CS473 - Algorithms I

Lecture 3
Solving Recurrences

Solving Recurrences

- Reminder: Runtime ($\mathrm{T}(\mathrm{n})$) of MergeSort was expressed as a recurrence

$$
T(n)=\left\{\begin{array}{cl}
\theta(1) & \text { if } n=1 \\
2 \cdot T(n / 2)+\theta(n) & \text { otherwise }
\end{array}\right.
$$

- Solving recurrences is like solving differential equations, integrals, etc.
- Need to learn a few tricks

Recurrences

- Recurrence: An equation or inequality that describes a function in terms of its value on smaller inputs.
- Example:

$$
T(n)= \begin{cases}1 & \text { if } n=1 \\ T(\lceil n / 2\rceil)+1 & \text { if } n>1\end{cases}
$$

Recurrence - Example

$$
T(n)= \begin{cases}1 & \text { if } n=1 \\ T(\lceil n / 2\rceil)+1 & \text { if } n>1\end{cases}
$$

- Simplification: Assumen $=2^{k}$
- Claimed answer: $\mathrm{T}(\mathrm{n})=\operatorname{lgn}+1$
- Substitute claimed answer in the recurrence:

$$
\lg n+1=\left\{\begin{array}{ll}
1 & \text { if } n=1 \\
\lg [n / 2\rceil)+2 & \text { if } n>1
\end{array} \quad \text { True when } n=2^{k}\right.
$$

Technicalities: Floor/Ceiling

- Technically, should be careful about the floor and ceiling functions (as in the book).
- E.g., for merge sort, the recurrence should in fact be:

$$
T(n)= \begin{cases}\theta(1) & \text { if } n=1 \\ T(\lceil n / 2\rceil)+T(\lfloor n / 2\rfloor)+\theta(n) & \text { if } n>1\end{cases}
$$

- But, it's usually ok to:
- ignore floor/ceiling
- solve for exact powers of 2 (or another number)

Technicalities: Boundary Conditions

- Usually assume: $T(n)=\Theta$ (1) for sufficiently small n
- Changes the exact solution, but usually the asymptotic solution is not affected (e.g. if polynomially bounded)
- For convenience, the boundary conditions generally implicitly stated in a recurrence

$$
T(n)=2 T(n / 2)+\Theta(n)
$$

assuming that
$T(n)=\Theta(1)$ for sufficiently small n

Example: When Boundary Conditions Matter

- Exponential function: $\mathrm{T}(\mathrm{n})=(\mathrm{T}(\mathrm{n} / 2))^{2}$
- Assume $T(1)=c$ (where c is a positive constant).

$$
\begin{aligned}
& \mathrm{T}(2)=(\mathrm{T}(1))^{2}=\mathrm{c}^{2} \\
& \mathrm{~T}(4)=(\mathrm{T}(2))^{2}=\mathrm{c}^{4} \\
& \mathrm{~T}(\mathrm{n})=\Theta\left(\mathrm{c}^{\mathrm{n}}\right)
\end{aligned}
$$

E.g.,

$$
\begin{aligned}
& T(1)=1 \Longrightarrow T(n)=\Theta\left(1^{n}\right)=\Theta(1) \\
& T(1)=2 \Longrightarrow T(n)=\Theta\left(2^{n}\right) \\
& T(1)=3 \Longrightarrow T(n)=\Theta\left(3^{n}\right)
\end{aligned}
$$

- Difference in solution more dramatic when $\mathrm{c}=1$

Solving Recurrences

- We will focus on 3 techniques in this lecture:

1. Substitution method
2. Recursion tree approach
3. Master method

Substitution Method

- The most general method:

1. Guess
2. Prove by induction
3. Solve for constants

Substitution Method: Example

Solve $T(n)=4 T(n / 2)+n($ assume $T(1)=\Theta(1))$

1. Guess $\mathrm{T}(\mathrm{n})=\mathrm{O}\left(\mathrm{n}^{3}\right)$ (need to prove O and Ω separately)
2. Prove by induction that $T(n) \leq \mathrm{cn}^{3}$ for large n (i.e. $\mathrm{n} \geq \mathrm{n}_{0}$)

Inductive hypothesis: $\mathrm{T}(\mathrm{k}) \leq \mathrm{ck}^{3}$ for any $\mathrm{k}<\mathrm{n}$

