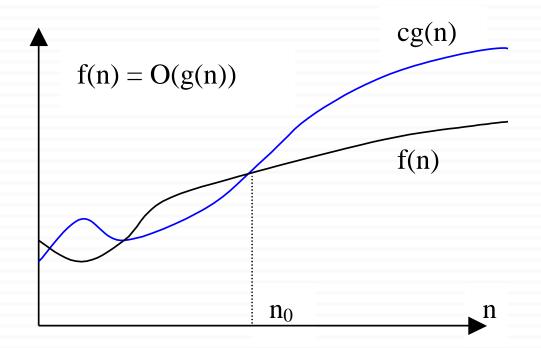
CS473 - Algorithms I

Lecture 2

Asymptotic Notation

O-notation: Asymptotic upper bound

f(n) = O(g(n)) if \exists positive constants c, n_0 such that $0 \le f(n) \le cg(n)$, $\forall n \ge n_0$



Asymptotic running times of algorithms are usually defined by functions whose domain are $N=\{0, 1, 2, ...\}$ (natural numbers)

Example

Show that
$$2n^2 = O(n^3)$$

We need to find two positive constants: \mathbf{c} and $\mathbf{n_0}$ such that:

$$0 \le 2n^2 \le cn^3$$
 for all $n \ge n_0$

Choose
$$c = 2$$
 and $n_0 = 1$
 $\Rightarrow 2n^2 \le 2n^3$ for all $n \ge 1$

Or, choose
$$c = 1$$
 and $n_0 = 2$
 $2n^2 \le n^3$ for all $n \ge 2$

Example

Show that
$$2n^2 + n = O(n^2)$$

We need to find two positive constants: \mathbf{c} and $\mathbf{n_0}$ such that:

$$0 \le 2n^2 + n \le cn^2$$
 for all $n \ge n_0$
 $2 + (1/n) \le c$ for all $n \ge n_0$

Choose c = 3 and $n_0 = 1$

$$\rightarrow$$
 $2n^2 + n \le 3n^2$ for all $n \ge 1$

O-notation

- \square What does f(n) = O(g(n)) really mean?
 - The notation is a little sloppy
 - One-way equation
 - e.g. $n^2 = O(n^3)$, but we cannot say $O(n^3) = n^2$
- \Box O(g(n)) is in fact a set of functions:

$$O(g(n)) = \{f(n): \exists \text{ positive constants } c, n_0 \text{ such that}$$

 $0 \le f(n) \le cg(n), \forall n \ge n_0 \}$

O-notation

- □ $O(g(n)) = \{f(n): \exists \text{ positive constants } c, n_0 \text{ such that}$ $0 \le f(n) \le cg(n), \forall n \ge n_0 \}$
- □ In other words: O(g(n)) is in fact:

 the set of functions that have asymptotic upper bound g(n)
- \square e.g. $2n^2 = O(n^3)$ <u>means</u> $2n^2 \in O(n^3)$

 $2n^2$ is in the set of functions that have asymptotic upper bound n^3

True or False?

$$10^9 n^2 = O(n^2)$$

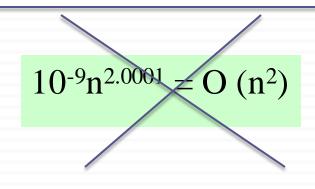
True

Choose
$$c = 10^9$$
 and $n_0 = 1$
 $0 \le 10^9 n^2 \le 10^9 n^2$ for $n \ge 1$

$$100n^{1.9999} = O(n^2)$$

True

Choose
$$c = 100$$
 and $n_0 = 1$
 $0 \le 100n^{1.9999} \le 100n^2$ for $n \ge 1$



False

$$10^{-9} n^{2.0001} \le c n^2 \text{ for } n \ge n_0$$

 $10^{-9} n^{0.0001} \le c \text{ for } n \ge n_0$
Contradiction

O-notation

- □ *O*-notation is an upper bound notation
- □ What does it mean if we say:

"The runtime (T(n)) of Algorithm A is <u>at least</u> $O(n^2)$ "

→ says nothing about the runtime. Why?

