CS473-Algorithms 1

Lecture 13

Disjoint Set Operations

Cevdet Aykanat
CS 473 — Lecture 13 Computer Engineering Department, Bilkent University

Disjoint Set Operations

A disjoint-set data structure
* Maintains a collection $={§ ,...,§,} of disjoint dynamic
sets

e Each set 1s identified by a representative which is some
member of the set

In some applications,

e It does not matter which member 1s used as the
representative

« We only care that if we ask for the representative of a set
twice without modifying the set between the requests,

v/ we get the same answer both times

Cevdet Aykanat
CS 473 — Lecture 13 Computer Engineering Department, Bilkent University

Disjoint Set Operations

In other applications, there may be a prescribed rule for
choosing the representative (e.g., choose the smallest
member in the set)

Each element of a set 1s represented by an object “x”

MAKE-SET(x) creates a new set whose only member 1s x
- Object x 1s the representative of the set
- x 1s not already a member of any other set

UNION(x, y) unites dynamic sets §_& Sy that contain x & y
- S & Sy are assumed to be disjoint prior to the operation
- The new representative is some member of S U Sy

Cevdet Aykanat
CS 473 — Lecture 13 Computer Engineering Department, Bilkent University

Disjoint Set Operations

Usually, the representative of either S_or Sy 1s chosen as the
new representative

We destroy sets S_and Sy, removing them from the collection S

since we require the sets 1n the collection to be disjoint

FIND-SET(x) returns a pointer to the representative of the
unique set containing x

We will analyze the running times in terms of two parameters
n : The number of MAKE-SET operations
m : The total number of MAKE-SET, UNION, and
FIND-SET operations

Cevdet Aykanat
CS 473 — Lecture 13 Computer Engineering Department, Bilkent University

Disjoint Set Operations

Each union operation reduces the number of sets by one
since the sets are disjoint

- Therefore, only one set remains after n - 1 union
operations
- Thus, the number of union operations 1s <n — 1

Also note that, m > n always hold since MAKE-SET
operations are included 1n the total number of operations

Cevdet Aykanat
CS 473 — Lecture 13 Computer Engineering Department, Bilkent University

An Application of Disjoint-Set Data Structures

Finding the connected components of an undirected graph G=(V, E)

CONNECTED-COMPONENTS (G)

for each vertex v €V/G/ do
MAKE-SET(v)

for each edge (u, v) €E/G] do
if FIND-SET(u) # FIND-SET(v) then
UNION(u, v)

SAME-COMPONENT (¢, v)
if FIND-SET(u) = FIND-SET(v) then
return TRUE

1
“¢ eturn FALSE

Cevdet Aykanat
CS 473 — Lecture 13 Computer Engineering Department, Bilkent University

An Application of Disjoint-Set Data Structures
Finding the connected components of an undirected graph G=(V,E)

ces o

Initial cr dy ey Uy gy thy Ul

Cevdet Aykanat
CS 473 — Lecture 13 Computer Engineering Department, Bilkent University

An Application of Disjoint-Set Data Structures
Finding the connected components of an undirected graph G=(VE)

22N

Initial cr dy ey Uy gy thy Ul
(b, d) {a} {b,d} 1C5 ey by g iy oy Ul

Cevdet Aykanat
CS 473 — Lecture 13 Computer Engineering Department, Bilkent University

An Application of Disjoint-Set Data Structures
Finding the connected components of an undirected graph G=(V,E)

229N

Initial cr dy ey Uy gy thy Ul
(b, d) {a} {b, di icj ey by g iy oy Ul
(e, g) | 1a; 1b,dj {cj e gp i1y Ul

Cevdet Aykanat

CS 473 — Lecture 13 Computer Engineering Department, Bilkent University

An Application of Disjoint-Set Data Structures
Finding the connected components of an undirected graph G=(V,E)

229N

Initial {c} {d} {e} {f}
(b, d) {a} {b,d} ic} ey AL
(e,g) | {a} {b,d} {c} e, gp {f}
(a,¢) | {a,c} {b,d} te, gp {f}

