CS473 - Algorithms I

Lecture 1 Introduction to Analysis of Algorithms

View in slide-show mode

CS 473 - Lecture 1

Text Book

- □ Introduction to Algorithms (Third Edition)
 - Thomas H. Cormen
 - □ Charles E. Leiserson
 - Ronald L. Rivest
 - Clifford Stein
- Available in the Meteksan Bookstore

Algorithm Definition

Algorithm: A sequence of computational steps that transform the input to the desired output

- □ Procedure vs. algorithm
 - An algorithm must halt within finite time with the right output

□ Example:

Course Objectives

Learn basic algorithms & data structures
 Gain skills to design new algorithms

- □ Focus on <u>efficient</u> algorithms
- Design algorithms that
 - > are fast
 - > use as little memory as possible
 - > are correct!

CS 473 – Lecture 1

Outline of Lecture 1

Study two sorting algorithms as examples
 Insertion sort: *Incremental* algorithm
 Merge sort: *Divide-and-conquer*

□ Introduction to runtime analysis

- Best vs. worst vs. average case
- Asymptotic analysis

Sorting Problem

Input: Sequence of numbers

 $\langle a_1, a_2, \dots, a_n \rangle$

Output: A permutation

 $\Pi = \langle \Pi (1), \Pi (2), \dots, \Pi (n) \rangle$ such that $a_{\Pi(1)} \leq a_{\Pi(2)} \leq \dots \leq a_{\Pi(n)}$

CS 473 – Lecture 1

Insertion Sort

Insertion Sort: Basic Idea

- □ Assume input array: A[1..n]
- \square Iterate j from 2 to n

Pseudo-code notation

Objective: Express algorithms to humans in a clear and concise way

Liberal use of English

□ Indentation for block structures

□ Omission of error handling and other details → needed in real programs

CS 473 – Lecture 1

Algorithm: Insertion Sort (from Section 2.2)

Insertion-Sort (A)

- **1.** for $j \leftarrow 2$ to n do
- 2. key $\leftarrow A[j];$
- 3. $i \leftarrow j 1;$
- 4. while i > 0 and A[i] > key

do

- 5. $A[i+1] \leftarrow A[i];$
- **6**. i ← i 1;

endwhile

7. $A[i+1] \leftarrow key;$

endfor

CS 473 – Lecture 1

Algorithm: Insertion Sort

Insertion-Sort (A)

- **1.** for $j \leftarrow 2$ to n do
- 2. key $\leftarrow A[j];$
- 3. $i \leftarrow j 1;$
- 4. while i > 0 and A[i] > key
 do
- 5. $A[i+1] \leftarrow A[i];$
- $6. \qquad i \leftarrow i 1;$
 - endwhile
- 7. $A[i+1] \leftarrow key;$ endfor

 Iterate over array elts j
 <u>Loop invariant</u>: The subarray A[1..j-1] is always sorted

Algorithm: Insertion Sort

Insertion-Sort (A)

- 1. for $j \leftarrow 2$ to n do
- 2. key \leftarrow A[j];
- 3. $i \leftarrow j 1;$
- 4. while i > 0 and A[i] > key

do

- 5. $A[i+1] \leftarrow A[i];$
- $6. \qquad i \leftarrow i 1;$
 - endwhile
- 7. $A[i+1] \leftarrow key;$

endfor

CS 473 – Lecture 1

Cevdet Aykanat and Mustafa Ozdal Computer Engineering Department, Bilkent University

< key

Shift right the entries in A[1..j-1] that are > key → already sorted → j < key > key

> key

12

Algorithm: Insertion Sort

Insertion-Sort (A)

- 1. for $j \leftarrow 2$ to n do
- 2. key \leftarrow A[j];
- 3. $i \leftarrow j 1;$
- 4. while i > 0 and A[i] > key
 - do
- 5. $A[i+1] \leftarrow A[i];$
- $6. \qquad i \leftarrow i 1;$

endwhile

7. $A[i+1] \leftarrow key;$ endfor

Insert key to the correct location End of iter j: A[1..j] is sorted

Insertion Sort - Example

Insertion-Sort (A)

- 1. for $j \leftarrow 2$ to n do
 - 2. key $\leftarrow A[j];$
- 3. $i \leftarrow j 1;$
 - 4. while i > 0 and A[i] > key
 do
 - 5. $A[i+1] \leftarrow A[i];$
 - $6. \qquad i \leftarrow i 1;$

endwhile

7. $A[i+1] \leftarrow key;$ endfor

CS 473 – Lecture 1

CS 473 – Lecture 1

Insertion Sort Algorithm - Notes

□ Items sorted in-place

Elements rearranged within array

- At most constant number of items stored outside the array at any time (e.g. the variable *key*)
- Input array A contains sorted output sequence when the algorithm ends