 $O(n^2)$: The set of functions with asymptotic *upper bound* n^2

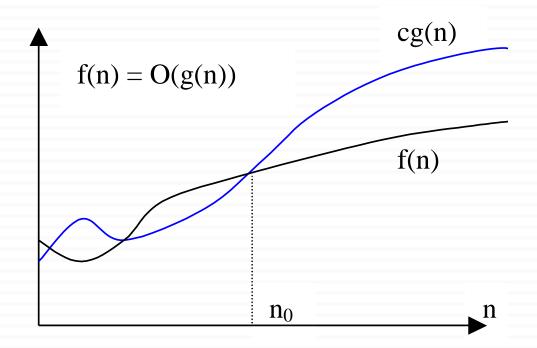
 $T(n) \ge O(n^2)$ means: $T(n) \ge h(n)$ for some $h(n) \in O(n^2)$

h(n) = 0 function is also in $O(n^2)$. Hence: $T(n) \ge 0$

runtime must be nonnegative anyway!

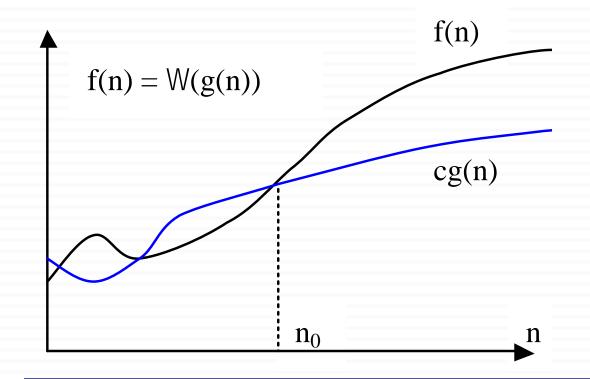
Summary: O-notation: Asymptotic upper bound

 $f(n) \in O(g(n))$ if \exists positive constants c, n_0 such that $0 \le f(n) \le cg(n)$, $\forall n \ge n_0$



Ω -notation: Asymptotic lower bound

 $f(n) = \Omega(g(n))$ if \exists positive constants c, n_0 such that $0 \le cg(n) \le f(n)$, $\forall n \ge n_0$



 Ω : "big Omega"

Example

Show that
$$2n^3 = \Omega(n^2)$$

We need to find two positive constants: \mathbf{c} and $\mathbf{n_0}$ such that: $0 \le cn^2 \le 2n^3$ for all $n \ge n_0$

Choose
$$c = 1$$
 and $n_0 = 1$
 $n^2 < 2n^3$ for all $n > 1$

Example

Show that
$$\sqrt{n} = \Omega(\lg n)$$

We need to find two positive constants: \mathbf{c} and $\mathbf{n_0}$ such that: \mathbf{c} lg $\mathbf{n} \leq \sqrt{n}$ for all $\mathbf{n} \geq \mathbf{n_0}$

Choose
$$c = 1$$
 and $n_0 = 16$

$$lg \ n \le \sqrt{n} \text{ for all } n \ge 16$$

Ω-notation: Asymptotic Lower Bound

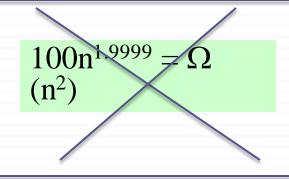
- □ $\Omega(g(n)) = \{f(n): \exists \text{ positive constants } c, n_0 \text{ such that } 0 \le cg(n) \le f(n), \forall n \ge n_0 \}$
- □ In other words: Ω (g(n)) is in fact: the set of functions that have asymptotic lower bound g(n)

True or False?

