b) {a, b, c, d} {e, g} {f} {h, i} {j}
(e, f) {a, b, c, d} {e, f, g} {h, i} {j}

a b

c d

j

g

fe h

i

An Application of Disjoint-Set Data Structures
Finding the connected components of an undirected graph G=(V,E)

13

Cevdet Aykanat
Computer Engineering Department, Bilkent UniversityCS 473 – Lecture 13

Initial {a} {b} {c} {d} {e} {f} {g} {h} {i} {j}

(b, d) {a} {b, d} {c} {e} {f} {g} {h} {i} {j}

 (e, g) {a} {b, d} {c} {e, g} {f} {h} {i} {j}
(a, c) {a, c} {b, d} {e, g} {f} {h} {i} {j}
(h, i) {a, c} {b, d} {e, g} {f} {h, i}
{j}

(b, c) {a, b, c, d} {e, f, g} {h, i}
{j}

(a, b) {a, b, c, d} {e, g} {f} {h, i}
{j}(e, f) {a, b, c, d} {e, f, g} {h, i}
{j}

a b

c d

j

g

fe h

i

An Application of Disjoint-Set Data Structures

Finding the connected components of an undirected graph G=(V,E)

14

Cevdet Aykanat
Computer Engineering Department, Bilkent UniversityCS 473 – Lecture 13

Linked-List Representation of Disjoint Sets

Represent each set by a linked-list
The first object in the linked-list serves as its set
representative
Each object in the linked-list contains
- A set member
- A pointer to the object containing the next set member
- A pointer back to the representative

MAKE-SET(x) : O(1)

FIND-SET(x) : We return the representative pointer of x

Set/representative pointer
x
/ Next object pointer

15

Cevdet Aykanat
Computer Engineering Department, Bilkent UniversityCS 473 – Lecture 13

A Simple Implementation of Union : UNION(x,y)
APPEND x's list to the end of y 's list
The representative of y 's list becomes the new representative
UPDATE the representative pointer of each object originally on
x's list which takes time linear in the length of x's list

Linked-List Representation of Disjoint Sets

16

Cevdet Aykanat
Computer Engineering Department, Bilkent UniversityCS 473 – Lecture 13

• A sequence of m operations that requires O(m2) time
• Suppose that we have n objects {x1,x2,...,xn} and let m = 2n - 1

Analysis of Simple Union Implementation

17

Cevdet Aykanat
Computer Engineering Department, Bilkent UniversityCS 473 – Lecture 13

Analysis of Simple Union Implementation
Operation Number of

objects updated
Updated objects

(denoted in bold green)

MAKE-SET(x1) 1 {x1}

MAKE-SET(x2)
…

1
…

{x2}
…

MAKE-SET(xn) 1 {xn}

UNION(x1,x2) 1 {x1} ∪ {x2} = {x1,x2}

UNION(x2,x3) 2 {x1,x2} ∪ {x3} = {x1,x2,x3}

UNION(x3,x4)
…

3
…

{x1,x2,x3} ∪ {x4} = {x1,x2,x3,x4}
…

UNION(xn-1,xn) n - 1 {x1,x2,...,xn-1} ∪ {xn} =
{x1,x2,...,xn}

18

Cevdet Aykanat
Computer Engineering Department, Bilkent UniversityCS 473 – Lecture 13

The total number of representative pointer updates

 = Θ(m2) since n=⌈m/2⌉

Thus, on the average, each operation requires Θ(m) time
That is, the amortized time of an operation is Θ(m)

MAKE-SET
operations

UNION
operations

Analysis of Simple Union Implementation

19

Cevdet Aykanat
Computer Engineering Department, Bilkent UniversityCS 473 – Lecture 13

A Weighted-Union Heuristic
The simple implementation is inefficient because
- we may be appending a longer list to a shorter list during

a UNION operation
- so that we must update the representative pointer of each

member of the longer list

The weighted-union heuristic
- Maintains the length of each list
- Always appends the smaller list to the longer list (with ties

broken arbitrarily)
‼ A single UNION can still take Ω(m) time if both sets have

Ω(m) members

20

Cevdet Aykanat
Computer Engineering Department, Bilkent UniversityCS 473 – Lecture 13

