
1

CS473 - Algorithms I

CS 473 – Lecture 1

Lecture 1

Introduction to Analysis of Algorithms

Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

View in slide-show mode

2CS 473 – Lecture 1 Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

Text Book

 Introduction to Algorithms (Third Edition)

 Thomas H. Cormen

 Charles E. Leiserson

 Ronald L. Rivest

 Clifford Stein

 Available in the Meteksan Bookstore

3CS 473 – Lecture 1 Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

Algorithm Definition

 Algorithm: A sequence of computational steps that
transform the input to the desired output

 Procedure vs. algorithm

 An algorithm must halt within finite time with the right output

 Example:

Sorting

Algorithm

a sequence of

n numbers

sorted permutation

of input sequence

4CS 473 – Lecture 1 Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

Course Objectives

 Learn basic algorithms & data structures

 Gain skills to design new algorithms

 Focus on efficient algorithms

 Design algorithms that

➢ are fast

➢ use as little memory as possible

➢ are correct!

5CS 473 – Lecture 1 Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

Outline of Lecture 1

 Study two sorting algorithms as examples

 Insertion sort: Incremental algorithm

 Merge sort: Divide-and-conquer

 Introduction to runtime analysis

 Best vs. worst vs. average case

 Asymptotic analysis

6CS 473 – Lecture 1 Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

Sorting Problem

Input: Sequence of numbers

a1, a2,…,an

Output: A permutation

= (1), (2),…, (n)

such that

a(1)a(2) … a(n)

7CS 473 – Lecture 1 Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

Insertion Sort

8CS 473 – Lecture 1 Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

Insertion Sort: Basic Idea

 Assume input array: A[1..n]

 Iterate j from 2 to n

iter j

jalready sorted

after

iter j

j

insert into sorted array

sorted subarray

9CS 473 – Lecture 1 Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

Pseudo-code notation

 Objective: Express algorithms to humans in a clear

and concise way

 Liberal use of English

 Indentation for block structures

 Omission of error handling and other details

→ needed in real programs

10CS 473 – Lecture 1 Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

Algorithm: Insertion Sort (from Section 2.2)

Insertion-Sort (A)

1. for j 2 to n do

2. key A[j];

3. i j - 1;

4. while i > 0 and A[i] > key

do

5. A[i+1] A[i];

6. i i - 1;

endwhile

7. A[i+1] key;

endfor

11CS 473 – Lecture 1 Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

Algorithm: Insertion Sort

Insertion-Sort (A)

1. for j 2 to n do

2. key A[j];

3. i j - 1;

4. while i > 0 and A[i] > key

do

5. A[i+1] A[i];

6. i i - 1;

endwhile

7. A[i+1] key;

endfor

Iterate over array elts j

Loop invariant:

The subarray A[1..j-1]

is always sorted

j
already sorted

key

12CS 473 – Lecture 1 Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

Algorithm: Insertion Sort

Insertion-Sort (A)

1. for j 2 to n do

2. key A[j];

3. i j - 1;

4. while i > 0 and A[i] > key

do

5. A[i+1] A[i];

6. i i - 1;

endwhile

7. A[i+1] key;

endfor

Shift right the entries

in A[1..j-1] that are > key

j
already sorted

> key< key

j
> key< key

13CS 473 – Lecture 1 Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

Algorithm: Insertion Sort

Insertion-Sort (A)

1. for j 2 to n do

2. key A[j];

3. i j - 1;

4. while i > 0 and A[i] > key

do

5. A[i+1] A[i];

6. i i - 1;

endwhile

7. A[i+1] key;

endfor

> key< key

Insert key to the correct location

End of iter j: A[1..j] is sorted

key

j

now sorted

14CS 473 – Lecture 1 Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

Insertion Sort - Example

Insertion-Sort (A)

1. for j 2 to n do

2. key A[j];

3. i j - 1;

4. while i > 0 and A[i] > key

do

5. A[i+1] A[i];

6. i i - 1;

endwhile

7. A[i+1] key;

endfor

5 2 4 6 1 3

15CS 473 – Lecture 1

5 4 6 1 32

Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

Insertion Sort - Example: Iteration j=2

Insertion-Sort (A)

1. for j 2 to n do

2. key A[j];

3. i j - 1;

4. while i > 0 and A[i] > key

do

5. A[i+1] A[i];

6. i i - 1;

endwhile

7. A[i+1] key;

endfor

j

sorted

5 2 4 6 1 3 initial

> 2 j

5 2 4 6 1 3 shift

key=2

sorted

insert

key

16CS 473 – Lecture 1

? ? ? ? ? ?