CS 473 — Lecture 13

Computer Enginee

Cevdet Aykanat

ring Department, Bilkent Univer

sity

g}
g}

hj
thj
hj
thj

ap U
ap U
ap Uy
ap U

10

An Application of Disjoint-Set Data Structures
Finding the connected components of an undirected graph G=(V,E)

229N

Initial ey by gy thyour Ul
(b, d) {a} {b,d} {C} ey by g iy oy Ul
(e, g) | 1a; 1b,dj {cj e gp i1y Ul
(a,¢) | {a,c; {b,d; € gf thy oy Ul
(h,1) | {a, c} {b,d; © g5 th, 1 U

Cevdet Aykanat

CS 473 — Lecture 13 Computer Engineering Department, Bilkent University 1

An Application of Disjoint-Set Data Structures
Finding the connected components of an undirected graph G=(V,E)

22900

Initial cr dy ey Uy gy thy Ul
(b, d) {a} {b,d} 1C5 ey by g iy oy Ul
(e, g) | 1a; 1b,dj {cj e gp i1y Ul
(a,¢) | {a,c; {b,d; € gf thy oy Ul
(h,1) | {a, c} {b,d; © g5 th, 1 U

(a,b) |ia,b, ¢, dj e gf th, 1 U

Cevdet Aykanat

CS 473 — Lecture 13 Computer Engineering Department, Bilkent University 12

An Application of Disjoint-Set Data Structures
Finding the connected components of an undirected graph G=(V,E)

22980

Initial {c} {d} {e} {f}
(b, d) {a} {b,d} 1C} CH It
(e,g) | {a} {b,d} {cj e g i)
(a,c) | {a, ¢} {b,d} e, g i)
(h,1) | {a, ¢} {b, d} & g5 ifj
(a,b) |{a,b, ¢, dj e g if)
(e,f) |1a,b,c, d} e 1, g}

CS 473 — Lecture 13

Cevdet Aykanat

Computer Engineering Department, Bilkent University

g}
g}

hj
thj
hj
thj
th, 1
th, 1
h, 1

ap U
ap U
ap Uy
ap U
U
U
U

13

An Application of Disjoint-Set Data Structures

Wob &

Initial
(b, d)

(e, 8)
(a, ¢)
(h, 1)
(@;b)
(d4)
(B} c)
U}

CS 473 — Lecture 13 Computer

ta} {b} {cj
{a} {b,d} {cj
{a} {b,d} {cj
{a, ¢} {b, d}

{a, ¢} {b, d}

{a, b, c, d}

{a, b, c,d}
{a, b, c, d}

di ey if)

(CHE
e gp
€ gf
© g5
e gf
1, g

1, gj

Cevdet Aykanat

Engineering Department, Bilkent University

g}
g}

hj
thj
hj
thj

th, 1
th, 1
h, 1
th, 1

ap U
ap U
ap Uy
ap U

14

Linked-List Representation of Disjoint Sets

Represent each set by a linked-list
The first object in the linked-list serves as its set

representative

Each object in the linked-list contains

- A set member

- A pointer to the object containing the next set member
- A pointer back to the representative

MAKE-SET(x) : O

X

/

Set/representative pointer

Next object pointer

FIND-SET(x) : We return the representative pointer of x

Cevdet Aykanat
CS 473 — Lecture 13 Computer Engineering Department, Bilkent University

15

Linked-List Representation of Disjoint Sets

A Simple Implementation of Union : UNION(x,y)

APPEND x's list to the end of y 's list

The representative of y 's list becomes the new representative
UPDATE the representative pointer of each object originally on
x's list which takes time linear in the length of x's list

< J
L]
a
—
o —.}
v
-
o

Si :H_' . Sz :H_’ .
HUll f g d] e b
SI :H—v > > > > > ;

Cevdet Aykanat
CS 473 — Lecture 13 16

Computer Engineering Department, Bilkent University

Analysis of Simple Union Implementation

* A sequence of m operations that requires O(m?) time
* Suppose that we have n objects {x x,...x } and let m = 2n - |

Cevdet Aykanat
CS 473 — Lecture 13 Computer Engineering Department, Bilkent University

17

Analysis of Simple Union Implementation

Operation Number of Updated objects
Ob_] ects updated (denoted in bold gl‘een)

