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Text Book

 Introduction to Algorithms (Third Edition)

 Thomas H. Cormen

 Charles E. Leiserson

 Ronald L. Rivest

 Clifford Stein

 Available in the Meteksan Bookstore
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Algorithm Definition

 Algorithm: A sequence of computational steps that 
transform the input to the desired output

 Procedure vs. algorithm

 An algorithm must halt within finite time with the right output

 Example: 

Sorting

Algorithm

a sequence of

n numbers

sorted permutation

of input sequence
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Course Objectives

 Learn basic algorithms & data structures

 Gain skills to design new algorithms

 Focus on efficient algorithms

 Design algorithms that

➢ are fast

➢ use as little memory as possible

➢ are correct!
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Outline of Lecture 1

 Study two sorting algorithms as examples

 Insertion sort: Incremental algorithm

 Merge sort: Divide-and-conquer

 Introduction to runtime analysis

 Best vs. worst vs. average case 

 Asymptotic analysis
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Sorting Problem

Input: Sequence of numbers 

a1, a2,…,an

Output: A permutation 

=  (1), (2),…,  (n)

such that

a(1)a(2)  …  a(n)
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Insertion Sort
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Insertion Sort: Basic Idea

 Assume input array: A[1..n]

 Iterate j from 2 to n

iter j

jalready sorted

after 

iter j

j

insert into sorted array

sorted subarray



9CS 473 – Lecture 1 Cevdet Aykanat and Mustafa Ozdal 

Computer Engineering Department, Bilkent University

Pseudo-code notation

 Objective: Express algorithms to humans in a clear 

and concise way

 Liberal use of English

 Indentation for block structures

 Omission of error handling and other details

→ needed in real programs
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Algorithm: Insertion Sort (from Section 2.2)

Insertion-Sort (A)

1. for j  2 to n do

2. key  A[j];

3. i  j - 1;

4. while i > 0 and A[i] > key 

do

5. A[i+1]  A[i];

6. i  i - 1;

endwhile

7. A[i+1]  key;

endfor
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Algorithm: Insertion Sort

Insertion-Sort (A)

1. for j  2 to n do

2. key A[j];

3. i  j - 1;

4. while i > 0 and A[i] > key 

do

5. A[i+1]  A[i];

6. i  i - 1;

endwhile

7. A[i+1]  key;

endfor

Iterate over array elts j

Loop invariant: 

The subarray A[1..j-1] 

is always sorted

j
already sorted

key
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Algorithm: Insertion Sort

Insertion-Sort (A)

1. for j  2 to n do

2. key  A[j];

3. i  j - 1;

4. while i > 0 and A[i] > key 

do

5. A[i+1]  A[i];

6. i  i - 1;

endwhile

7. A[i+1]  key;

endfor

Shift right the entries 

in A[1..j-1] that are > key

j
already sorted

> key< key

j
> key< key
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Algorithm: Insertion Sort

Insertion-Sort (A)

1. for j  2 to n do

2. key  A[j];

3. i  j - 1;

4. while i > 0 and A[i] > key 

do

5. A[i+1]  A[i];

6. i  i - 1;

endwhile

7. A[i+1]  key;

endfor

> key< key

Insert key to the correct location

End of iter j: A[1..j] is sorted 

key

j

now sorted
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Insertion Sort - Example

Insertion-Sort (A)

1. for j  2 to n do

2. key A[j];

3. i  j - 1;

4. while i > 0 and A[i] > key 

do

5. A[i+1]  A[i];

6. i  i - 1;

endwhile

7. A[i+1]  key;

endfor

5 2 4 6 1 3
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Insertion Sort - Example: Iteration j=2

Insertion-Sort (A)

1. for j  2 to n do

2. key A[j];

3. i  j - 1;

4. while i > 0 and A[i] > key 

do

5. A[i+1]  A[i];

6. i  i - 1;

endwhile

7. A[i+1]  key;

endfor

j

sorted

5 2 4 6 1 3 initial

> 2 j

5 2 4 6 1 3 shift

key=2

sorted

insert

key
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Insertion Sort - Example: Iteration j=3