Theorem: A sequence of m MAKE-SET, UNION &
FIND-SET operations, n of which are MAKE-SET
operations, takes O(m+n lg n) time

Proof: Try to compute an upper bound on the number of
representative pointer updates for each object in a set of
size n

Weighted Union Heuristic

Consider a fixed object x. Each time x’s R-PTR was updated, x
was a member of the smaller set:
{x} ∪{v} ={/,v} 1st update |Sx| ≥ 2
{x, v} ∪{w1, w2} = {/, v, w1,w2} 2nd update |Sx| ≥ 4

 {x,v,w1,w2} ∪ {z1,z2,z3,z4} = {/, v, w1,w2,z1,z2,z3,z4}; |Sx| ≥ 4
 3rd update |S| ≥ 8

χ

21

Cevdet Aykanat
Computer Engineering Department, Bilkent UniversityCS 473 – Lecture 13

• For any k ≤ n, after x’s R-PTR has been updated ⌈lg k⌉
times, the resulting set must have at least k members

• R-PTR of each object can be updated at most ⌈lg n⌉ time
over all UNION operations

• The figure below illustrates a worst case sequence for a
set with n = 16 objects

• The total number of R-PTR updates

Weighted Union Heuristic - Analysis

lg n

22

Cevdet Aykanat
Computer Engineering Department, Bilkent UniversityCS 473 – Lecture 13

 1 2 3 4 5 6 7 8 9

10

11

12

13

14

15

16

Weighted Union Heuristic - Analysis

23

Cevdet Aykanat
Computer Engineering Department, Bilkent UniversityCS 473 – Lecture 13

 1 2 3 4 5 6 7 8 9

10

11

12

13

14

15

16

1 , 2 3 , 4 5 , 6 7 , 8 9 ,10 11 ,12 13 , 14 15 , 16

Weighted Union Heuristic - Analysis

24

Cevdet Aykanat
Computer Engineering Department, Bilkent UniversityCS 473 – Lecture 13

 1 2 3 4 5 6 7 8 9

10

11

12

13

14

15

16

1 2 , , 3, 4 5 6, , 7, 8 9 10, , 11,12 13 14, ,15, 16

1 , 2 3 , 4 5 , 6 7 , 8 9 ,10 11 ,12 13 , 14 15 , 16

Weighted Union Heuristic - Analysis

25

Cevdet Aykanat
Computer Engineering Department, Bilkent UniversityCS 473 – Lecture 13

 1 2 3 4 5 6 7 8 9

10

11

12

13

14

15

16

1 2 3 4 , , , , 5, 6, 7, 8 9 10 11 12, , , , 13, 14, 15, 16

1 2 , , 3, 4 5 6, , 7, 8 9 10, , 11,12 13 14, ,15, 16

1 , 2 3 , 4 5 , 6 7 , 8 9 ,10 11 ,12 13 , 14 15 , 16

Weighted Union Heuristic - Analysis

26

Cevdet Aykanat
Computer Engineering Department, Bilkent UniversityCS 473 – Lecture 13

1 2 3 4 5 6 7 8 , , , , , , , , 9, 10, 11, 12, 13, 14, 15, 16

 1 2 3 4 5 6 7 8 9

10

11

12

13

14

15

16

1 2 3 4 , , , , 5, 6, 7, 8 9 10 11 12, , , , 13, 14, 15, 16

1 2 , , 3, 4 5 6, , 7, 8 9 10, , 11,12 13 14, ,15, 16

1 , 2 3 , 4 5 , 6 7 , 8 9 ,10 11 ,12 13 , 14 15 , 16

Weighted Union Heuristic - Analysis

27

Cevdet Aykanat
Computer Engineering Department, Bilkent UniversityCS 473 – Lecture 13

Each MAKE-SET & FIND-SET operation takes O(1) time,
and there are O(m) of them
The total time for the entire sequence