2 5 4 6 1 3

Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

Insertion Sort - Example: Iteration j=3

Insertion-Sort (A)

1. for j 2 to n do

2. key A[j];

3. i j - 1;

4. while i > 0 and A[i] > key

do

5. A[i+1] A[i];

6. i i - 1;

endwhile

7. A[i+1] key;

endfor

j

sorted

initial

key=4

What are the entries at the

end of iteration j=3?

17CS 473 – Lecture 1

2 5 6 1 3

2 5 4 6 1 3

2 5 4 6 1 3

Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

Insertion Sort - Example: Iteration j=3

Insertion-Sort (A)

1. for j 2 to n do

2. key A[j];

3. i j - 1;

4. while i > 0 and A[i] > key

do

5. A[i+1] A[i];

6. i i - 1;

endwhile

7. A[i+1] key;

endfor

j

sorted

initial

> 4 j

shift

key=4

sorted

insert

key

< 4

4

18CS 473 – Lecture 1

2 4 5 1 3

2 4 5 6 1 3

2 4 5 6 1 3

Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

Insertion Sort - Example: Iteration j=4

Insertion-Sort (A)

1. for j 2 to n do

2. key A[j];

3. i j - 1;

4. while i > 0 and A[i] > key

do

5. A[i+1] A[i];

6. i i - 1;

endwhile

7. A[i+1] key;

endfor

j

sorted

initial

< 6 j

shift

key=6

sorted

insert

key6

19CS 473 – Lecture 1

2 4 5 6 1 3

? ? ? ? ? ?

Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

Insertion Sort - Example: Iteration j=5

Insertion-Sort (A)

1. for j 2 to n do

2. key A[j];

3. i j - 1;

4. while i > 0 and A[i] > key

do

5. A[i+1] A[i];

6. i i - 1;

endwhile

7. A[i+1] key;

endfor

j

sorted

initial

key=1

What are the entries at the

end of iteration j=5?

20CS 473 – Lecture 1

2 4 5 6 3

2 4 5 6 1 3

2 4 5 6 1 3

Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

Insertion Sort - Example: Iteration j=5

Insertion-Sort (A)

1. for j 2 to n do

2. key A[j];

3. i j - 1;

4. while i > 0 and A[i] > key

do

5. A[i+1] A[i];

6. i i - 1;

endwhile

7. A[i+1] key;

endfor

j

sorted

initial

>1 j

shift

key=1

sorted

insert

key

>1>1>1

1

21CS 473 – Lecture 1

1 2 4 5 6

1 2 4 5 6 3

1 2 4 5 6 3

Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

Insertion Sort - Example: Iteration j=6

Insertion-Sort (A)

1. for j 2 to n do

2. key A[j];

3. i j - 1;

4. while i > 0 and A[i] > key do

5. A[i+1] A[i];

6. i i - 1;

endwhile

7. A[i+1] key;

endfor

j

sorted

initial

>3 j

shift

key=3

sorted

insert

key

>3>3<3

3

22CS 473 – Lecture 1 Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

Insertion Sort Algorithm - Notes

 Items sorted in-place

 Elements rearranged within array

 At most constant number of items stored outside the array

at any time (e.g. the variable key)

 Input array A contains sorted output sequence when the

algorithm ends

 Incremental approach

 Having sorted A[1..j-1], place A[j] correctly so that A[1..j]

is sorted

23CS 473 – Lecture 1 Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

Running Time

 Depends on:

 Input size (e.g., 6 elements vs 6M elements)

 Input itself (e.g., partially sorted)

 Usually want upper bound

24CS 473 – Lecture 1 Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

Kinds of running time analysis

 Worst Case (Usually)

T(n) = max time on any input of size n

 Average Case (Sometimes)

T(n) = average time over all inputs of size n

Assumes statistical distribution of inputs

 Best Case (Rarely)

T(n) = min time on any input of size n
BAD*: Cheat with slow algorithm that works fast on some inputs

GOOD: Only for showing bad lower bound

*Can modify any algorithm (almost) to have a low best-case running time

➢ Check whether input constitutes an output at the very beginning of the algorithm

25CS 473 – Lecture 1 Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

Running Time

 For Insertion-Sort, what is its worst-case time?

 Depends on speed of primitive operations

◼Relative speed (on same machine)

◼Absolute speed (on different machines)

 Asymptotic analysis

 Ignore machine-dependent constants

 Look at growth of T(n) as n→

26CS 473 – Lecture 1 Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

 Notation

 Drop low order terms

 Ignore leading constants

e.g.