MAKE-SET(x,) 1 {x,}
MAKE-SET(x,) 1 .}
MAKE-SET(x) 1 {x }
UNION(x ,x,) 1 b U dxp=1{x,x,}
UNION(x,,x, 2 o, U dxgh = {x 0,
UNION(x,,x) 3 epx,x U b = {x 0,0 ,x,
UNION(x ,x) n-1 {xpx,00x b U {x =

CS 473 — Lecture 13

{x, %0 }

Cevdet Aykanat 18

Computer Engineering Department, Bilkent University

Analysis of Simple Union Implementation

The total number of representative pointer updates

n—1
=n+2i=n+1(n—1)n=ln2 +%n=®(n2)

- 2 2
/ i=1 \
MAKE-SET UNION
operations operations

= @(m?) since n=[m/2'1

Thus, on the average, each operation requires ©(m) time
That 1s, the amortized time of an operation 1s ®(m)

Cevdet Aykanat

CS 473 — Lecture 13 Computer Engineering Department, Bilkent University 19

A Weighted-Union Heuristic

The simple implementation is inefficient because

- We may be appending a longer list to a shorter list during
a UNION operation

- so that we must update the representative pointer of each
member of the longer list

The weighted-union heuristic
- Maintains the length of each list
- Always appends the smaller list to the longer list (with ties
broken arbitrarily)

Il A single UNION can still take (m) time if both sets have
Q(m) members

Cevdet Aykanat
CS 473 — Lecture 13 Computer Engineering Department, Bilkent University

20

Weighted Union Heuristic

Theorem: A sequence of m MAKE-SET, UNION &
FIND-SET operations, n of which are MAKE-SET
operations, takes O(m+n [g n) time

Proof: Try to compute an upper bound on the number of
representative pointer updates for each object in a set of
S1Z€ n

Consider a fixed object x. Each time x's R-PTR was updated, x
was a member of the smaller set:

x} Uvy ={/v} 1! update |Sx| >

vy U{w, wr={,vw,w,} 2"update|S]|>4
{X,V,W w} U {Z Z,Z, Z}—{/vw
3" update |S] > 8

W,Z 2,252,405 1S | 2 4

Cevdet Aykanat
CS 473 — Lecture 13 Computer Engineering Department, Bilkent University 21

Weighted Union Heuristic - Analysis

 For any k <n, after x’s R-PTR has been updated [g k|
times, the resulting set must have at least £ members

e R-PTR of each object can be updated at most [/g n | time
over all UNION operations

« The figure below illustrates a worst case sequence for a
set with n = 16 objects

* The total number of R-PTR updates

:Exl+1—6x2+gx4+l—6x8=8><1+4x2+2><4+1><8:8><4:32
2 4 8 16

n n n n
=—+—+4....+—=—Ilon=0(nlen
2 2 2 2g (nign)

lg n

Cevdet Aykanat
CS 473 — Lecture 13 Computer Engineering Department, Bilkent University

22

Weighted Union Heuristic - Analysis

11

12

13

14

15

16

CS 473 — Lecture 13

Cevdet Aykanat

Computer Engineering Department, Bilkent University

23

Weighted Union Heuristic - Analysis

="
2 2
1

2014 @6 || @8 | @10 @,12|@,14 | @16
2113014 5([6| 7|8 9]10]11|12(13][14]|15]16

CS 473 — Lecture 13

Cevdet Aykanat
Computer Engineering Department, Bilkent University

24

Weighted Union Heuristic - Analysis

16

Cevdet Aykanat
CS 473 — Lecture 13 Computer Engineering Department, Bilkent University

25

Weighted Union Heuristic - Analysis

QO.O..5.6,7.8 QOD®, 13, 14,15, 16
nal
2
@.3.4 ©.®,7,3 ®@, 11,12 @@,15, 16
4 2
@2 @4 @6 || @38 || @10 @12 @14 @16

16

CS 473 — Lecture 13

Cevdet Aykanat

Computer Engineering Department, Bilkent University

26

Weighted Union Heuristic - Analysis

00000.0.0D®.9 10,11,12,13,14,15,16

16 2
0.0.0.@.5.6,7,8 QO @®, 13, 14,15, 16
noga
g 2
@.3.4 ©.®,7,3 ®@, 11,12 @@,15, 16
4 2
@2 @4 @6 || @38 || @10 @12 @14 @16