$$10^9 \mathrm{n}^2 = \Omega \ (\mathrm{n}^2)$$

True

Choose
$$c = 10^9$$
 and $n_0 = 1$
 $0 \le 10^9 n^2 \le 10^9 n^2$ for $n \ge 1$



False

$$cn^2 \le 100n^{1.9999}$$
 for $n \ge n_0$
 $n^{0.0001} \le (100/c)$ for $n \ge n_0$
Contradiction

$$10^{-9} n^{2.0001} = \Omega (n^2)$$

True

Choose
$$c = 10^{-9}$$
 and $n_0 = 1$
 $0 \le 10^{-9} n^2 \le 10^{-9} n^{2.0001}$ for $n \ge 1$

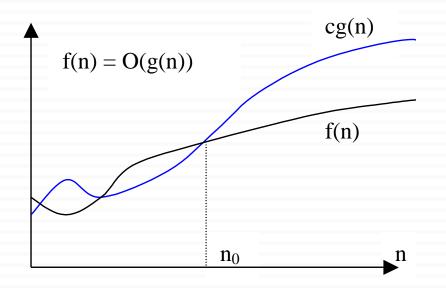
Summary: O-notation and Ω -notation

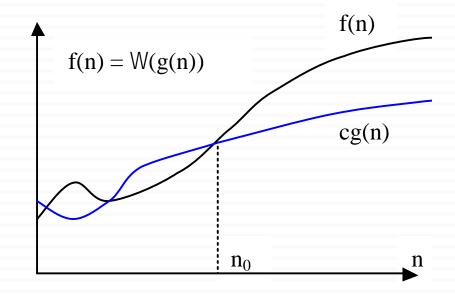
□ O(g(n)): The set of functions with asymptotic upper bound g(n) f(n) = O(g(n)) $f(n) \in O(g(n)) \text{ if } \exists \text{ positive constants } c, n_0 \text{ such that}$

$$0 \le f(n) \le cg(n), \forall n \ge n_0$$

 $\square \ \Omega(g(n)) \text{: The set of functions with asymptotic lower bound } g(n)$ $f(n) = \Omega(g(n))$ $f(n) \in \Omega(g(n)) \ \exists \ positive \ constants \ c, \ n_0 \ such \ that$ $0 \le cg(n) \le f(n), \ \forall n \ge n_0$

Summary: O-notation and Ω -notation

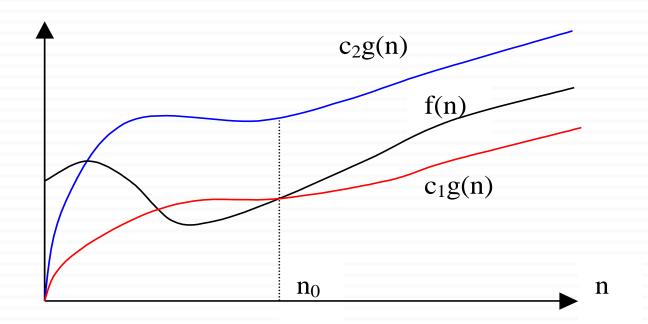




Θ-notation: Asymptotically tight bound

□ $f(n) = \Theta(g(n))$ if \exists positive constants c_1, c_2, n_0 such that

$$0 \le c_1 g(n) \le f(n) \le c_2 g(n), \ \forall n \ge n_0$$



Example

Show that
$$2n^2 + n = \Theta(n^2)$$

We need to find 3 positive constants: c_1 , c_2 and n_0 such that:

$$0 \le c_1 n^2 \le 2n^2 + n \le c_2 n^2$$
 for all $n \ge n_0$
 $c_1 \le 2 + (1/n) \le c_2$ for all $n \ge n_0$