2n2+5n + 3 = (n2)

3n3+90n2-2n+5= (n3)

❑ Formal explanations in the next lecture.

CS473 – Lecture 1 Cevdet Aykanat - Bilkent University

Computer Engineering Department

27

• As n gets large, a (n2) algorithm runs faster

than a (n3) algorithm

T(n)

n

min value for n
0

Runtime larger

asymptotically

28CS 473 – Lecture 1 Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

Insertion Sort – Runtime Analysis

Insertion-Sort (A)

1. for j 2 to n do

2. key A[j];

3. i j - 1;

4. while i > 0 and A[i] > key

do

5. A[i+1] A[i];

6. i i - 1;

endwhile

7. A[i+1] key;

endfor

Cost

c1

c2

c3

c4

c5

c6

c7

tj: The number of

times while loop

test is executed for j

29CS 473 – Lecture 1 Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

How many times is each line executed?

Insertion-Sort (A)

1. for j 2 to n do

2. key A[j];

3. i j - 1;

4. while i > 0 and A[i] > key

do

5. A[i+1] A[i];

6. i i - 1;

endwhile

7. A[i+1] key;

endfor

times

n

n-1

n-1

k4 = t j
j=2

n

å

k5 = (t j -1)
j=2

n

å

k6 = (t j -1)
j=2

n

å

k4

k5

k6

n-1

30CS 473 – Lecture 1 Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

Insertion Sort – Runtime Analysis

 Sum up costs:

 What is the best case runtime?

 What is the worst case runtime?

() ++−+−+=
=

n

j

jtcncncncnT
2

4321)1()1(

c5 (t j -1)+ c6

j=2

n

å (t j -1)+ c7(n-1)
j=2

n

å

31CS 473 – Lecture 1

2 4 5 6 1 3

2 4 5 6 1 3

Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

Question: If A[1...j] is already sorted, tj = ?

Insertion-Sort (A)

1. for j 2 to n do

2. key A[j];

3. i j - 1;

4. while i > 0 and A[i] > key

do

5. A[i+1] A[i];

6. i i - 1;

endwhile

7. A[i+1] key;

endfor

j

sorted

initial

< 6 j
shift

none

key=6

tj = 1

32CS 473 – Lecture 1 Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

Insertion Sort – Best Case Runtime

 Original function:

 Best-case: Input array is already sorted

tj = 1 for all j

() ++−+−+=
=

n

j

jtcncncncnT
2

4321)1()1(

c5 (t j -1)+ c6

j=2

n

å (t j -1)+ c7(n-1)
j=2

n

å

T n() = (c1 +c2 +c3 +c4 +c7)n- (c2 +c3 +c4 +c7)

33CS 473 – Lecture 1

2 4 5 6 1 3

2 4 5 6 1 3

Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

Q: If A[j] is smaller than every entry in A[1..j-1], tj = ?

Insertion-Sort (A)

1. for j 2 to n do

2. key A[j];

3. i j - 1;

4. while i > 0 and A[i] > key

do

5. A[i+1] A[i];

6. i i - 1;

endwhile

7. A[i+1] key;

endfor

j

sorted

initial

>1 j
shift

all

key=1

>1>1>1

tj = j

34CS 473 – Lecture 1 Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

Insertion Sort – Worst Case Runtime

 Worst case: The input array is reverse sorted

tj = j for all j

 After derivation, worst case runtime:

T n() = 1
2
(c4 +c5 +c6)n2 +

(c1 +c2 +c3 + 1
2
(c4 -c5 -c6)+c7)n- (c2 +c3 +c4 +c7)

35CS 473 – Lecture 1 Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

Insertion Sort – Asymptotic Runtime Analysis

Insertion-Sort (A)

1. for j 2 to n do

2. key A[j];

3. i j - 1;

4. while i > 0 and A[i] > key

do

5. A[i+1] A[i];

6. i i - 1;

endwhile

7. A[i+1] key;

endfor

(1)

(1)

(1)

CS473 – Lecture 1 Cevdet Aykanat - Bilkent University

Computer Engineering Department

36

Asymptotic Runtime Analysis of Insertion-Sort

• Worst-case (input reverse sorted)

– Inner loop is (j)

• Average case (all permutations equally likely)

– Inner loop is (j/2)

• Often, average case not much better than worst case

• Is this a fast sorting algorithm?

– Yes, for small n. No, for large n.