16

Cevdet Aykanat
Computer Engineering Department, Bilkent University

CS 473 — Lecture 13

27

Weighted Union Heuristic - Analysis
Each MAKE-SET & FIND-SET operation takes O(/) time,
and there are O(m) of them

The total time for the entire sequence

Disjoint Set Forests
In a faster implementation, we represent sets by rooted trees

— Each node contains one member

— Each tree represents one set

— Each member points only to its parent

— The root of each tree contains the representative
— Each root 1s 1its own parent

Cevdet Aykanat

CS 473 — Lecture 13 Computer Engineering Department, Bilkent University 28

CS 473 — Lecture 13

Disjoint Set Forests

IUNION(x,> y) A
o)

Cevdet Aykanat
Computer Engineering Department, Bilkent University

29

Disjoint Set Forests
Straightforward Implementation

MAKE-SET : Simply creates a tree with just one node : O(/)
FIND-SET : Follows parent pointers until the root node 1s found

The nodes visited on this path toward the root
constitute the FIND-PATH

UNION : Makes the root of one tree to point to the other one

Heuristics To Improve the Running Time

» Straightforward implementation 1s no faster than ones that use
the linked-list representation

* A sequence of n — 1 UNIONSs, following a sequence of n
MAKE-SETs, may create a tree, which 1s just a linear chain of

n nodes

Cevdet Aykanat
CS 473 — Lecture 13 Computer Engineering Department, Bilkent University

30

Heuristics To Improve the Running Time
First Heuristic : UNION by Rank

» Similar to the weighted-union used for the linked-list

representation
* The 1dea 1s to make the root of the tree with fewer nodes
point to the root of the tree with more nodes
« Rather than explicitly keeping the size of the subtree rooted

at each node

We maintain a rank
— that approximates the logarithm of the subtree size

— and 1s also an upper bound on the height of the node

* During a UNION operation
— make the root with smaller rank to point to the

root with larger rank

Cevdet Aykanat
CS 473 — Lecture 13 Computer Engineering Department, Bilkent University

31

Heuristics To Improve the Running Time

Second Heuristic : Path Compression
e Use 1t during the FIND-SET operations
e Make each node on the FIND-PATH to point directly to

5
| o®
A/ %/ FIND-SET(b)

Cevdet Aykanat

CS 473 — Lecture 13 Computer Engineering Department, Bilkent University 32

Heuristics To Improve the Running Time

Path Compression During FIND-SET(b) Operation

Cevdet Aykanat
CS 473 — Lecture 13 Computer Engineering Department, Bilkent University

33

Pseudocodes For the Heuristics

Implementation of UNION-BY-RANK Heuristic

p[x] : Pointer to the parent of the node x
rank[x] : An upper bound on the height of node x in the tree

MAKE-SET(x) UNION(x,))

plx] <« x LINK(FIND-SET(x),FIND-SET(y))
rank[x] <« 0

LINK(x,p)
if rank[x] > rank[y] then
ply] «—x
else
plx] <y
if rank[x] = rank[y] then
rank[y] = rank[y] + 1

Cevdet Aykanat
CS 473 — Lecture 13 Computer Engineering Department, Bilkent University

34

Implementation of UNION-BY-RANK Heuristic

— When a singleton set 1s created by a MAKE-SET
the initial rank of the single node in the tree is zero

— Each FIND-SET operation leaves all ranks unchanged
— When applying a UNION to two trees,
we make the root of tree with higher rank

the parent of the root of lower rank

Ties are broken arbitrarily

Cevdet Aykanat

CS 473 — Lecture 13 Computer Engineering Department, Bilkent University 35

Implementation of the Path-Compression Heuristic
The FIND-SET procedure with Path-Compression

[terative Version: Recursive Version:
FIND-SET(x) FIND-SET(x)
ye X if x #p[x] then
while y # p[y] do p[x] < FIND-SET(p[x])
y < ply] return p[x]
Yoot <— Yy

while x # p[x] do
parent «<— p|x]
p|x] < root
X «<— parent
return root

Cevdet Aykanat

CS 473 — Lecture 13 Computer Engineering Department, Bilkent University 36