Choose
$$c_1 = 2$$
, $c_2 = 3$, and $n_0 = 1$

→
$$2n^2 \le 2n^2 + n \le 3n^2$$
 for all $n \ge 1$

Example

Show that
$$\frac{1}{2}n^2 - 2n = O(n^2)$$

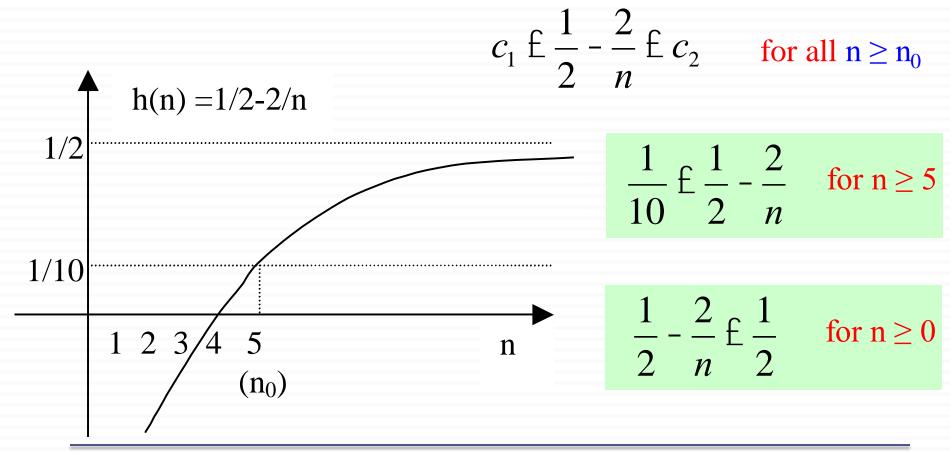
We need to find 3 positive constants: c_1 , c_2 and n_0 such that:

$$0 \le c_1 n^2 \le \frac{1}{2} n^2 - 2n \le c_2 n^2 \quad \text{for all } n \ge n_0$$

$$c_1 \oint \frac{1}{2} - \frac{2}{n} \oint c_2 \quad \text{for all } n \ge n_0$$

Example (cont'd)

 \square Choose 3 positive constants: c_1 , c_2 , n_0 that satisfy:



Example (cont'd)

 \square Choose 3 constants: c_1 , c_2 , n_0 that satisfy:

$$c_1
otin
otin$$

$$\frac{1}{10} \not\in \frac{1}{2} - \frac{2}{n} \quad \text{for } n \ge 5$$

$$\frac{1}{2} - \frac{2}{n} \not\in \frac{1}{2} \quad \text{for } n \ge 0$$

Therefore, we can choose::
$$c_1 = \frac{1}{10}$$
 $c_2 = \frac{1}{2}$ $n_0 = 5$

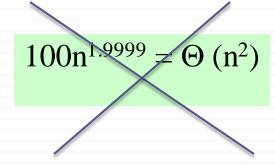
Θ-notation: Asymptotically tight bound

- □ <u>Theorem</u>: leading constants & low-order terms don't matter
- Justification: can choose the leading constant large enough to make high-order term dominate other terms

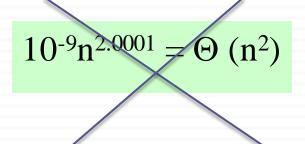
True or False?

$$10^9 n^2 = \Theta (n^2)$$

True



False



False

Θ-notation: Asymptotically tight bound

 \square In other words: $\Theta(g(n))$ is in fact:

the set of functions that have asymptotically tight bound g(n)

Θ-notation: Asymptotically tight bound

□ Theorem:

$$f(n) = \Theta(g(n))$$
 if and only if
$$f(n) = O(g(n)) \text{ and } f(n) = \Omega(g(n))$$

- □ In other words:
 - Θ is stronger than both O and Ω
- □ In other words:

$$\Theta(g(n)) \subseteq O(g(n))$$
 and $\Theta(g(n)) \subseteq \Omega(g(n))$

Example

 \square Prove that 10^{-8} $n^2 \neq \Theta(n)$

Before proof, note that $10^{-8} \text{n}^2 = \Omega$ (n) but $10^{-8} \text{n}^2 \neq O(\text{n})$