Insertion-Sort (A)

1. for j  2 to n do

2. key A[j];

3. i  j - 1;

4. while i > 0 and A[i] > key 

do

5. A[i+1]  A[i];

6. i  i - 1;

endwhile

7. A[i+1]  key;

endfor

j

sorted

initial

key=4

What are the entries at the 

end of iteration j=3?
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Insertion Sort - Example: Iteration j=3

Insertion-Sort (A)

1. for j  2 to n do

2. key A[j];

3. i  j - 1;

4. while i > 0 and A[i] > key 

do

5. A[i+1]  A[i];

6. i  i - 1;

endwhile

7. A[i+1]  key;

endfor

j

sorted

initial

> 4 j

shift

key=4

sorted

insert

key

< 4

4
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Insertion Sort - Example: Iteration j=4

Insertion-Sort (A)

1. for j  2 to n do

2. key A[j];

3. i  j - 1;

4. while i > 0 and A[i] > key 

do

5. A[i+1]  A[i];

6. i  i - 1;

endwhile

7. A[i+1]  key;

endfor

j

sorted

initial

< 6 j

shift

key=6

sorted

insert

key6
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Insertion Sort - Example: Iteration j=5

Insertion-Sort (A)

1. for j  2 to n do

2. key A[j];

3. i  j - 1;

4. while i > 0 and A[i] > key 

do

5. A[i+1]  A[i];

6. i  i - 1;

endwhile

7. A[i+1]  key;

endfor

j

sorted

initial

key=1

What are the entries at the 

end of iteration j=5?
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Insertion Sort - Example: Iteration j=5

Insertion-Sort (A)

1. for j  2 to n do

2. key A[j];

3. i  j - 1;

4. while i > 0 and A[i] > key 

do

5. A[i+1]  A[i];

6. i  i - 1;

endwhile

7. A[i+1]  key;

endfor

j

sorted

initial

>1 j

shift

key=1

sorted

insert

key

>1>1>1

1
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Insertion Sort - Example: Iteration j=6

Insertion-Sort (A)

1. for j  2 to n do

2. key  A[j];

3. i  j - 1;

4. while i > 0 and A[i] > key do

5. A[i+1] A[i];

6. i  i - 1;

endwhile

7. A[i+1]  key;

endfor

j

sorted

initial

>3 j

shift

key=3

sorted

insert

key

>3>3<3

3
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Insertion Sort Algorithm - Notes

 Items sorted in-place

 Elements rearranged within array

 At most constant number of items stored outside the array 

at any time (e.g. the variable key)

 Input array A contains sorted output sequence when the 

algorithm ends

 Incremental approach

 Having sorted A[1..j-1], place A[j] correctly so that A[1..j] 

is sorted
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Running Time

 Depends on:

 Input size (e.g., 6 elements vs 6M elements)

 Input itself (e.g., partially sorted)

 Usually want upper bound
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Kinds of running time analysis

 Worst Case (Usually) 

T(n) = max time on any input of size n

 Average Case (Sometimes)

T(n) = average time over all inputs of size n

Assumes statistical distribution of inputs

 Best Case (Rarely)

T(n) = min time on any input of size n
BAD*: Cheat with slow algorithm that works fast on some inputs

GOOD: Only for showing bad lower bound

*Can modify any algorithm (almost) to have a low best-case running time

➢ Check whether input constitutes an output at the very beginning of the algorithm
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Running Time

 For Insertion-Sort, what is its worst-case time?

 Depends on speed of primitive operations

◼Relative speed (on same machine) 

◼Absolute speed (on different machines) 

 Asymptotic analysis

 Ignore machine-dependent constants

 Look at growth of T(n) as n→
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 Notation

 Drop low order terms

 Ignore leading constants

e.g. 