□ Incremental approach

Having sorted A[1..j-1], place A[j] correctly so that A[1..j] is sorted

CS 473 – Lecture 1

Running Time

□ Depends on:

Input size (e.g., 6 elements vs 6M elements)
Input itself (e.g., partially sorted)

□ Usually want *upper bound*

Kinds of running time analysis

■ Worst Case (Usually)

 $T(n) = \max$ time on any input of size n

■ Average Case (*Sometimes*)

T(n) = average time over all inputs of size n

Assumes statistical distribution of inputs

■ Best Case (*Rarely*)

 $T(n) = \min \text{ time on any input of size } n$ BAD*: <u>Cheat with slow</u> algorithm that works fast on some inputs GOOD: Only for showing bad lower bound

*Can modify any algorithm (almost) to have a low best-case running time

> Check whether input constitutes an output at the very beginning of the algorithm

CS 473 – Lecture 1

Running Time

- □ For <u>Insertion-Sort</u>, what is its worst-case time?
 - Depends on speed of primitive operations
 - Relative speed (on same machine)
 - Absolute speed (on different machines)
- □ Asymptotic analysis
 - Ignore machine-dependent constants
 - Look at growth of T(n) as $n \rightarrow \infty$

Θ Notation

□ Drop low order terms
 □ Ignore leading constants

 e.g.
 2n²+5n + 3 = Θ(n²)

 $3n^3 + 90n^2 - 2n + 5 = \Theta(n^3)$

□ Formal explanations in the next lecture.

CS 473	- Lecture	1

• As *n* gets large, a $\Theta(n^2)$ algorithm runs faster than a $\Theta(n^3)$ algorithm

Cevdet Aykanat - Bilkent University Computer Engineering Department

Insertion Sort – Runtime Analysis

CS 473 – Lecture 1

How many times is each line executed?

<u># times</u>	Inser	tion-Sort (A)	
n	- 1. f	or j ← 2 to n do	10
n-1	2.	$key \leftarrow A[j];$	$k_{\star} = \operatorname{ant}^{n} t$
n-1	3.	i ← j - 1;	j=2
k ₄	4.	while $i > 0$ and $A[i] > key$	п
		do	$k_{5} = a(t_{i} - 1)$
k ₅	5.	$A[i+1] \leftarrow A[i];$	j=2
k ₆	6.	i ← i - 1;	n
-		endwhile	$k_6 = \bigotimes_{i=0}^{\infty} (t_j - 1)$
n-1	- 7.	$A[i+1] \leftarrow key;$	<i>j</i> =2
		endfor	

CS 473 – Lecture 1

Insertion Sort – Runtime Analysis

□ Sum up costs:

$$T(n) = c_1 n + c_2 (n-1) + c_3 (n-1) + c_4 \sum_{j=2}^n t_j + c_5 \overset{n}{\underset{j=2}{\otimes}} (t_j - 1) + c_6 \overset{n}{\underset{j=2}{\otimes}} (t_j - 1) + c_7 (n-1)$$

□ What is the best case runtime?

□ What is the worst case runtime?

<u>Question</u>: If A[1...j] is already sorted, $t_i = ?$

CS 473 – Lecture 1

Insertion Sort – Best Case Runtime

□ Original function:

$$T(n) = c_1 n + c_2 (n-1) + c_3 (n-1) + c_4 \sum_{j=2}^n t_j + c_5 \overset{n}{\underset{j=2}{\otimes}} (t_j - 1) + c_6 \overset{n}{\underset{j=2}{\otimes}} (t_j - 1) + c_7 (n-1)$$

□ Best-case: Input array is already sorted $t_j = 1$ for all j

$$T(n) = (c_1 + c_2 + c_3 + c_4 + c_7)n - (c_2 + c_3 + c_4 + c_7)$$

CS 473 – Lecture 1

Q: If A[j] is smaller than every entry in A[1..j-1], $t_j = ?$

CS 473 – Lecture 1

Insertion Sort – Worst Case Runtime

□ Worst case: The input array is reverse sorted $t_j = j$ for all j

□ After derivation, worst case runtime:

$$T(n) = \frac{1}{2}(c_4 + c_5 + c_6)n^2 + (c_1 + c_2 + c_3 + \frac{1}{2}(c_4 - c_5 - c_6) + c_7)n - (c_2 + c_3 + c_4 + c_7)$$