Proof by contradiction:

Suppose positive constants c_2 and n_0 exist such that:

$$10^{-8} n^2 \le c_2 n \quad \text{for all } n \ge n_0$$

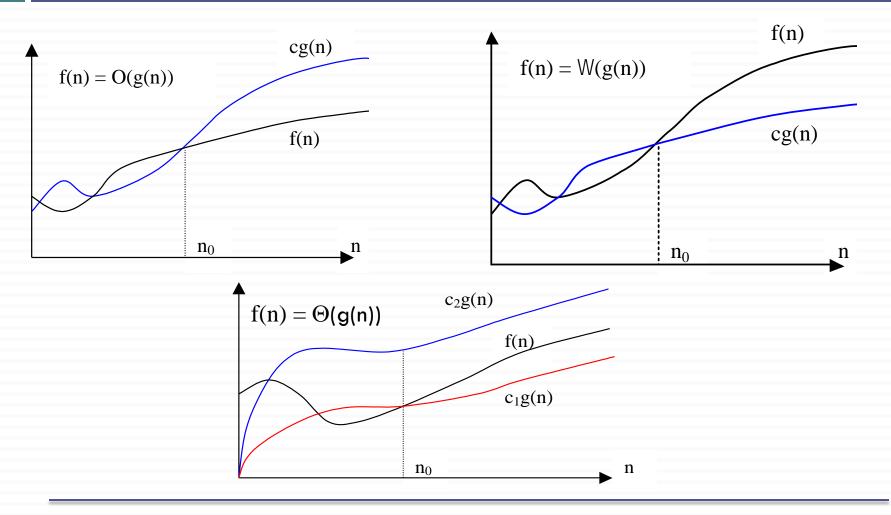
$$10^{-8}$$
n \leq c₂ for all n \geq n₀

Contradiction: c_2 is a constant

Summary: O, Ω , and Θ notations

- \Box O(g(n)): The set of functions with asymptotic upper bound g(n)
- \square $\Omega(g(n))$: The set of functions with asymptotic lower bound g(n)
- \square $\Theta(g(n))$: The set of functions with asymptotically tight bound g(n)
- \Box f(n) = Θ (g(n)) if and only if f(n) = O(g(n)) and f(n) = Ω (g(n))

Summary: O, Ω , and Θ notations



o ("small o") Notation Asymptotic upper bound that is <u>not tight</u>

Reminder: Upper bound provided by O ("big O") notation can be tight or not tight:

e.g.
$$2n^2 = O(n^2)$$
 is asymptotically tight $2n = O(n^2)$ is not asymptotically tight both true

o-Notation: An upper bound that is not asymptotically tight

o ("small o") Notation Asymptotic upper bound that is <u>not tight</u>

□
$$o(g(n)) = \{f(n): \text{ for } \underline{any} \text{ constant } c > 0,$$

∃ a constant $n_0 > 0$, such that
$$0 \le f(n) < cg(n), \ \forall n \ge n_0\}$$

e.g.,
$$2n = o(n^2)$$
, any positive c satisfies but $2n^2 \neq o(n^2)$, $c = 2$ does not satisfy

ω ("small omega") Notation Asymptotic lower bound that is <u>not tight</u>

□
$$\omega(g(n)) = \{f(n): \text{ for } \underline{any} \text{ constant } c > 0,$$

∃ a constant $n_0 > 0$, such that
 $0 \le cg(n) < f(n), \forall n \ge n_0\}$

e.g.,
$$n^2/2 = \omega(n)$$
, any positive c satisfies
but $n^2/2 \neq \omega(n^2)$, $c = 1/2$ does not satisfy

Analogy to the comparison of two real numbers

$$G(n) = O(g(n)) \longleftrightarrow a \le b$$

$$\Box f(n) = \Omega(g(n)) \longleftrightarrow a \ge b$$

$$\Box$$
 $f(n) = \Theta(g(n)) \leftrightarrow a = b$

$$\Box$$
 $f(n) = o(g(n)) \leftrightarrow a < b$

$$\Box f(n) = \omega(g(n)) \longleftrightarrow a > b$$

True or False?