= O(m+n lg n)

Disjoint Set Forests
In a faster implementation, we represent sets by rooted trees

– Each node contains one member
– Each tree represents one set
– Each member points only to its parent
– The root of each tree contains the representative
– Each root is its own parent

Weighted Union Heuristic - Analysis

28

Cevdet Aykanat
Computer Engineering Department, Bilkent UniversityCS 473 – Lecture 13

UNION(x, y)

x1

x2 x3

x4

y1

y2

y3

y1

y2

y3

x1

x2 x3

x4

Disjoint Set Forests

29

Cevdet Aykanat
Computer Engineering Department, Bilkent UniversityCS 473 – Lecture 13

MAKE-SET : Simply creates a tree with just one node : O(1)
FIND-SET : Follows parent pointers until the root node is found

 The nodes visited on this path toward the root
constitute the FIND-PATH

UNION : Makes the root of one tree to point to the other one

Disjoint Set Forests
Straightforward Implementation

Heuristics To Improve the Running Time
• Straightforward implementation is no faster than ones that use

the linked-list representation
• A sequence of n – 1 UNIONs, following a sequence of n

MAKE-SETs, may create a tree, which is just a linear chain of
n nodes

30

Cevdet Aykanat
Computer Engineering Department, Bilkent UniversityCS 473 – Lecture 13

First Heuristic : UNION by Rank
• Similar to the weighted-union used for the linked-list

representation
• The idea is to make the root of the tree with fewer nodes

point to the root of the tree with more nodes

Heuristics To Improve the Running Time

• Rather than explicitly keeping the size of the subtree rooted
at each node

We maintain a rank
– that approximates the logarithm of the subtree size
– and is also an upper bound on the height of the node

• During a UNION operation
– make the root with smaller rank to point to the
root with larger rank

31

Cevdet Aykanat
Computer Engineering Department, Bilkent UniversityCS 473 – Lecture 13

Second Heuristic : Path Compression
• Use it during the FIND-SET operations
• Make each node on the FIND-PATH to point directly to

the root

a
b

c
d

e
f

FIND-SET(b)

Heuristics To Improve the Running Time

32

Cevdet Aykanat
Computer Engineering Department, Bilkent UniversityCS 473 – Lecture 13

Path Compression During FIND-SET(b) Operation

a

c d e

f

b

Heuristics To Improve the Running Time

33

Cevdet Aykanat
Computer Engineering Department, Bilkent UniversityCS 473 – Lecture 13

Pseudocodes For the Heuristics
Implementation of UNION-BY-RANK Heuristic
p[x] : Pointer to the parent of the node x
rank[x] : An upper bound on the height of node x in the tree

MAKE-SET(x) UNION(x,y)
p[x] ← x LINK(FIND-SET(x),FIND-SET(y))
rank[x] ← 0

LINK(x,y)
 if rank[x] > rank[y] then
 p[y] ← x
 else

 p[x] ← y
 if rank[x] = rank[y] then

 rank[y] = rank[y] + 1

34

Cevdet Aykanat
Computer Engineering Department, Bilkent UniversityCS 473 – Lecture 13

Implementation of UNION-BY-RANK Heuristic

– When a singleton set is created by a MAKE-SET
the initial rank of the single node in the tree is zero

– Each FIND-SET operation leaves all ranks unchanged

– When applying a UNION to two trees,
 we make the root of tree with higher rank

 the parent of the root of lower rank

 Ties are broken arbitrarily

35

Cevdet Aykanat
Computer Engineering Department, Bilkent UniversityCS 473 – Lecture 13

Iterative Version:
FIND-SET(x)

y ← x
while y ≠ p[y] do
 y ← p[y]

root ← y
while x ≠ p[x] do
 parent ← p[x]
 p[x] ← root
 x ← parent
return root

Implementation of the Path-Compression Heuristic
The FIND-SET procedure with Path-Compression

Recursive Version:
FIND-SET(x)
 if x ≠ p[x] then
 p[x] ← FIND-SET(p[x])
 return p[x]

36