() () ()2

22

njjnT
n

j

n

j

=

==

==

() () () ()2

22

2 njjnT
n

j

n

j

===
==

37CS 473 – Lecture 1 Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

Merge Sort

38CS 473 – Lecture 1 Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

Merge Sort: Basic Idea

Divide

Input array A

Conquer

sort this half sort this half

merge two sorted halves

Combine

CS473 – Lecture 1 Cevdet Aykanat - Bilkent University

Computer Engineering Department

39

Merge-Sort (A, p, r)

if p = r then return;

else

q (p+r)/2; (Divide)

Merge-Sort (A, p, q); (Conquer)

Merge-Sort (A, q+1, r); (Conquer)

Merge (A, p, q, r); (Combine)

endif

• Call Merge-Sort(A,1,n) to sort A[1..n]

• Recursion bottoms out when subsequences have length 1

40CS 473 – Lecture 1

Merge-Sort (A, p, r)

if p = r then

return

else

q (p+r)/2

Merge-Sort (A, p, q)

Merge-Sort (A, q+1, r)

Merge(A, p, q, r)

endif

Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

Merge Sort: Example

5 2 4 6 1 3

p rq

2 4 5 1 3 6

p rq

1 2 3 4 5 6

41CS 473 – Lecture 1 Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

How to merge 2 sorted subarrays?

 HW: Study the pseudo-code in the textbook (Sec. 2.3.1)

 What is the complexity of this step? (n)

2 4 5

1 3 6

A[p..q]

A[q+1..r]

1 2 3 4 5 6

42CS 473 – Lecture 1

Merge-Sort (A, p, r)

if p = r then

return

else

q (p+r)/2

Merge-Sort (A, p, q)

Merge-Sort (A, q+1, r)

Merge(A, p, q, r)

endif

Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

Merge Sort: Correctness

Base case: p = r

→ Trivially correct

Inductive hypothesis: MERGE-SORT

is correct for any subarray that is a

strict (smaller) subset of A[p, q].

General Case: MERGE-SORT is

correct for A[p, q].

→From inductive hypothesis and

correctness of Merge.

43CS 473 – Lecture 1

Merge-Sort (A, p, r)

if p = r then

return

else

q (p+r)/2

Merge-Sort (A, p, q)

Merge-Sort (A, q+1, r)

Merge(A, p, q, r)

endif

Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

Merge Sort: Complexity

(1)

T(n)

(1)

T(n/2)

T(n/2)

(n)

44CS 473 – Lecture 1 Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

Merge Sort – Recurrence

 Describe a function recursively in terms of itself

 To analyze the performance of recursive algorithms

 For merge sort:

(1) if n=1

2T(n/2) + (n) otherwise
T(n) =

45CS 473 – Lecture 1 Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

How to solve for T(n)?

 Generally, we will assume T(n) = (1) for sufficiently small n

 The recurrence above can be rewritten as:

T(n) = 2 T(n/2) + (n)

 How to solve this recurrence?

(1) if n=1

2T(n/2) + (n) otherwise
T(n) =

46CS 473 – Lecture 1 Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

Solve Recurrence: T(n) = 2T (n/2) + Θ(n)

Θ(n)

T(n/2) T(n/2)

47CS 473 – Lecture 1 Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

Solve Recurrence: T(n) = 2T (n/2) + Θ(n)

Θ(n)

Θ(n/2)

T(n/4) T(n/4) T(n/4) T(n/4)

T(n/2)Θ(n/2)

2
x

su
b
p
ro

b
s

ea
ch

 s
iz

e

h
al

v
ed

48CS 473 – Lecture 1 Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

Solve Recurrence: T(n) = 2T (n/2) + Θ(n)

Θ(n)

Θ(n/2) Θ(n/2)

T(n/4) T(n/4) T(n/4) T(n/4)

Θ(1) Θ(1) Θ(1) Θ(1) Θ(1)Θ(1)Θ(1) Θ(1) Θ(1)

Θ(n)

Θ
(l

g
n
)

Θ(n)

Θ(n)

Θ(n)

Total: Θ(nlgn)

49CS 473 – Lecture 1 Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

Merge Sort Complexity

 Recurrence:

T(n) = 2T(n/2) + Θ(n)

 Solution to recurrence:

T(n) = Θ(nlgn)

50CS 473 – Lecture 1 Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

Conclusions: Insertion Sort vs. Merge Sort

 (nlgn) grows more slowly than (n2)

 Therefore Merge-Sort beats Insertion-Sort in the

worst case

 In practice, Merge-Sort beats Insertion-Sort for n>30

or so.