$5n^2 = O(n^2)$	True	$n^2 lgn = O(n^2)$	False
$5n^2 = \Omega(n^2)$	True	$n^2 \lg n = \Omega(n^2)$	True
$5n^2 = \Theta(n^2)$	True	$n^2 lgn = \Theta(n^2)$	False
$5n^2 = o(n^2)$	False	$n^2 \lg n = o(n^2)$	False
$5n^2 = \omega(n^2)$	False	$n^2 \lg n = \omega(n^2)$	True
$2^{n} = O(3^{n})$	True		
$2^{n} = \Omega(3^{n})$	False	$2^n = o(3^n)$	True
$2^n = \Theta(3^n)$	False	$2^n = \omega(3^n)$	False

Analogy to comparison of two real numbers

□ Trichotomy property for real numbers:

For any two real numbers a and b, we have <u>either</u> a < b, <u>or</u> a = b, <u>or</u> a > b

□ Trichotomy property <u>does not hold</u> for asymptotic notation

For two functions f(n) & g(n), it may be the case that $\underbrace{neither} f(n) = O(g(n)) \underbrace{nor} f(n) = \Omega(g(n)) \underbrace{holds}$

e.g. n and $n^{1+\sin(n)}$ cannot be compared asymptotically

Asymptotic Comparison of Functions

(Similar to the relational properties of real numbers)

Transitivity: holds for all

e.g.,
$$f(n) = \Theta(g(n)) \& g(n) = \Theta(h(n)) \Rightarrow f(n) = \Theta(h(n))$$

Reflexivity: holds for Θ , O, Ω

e.g.,
$$f(n) = O(f(n))$$

Symmetry: holds only for Θ

e.g.,
$$f(n) = \Theta(g(n)) \Leftrightarrow g(n) = \Theta(f(n))$$

<u>Transpose symmetry</u>: holds for $(O \leftrightarrow \Omega)$ and $(o \leftrightarrow \omega)$)

e.g.,
$$f(n) = O(g(n)) \Leftrightarrow g(n) = \Omega(f(n))$$

Using O-Notation to Describe Running Times

- □ Used to bound worst-case running times
 - Implies an upper bound runtime for arbitrary inputs as well

□ Example:

"Insertion sort has worst-case runtime of O(n²)"

Note: This $O(n^2)$ upper bound also applies to its running time on every input.

Using O-Notation to Describe Running Times

- \square Abuse to say "running time of insertion sort is $O(n^2)$ "
- □ For a given n, the actual running time <u>depends on</u> the particular input of size n
 - i.e., running time is not only a function of n

□ However, worst-case running time is only a function of n

Using O-Notation to Describe Running Times

□ When we say:

"Running time of insertion sort is $O(n^2)$ ",

what we really mean is:

"Worst-case running time of insertion sort is $O(n^2)$ "

or equivalently:

"No matter what particular input of size n is chosen, the running time on that set of inputs is $O(n^2)$ "

Using Ω -Notation to Describe Running Times

- □ Used to bound best-case running times
 - Implies a lower bound runtime for arbitrary inputs as well

Example:

"Insertion sort has best-case runtime of $\Omega(n)$ "

Note: This $\Omega(n)$ lower bound also applies to its running time on every input.