2n2+5n + 3 = (n2)

3n3+90n2-2n+5= (n3)

❑ Formal explanations in the next lecture.
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• As n gets large, a (n2) algorithm runs faster 

than a (n3) algorithm

T(n)

n

min value for n
0

Runtime larger

asymptotically
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Insertion Sort – Runtime Analysis

Insertion-Sort (A)

1. for j  2 to n do

2. key  A[j];

3. i  j - 1;

4. while i > 0 and A[i] > key 

do

5. A[i+1]  A[i];

6. i  i - 1;

endwhile

7. A[i+1]  key;

endfor

Cost

c1

c2

c3

c4

c5

c6

c7

tj: The number of

times while loop 

test is executed for j
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How many times is each line executed?

Insertion-Sort (A)

1. for j  2 to n do

2. key  A[j];

3. i  j - 1;

4. while i > 0 and A[i] > key 

do

5. A[i+1]  A[i];

6. i  i - 1;

endwhile

7. A[i+1]  key;

endfor

# times

n

n-1

n-1

k4 = t j
j=2

n

å

k5 = (t j -1)
j=2

n

å

k6 = (t j -1)
j=2

n

å

k4

k5

k6

n-1
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Insertion Sort – Runtime Analysis

 Sum up costs:

 What is the best case runtime?

 What is the worst case runtime?

( ) ++−+−+= 
=

n

j

jtcncncncnT
2

4321 )1()1(

c5 (t j -1)+ c6

j=2

n

å (t j -1)+ c7(n-1)
j=2

n

å
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Question: If A[1...j] is already sorted, tj = ?

Insertion-Sort (A)

1. for j  2 to n do

2. key A[j];

3. i  j - 1;

4. while i > 0 and A[i] > key 

do

5. A[i+1]  A[i];

6. i  i - 1;

endwhile

7. A[i+1]  key;

endfor

j

sorted

initial

< 6 j
shift

none

key=6

tj = 1
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Insertion Sort – Best Case Runtime

 Original function:

 Best-case: Input array is already sorted

tj = 1 for all j

( ) ++−+−+= 
=

n

j

jtcncncncnT
2

4321 )1()1(

c5 (t j -1)+ c6

j=2

n

å (t j -1)+ c7(n-1)
j=2

n

å

T n( ) = (c1 +c2 +c3 +c4 +c7)n- (c2 +c3 +c4 +c7)
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Q:  If A[j] is smaller than every entry in A[1..j-1], tj = ?

Insertion-Sort (A)

1. for j  2 to n do

2. key A[j];

3. i  j - 1;

4. while i > 0 and A[i] > key 

do

5. A[i+1]  A[i];

6. i  i - 1;

endwhile

7. A[i+1]  key;

endfor

j

sorted

initial

>1 j
shift

all

key=1

>1>1>1

tj = j
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Insertion Sort – Worst Case Runtime

 Worst case: The input array is reverse sorted

tj = j for all j

 After derivation, worst case runtime:

T n( ) = 1
2
(c4 +c5 +c6 )n2 +

(c1 +c2 +c3 + 1
2
(c4 -c5 -c6 )+c7)n- (c2 +c3 +c4 +c7)
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Insertion Sort – Asymptotic Runtime Analysis

Insertion-Sort (A)

1. for j  2 to n do

2. key  A[j];

3. i  j - 1;

4. while i > 0 and A[i] > key 

do

5. A[i+1]  A[i];

6. i  i - 1;

endwhile

7. A[i+1]  key;

endfor

(1)

(1)

(1)
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Asymptotic Runtime Analysis of Insertion-Sort

• Worst-case (input reverse sorted)

– Inner loop is (j) 

• Average case (all permutations equally likely)

– Inner loop is (j/2) 

• Often, average case not much better than worst case

• Is this a fast sorting algorithm?

– Yes, for small n. No, for large n.