CS 473 – Lecture 1

Insertion Sort – Asymptotic Runtime Analysis

Insertion-Sort (A) 1. for $j \leftarrow 2$ to n do 2. key \leftarrow A[j]; $\Theta(1)$ 3. $i \leftarrow j - 1;$ 4. while i > 0 and A[i] > keydo 5. $A[i+1] \leftarrow A[i];$ $- \Theta(1)$ 6. $i \leftarrow i - 1;$ endwhile 7. $A[i+1] \leftarrow key;$ $\Theta(1)$ endfor

CS 473 – Lecture 1

Asymptotic Runtime Analysis of Insertion-Sort

- Worst-case (input reverse sorted)
 - Inner loop is $\Theta(j)$

$$T(n) = \sum_{j=2}^{n} \Theta(j) = \Theta\left(\sum_{j=2}^{n} j\right) = \Theta(n^{2})$$

• Average case (all permutations equally likely)

- Inner loop is
$$\Theta(j/2)$$

 $T(n) = \sum_{j=2}^{n} \Theta(j/2) = \sum_{j=2}^{n} \Theta(j) = \Theta(n^2)$

- Often, average case not much better than worst case
- Is this a fast sorting algorithm?
 - Yes, for small *n*. No, for large *n*.

Merge Sort

CS 473 – Lecture 1

Merge Sort: Basic Idea

- Call <u>Merge-Sort</u>(A,1,n) to sort A[1..n]
- Recursion bottoms out when subsequences have length 1

Merge Sort: Example

Merge-Sort (A, p, r) if p = r then \rightarrow return else $q \leftarrow \lfloor (p+r)/2 \rfloor$ Merge-Sort (A, p, q) Merge-Sort (A, q+1, r)

 $\frac{\text{Merge}}{\text{endif}}(A, p, q, r)$

How to merge 2 sorted subarrays?

□ *HW*: Study the pseudo-code in the textbook (Sec. 2.3.1)
 □ What is the complexity of this step? (*P*(*n*))

CS 473 – Lecture 1

Merge Sort: Correctness

Merge-Sort (A, p, r) if p = r then return else $q \leftarrow \lfloor (p+r)/2 \rfloor$ Merge-Sort (A, p, q)

Merge-Sort (A, q+1, r)

 $\frac{Merge}{(A, p, q, r)}$ endif

<u>Base case</u>: p = r→ Trivially correct

<u>Inductive hypothesis</u>: MERGE-SORT is correct for any subarray that is a *strict* (smaller) *subset* of A[p, q].

<u>General Case</u>: MERGE-SORT is correct for A[p, q].
 → From inductive hypothesis and correctness of <u>Merge</u>.

Merge Sort: Complexity

Merge-Sort (A, p, r)	\longrightarrow	T(n)
if p = r then return		Θ(1)
else $q \leftarrow \lfloor (p+r)/2 \rfloor$	\longrightarrow	Θ(1)
Merge-Sort (A, p, q)	\longrightarrow	T(n/2)
Merge-Sort $(A, q+1, r)$	\longrightarrow	T(n/2)
<u>Merge</u> (A, p, q, r) endif	\longrightarrow	$\Theta(n)$

CS 473 – Lecture 1

Merge Sort – Recurrence

Describe a function recursively in terms of itself
 To analyze the performance of recursive algorithms

□ For merge sort:

$$T(n) = \begin{cases} \Theta(1) & \text{if } n=1 \\ \\ 2T(n/2) + \Theta(n) & \text{otherwise} \end{cases}$$

How to solve for T(n)?

$$T(n) = \begin{cases} \Theta(1) & \text{if } n=1 \\ 2T(n/2) + \Theta(n) & \text{otherwise} \end{cases}$$

 \Box Generally, we will assume $T(n) = \Theta(1)$ for sufficiently small n

The recurrence above can be rewritten as: $T(n) = 2 T(n/2) + \Theta(n)$

 \square How to solve this recurrence?

CS 473 – Lecture 1

Solve Recurrence: $T(n) = 2T(n/2) + \Theta(n)$

Solve Recurrence: $T(n) = 2T(n/2) + \Theta(n)$

Solve Recurrence: $T(n) = 2T(n/2) + \Theta(n)$

CS 473 – Lecture 1

Merge Sort Complexity

□ Recurrence:

 $T(n) = 2T(n/2) + \Theta(n)$

□ Solution to recurrence: $T(n) = \Theta(nlgn)$ Conclusions: Insertion Sort vs. Merge Sort

 $\Box \Theta(nlgn)$ grows more slowly than $\Theta(n^2)$

Therefore <u>Merge-Sort</u> beats <u>Insertion-Sort</u> in the worst case

□ In practice, Merge-Sort beats Insertion-Sort for n>30 or so.