Using Ω -Notation to Describe Running Times

□ When we say:

"Running time of algorithm A is $\Omega(g(n))$ ",

what we mean is:

"For any input of size n, the runtime of A is <u>at</u> <u>least</u> a constant times g(n) for sufficiently large n"

Using Ω -Notation to Describe Running Times

□ *Note*: It's not contradictory to say:

"worst-case running time of insertion sort is $\Omega(n^2)$ "

because there exists an input that causes the algorithm to take $\Omega(n^2)$.

Using Θ-Notation to Describe Running Times

- □ Consider 2 cases about the runtime of an algorithm:
- □ Case 1: Worst-case and best-case not asymptotically equal
 - \rightarrow Use Θ -notation to bound worst-case and best-case runtimes separately
- □ Case 2: Worst-case and best-case asymptotically equal
 - \rightarrow Use Θ -notation to bound the runtime for any input

Using Θ-Notation to Describe Running Times Case 1

- □ Case 1: Worst-case and best-case not asymptotically equal
 - \rightarrow Use Θ -notation to bound the worst-case and best-case runtimes <u>separately</u>
 - We can say:
 - "The worst-case runtime of insertion sort is $\Theta(n^2)$ "
 - "The best-case runtime of insertion sort is $\Theta(n)$ "
 - But, we can't say:
 - "The runtime of insertion sort is $\Theta(n^2)$ for every input"
 - **Δ** Θ-bound on worst-/best-case running time does not apply to its running time on arbitrary inputs

Using Θ-Notation to Describe Running Times Case 2

- □ Case 2: Worst-case and best-case asymptotically equal
 - \rightarrow Use Θ -notation to bound the runtime for any input
 - e.g. For merge-sort, we have:

$$T(n) = O(nlgn)$$

$$T(n) = \Omega(nlgn)$$

$$T(n) = \Theta(nlgn)$$

Using Asymptotic Notation to Describe Runtimes Summary

- \square "The worst case runtime of Insertion Sort is $O(n^2)$ "
 - \triangleright Also implies: "The runtime of Insertion Sort is $O(n^2)$ "
- \square "The best-case runtime of Insertion Sort is $\Omega(n)$ "
 - \triangleright Also implies: "The runtime of Insertion Sort is $\Omega(n)$ "
- \square "The worst case runtime of Insertion Sort is $\Theta(n^2)$ "
 - \triangleright But: "The runtime of Insertion Sort is not $\Theta(n^2)$ "
- \square "The <u>best case</u> runtime of Insertion Sort is $\Theta(n)$ "
 - \triangleright But: "The runtime of Insertion Sort is not $\Theta(n)$ "

Using Asymptotic Notation to Describe Runtimes Summary

- \Box "The worst case runtime of Merge Sort is $\Theta(nlgn)$ "
- "The <u>best case</u> runtime of Merge Sort is Θ(nlgn)"
- \Box "The runtime of Merge Sort is $\Theta(nlgn)$ "
 - > This is true, because the best and worst case runtimes have asymptotically the same tight bound $\Theta(nlgn)$

Asymptotic Notation in Equations

- Asymptotic notation appears <u>alone on the RHS</u> of an equation:
 - > implies set membership

e.g.,
$$n = O(n^2)$$
 means $n \in O(n^2)$

- Asymptotic notation appears on the RHS of an equation
 - □ stands for <u>some</u> anonymous function in the set

e.g.,
$$2n^2 + 3n + 1 = 2n^2 + \Theta(n)$$
 means: $2n^2 + 3n + 1 = 2n^2 + h(n)$, for some $h(n) \in \Theta(n)$ *i.e.*, $h(n) = 3n + 1$

Asymptotic Notation in Equations

- Asymptotic notation appears on the LHS of an equation:
 - > stands for <u>any</u> anonymous function in the set

e.g.,
$$2n^2 + \Theta(n) = \Theta(n^2)$$
 means:
for any function $g(n) \in \Theta(n)$
 \exists some function $h(n) \in \Theta(n^2)$
such that $2n^2 + g(n) = h(n)$

RHS provides coarser level of detail than LHS