( ) ( ) ( )2

22

njjnT
n

j

n

j

=












== 

==

( ) ( ) ( ) ( )2

22

2 njjnT
n

j

n

j

=== 
==
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Merge Sort
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Merge Sort: Basic Idea

Divide

Input array A

Conquer

sort this half sort this half

merge two sorted halves

Combine
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Merge-Sort (A, p, r)

if p = r then return;

else

q   (p+r)/2; (Divide)

Merge-Sort (A, p, q); (Conquer)

Merge-Sort (A, q+1, r); (Conquer)

Merge (A, p, q, r); (Combine)

endif

• Call Merge-Sort(A,1,n) to sort A[1..n]

• Recursion bottoms out when subsequences have length 1
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Merge-Sort (A, p, r)

if p = r then 

return

else

q   (p+r)/2

Merge-Sort  (A, p, q)

Merge-Sort  (A, q+1, r)    

Merge(A, p, q, r)

endif
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Merge Sort: Example

5 2 4 6 1 3

p rq

2 4 5 1 3 6

p rq

1 2 3 4 5 6



41CS 473 – Lecture 1 Cevdet Aykanat and Mustafa Ozdal 

Computer Engineering Department, Bilkent University

How to merge 2 sorted subarrays?

 HW: Study the pseudo-code in the textbook (Sec. 2.3.1)

 What is the complexity of this step? (n)

2 4 5

1 3 6

A[p..q]

A[q+1..r]

1 2 3 4 5 6
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Merge-Sort (A, p, r)

if p = r then 

return

else

q   (p+r)/2

Merge-Sort  (A, p, q)

Merge-Sort  (A, q+1, r)    

Merge(A, p, q, r)

endif
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Merge Sort: Correctness

Base case: p = r

→ Trivially correct

Inductive hypothesis: MERGE-SORT

is correct for any subarray that is a

strict (smaller) subset of A[p, q]. 

General Case: MERGE-SORT is

correct for A[p, q].

→From inductive hypothesis and

correctness of Merge.
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Merge-Sort (A, p, r)

if p = r then 

return

else

q   (p+r)/2

Merge-Sort  (A, p, q)

Merge-Sort  (A, q+1, r)    

Merge(A, p, q, r)

endif
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Merge Sort: Complexity

(1)

T(n)

(1)

T(n/2)

T(n/2)

(n)
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Merge Sort – Recurrence

 Describe a function recursively in terms of itself

 To analyze the performance of recursive algorithms

 For merge sort:

(1) if n=1

2T(n/2) + (n) otherwise
T(n) =
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How to solve for T(n)?

 Generally, we will assume T(n) = (1) for sufficiently small n

 The recurrence above can be rewritten as:

T(n) = 2 T(n/2) + (n)

 How to solve this recurrence?

(1) if n=1

2T(n/2) + (n) otherwise
T(n) =
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Solve Recurrence: T(n) = 2T (n/2) + Θ(n)

Θ(n)

T(n/2) T(n/2)
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Solve Recurrence: T(n) = 2T (n/2) + Θ(n)

Θ(n)

Θ(n/2)

T(n/4) T(n/4) T(n/4) T(n/4)

T(n/2)Θ(n/2)

2
x

su
b
p
ro

b
s

ea
ch

 s
iz

e

h
al

v
ed
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Solve Recurrence: T(n) = 2T (n/2) + Θ(n)

Θ(n)

Θ(n/2) Θ(n/2)

T(n/4) T(n/4) T(n/4) T(n/4)

Θ(1) Θ(1) Θ(1) Θ(1) Θ(1)Θ(1)Θ(1) Θ(1) Θ(1)

Θ(n)

Θ
(l

g
n
)

Θ(n)

Θ(n)

Θ(n)

Total: Θ(nlgn)
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Merge Sort Complexity

 Recurrence:

T(n) = 2T(n/2) + Θ(n)

 Solution to recurrence:

T(n) = Θ(nlgn)
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Conclusions: Insertion Sort vs. Merge Sort

 (nlgn) grows more slowly than (n2)

 Therefore Merge-Sort beats Insertion-Sort in the 

worst case

 In practice, Merge-Sort beats Insertion-Sort for n>30

or so.