Assuming ind. hyp. holds, prove $\mathrm{T}(\mathrm{n}) \leq \mathrm{cn}^{3}$

Substitution Method: Example - cont'd

Original recurrence: $T(n)=4 T(n / 2)+n$

From inductive hypothesis: $T(n / 2) \leq c(n / 2)^{3}$
Substitute this into the original recurrence:

$$
\begin{aligned}
& \mathrm{T}(\mathrm{n}) \leq 4 c(n / 2)^{3}+n \\
&=(\mathrm{c} / 2) \mathrm{n}^{3}+\mathrm{n} \\
&= \mathrm{cn}^{3}-\left((\mathrm{c} / 2) \mathrm{n}^{3}-\mathrm{n}\right) \\
& \leq \mathrm{cn}{ }^{3} \\
& \quad \quad \text { when }\left((\mathrm{c} / 2) \mathrm{n}^{3}-\mathrm{n}\right) \geq 0
\end{aligned}
$$

Substitution Method: Example - cont'd

- So far, we have shown:

$$
T(n) \leq c n^{3} \quad \text { when }\left((c / 2) n^{3}-n\right) \geq 0
$$

- We can choose $\mathrm{c} \geq 2$ and $\mathrm{n}_{0} \geq 1$
- But, the proof is not complete yet.
- Reminder: Proof by induction:

1. Prove the base cases \longrightarrow haven't proved
2. Inductive hypothesis for smaller sizes the base cases yet
3. Prove the general case

Substitution Method: Example - cont'd

- We need to prove the base cases

Base: $T(n)=\Theta(1)$ for small $n\left(e . g\right.$. for $\left.n=n_{0}\right)$

- We should show that:

$$
" \Theta(1) " \leq c n^{3} \quad \text { for } \mathrm{n}=\mathrm{n}_{0}
$$

This holds if we pick c big enough

- So, the proof of $T(n)=O\left(n^{3}\right)$ is complete.
- But, is this a tight bound?

Example: A tighter upper bound?

- Original recurrence: $T(n)=4 T(n / 2)+n$
- Try to prove that $\mathrm{T}(\mathrm{n})=\mathrm{O}\left(\mathrm{n}^{2}\right)$,

$$
\text { i.e. } T(n) \leq c n^{2} \text { for all } n \geq n_{0}
$$

- Ind. hyp: Assume that $T(k) \leq k^{2}$ for $k<n$
- Prove the general case: $\mathrm{T}(\mathrm{n}) \leq \mathrm{cn}^{2}$

Example (cont'd)

- Original recurrence: $T(n)=4 T(n / 2)+n$
- Ind. hyp: Assume that $T(k) \leq k^{2}$ for $k<n$
- Prove the general case: $T(n) \leq \mathrm{cn}^{2}$

$$
\begin{aligned}
T(n) & =4 T(n / 2)+n \\
& \leq 4 c(n / 2)^{2}+n \\
= & c n^{2}+n \\
= & \text { of }
\end{aligned}
$$

Example (cont'd)

- Original recurrence: $T(n)=4 T(n / 2)+n$
- Ind. hyp: Assume that $T(k) \leq k^{2}$ for $k<n$
- Prove the general case: $T(n) \leq c n^{2}$
- So far, we have:
$T(n) \leq n^{2}+n$
No matter which positive c value we choose, this does not show that $\mathrm{T}(\mathrm{n}) \leq \mathrm{cn}^{2}$

Proof failed?

Example (cont'd)

- What was the problem?
\square The inductive hypothesis was not strong enough
- Idea: Start with a stronger inductive hypothesis
- Subtract a low-order term
- Inductive hypothesis: $T(k) \leq c_{1} k^{2}-c_{2} k$ for $k<n$
- Prove the general case: $T(n) \leq c_{1} n^{2}-c_{2} n$

Example (cont'd)

- Original recurrence: $T(n)=4 T(n / 2)+n$
- Ind. hyp: Assume that $T(k) \leq c_{1} k^{2}-c_{2} k$ for $k<n$
- Prove the general case: $T(n) \leq c_{1} n^{2}-c_{2} n$

$$
\begin{aligned}
T(n) & =4 T(n / 2)+n \\
\leq & 4\left(c_{1}(n / 2)^{2}-c_{2}(n / 2)\right)+n \\
= & c_{1} n^{2}-2 c_{2} n+n \\
= & c_{1} n^{2}-c_{2} n-\left(c_{2} n-n\right) \\
\leq & c_{1} n^{2}-c_{2} n \quad \text { for } n\left(c_{2}-1\right) \geq 0 \\
\quad & \quad \text { choose } c_{2} \geq 1
\end{aligned}
$$

Example (cont'd)

- We now need to prove

$$
\mathrm{T}(\mathrm{n}) \leq \mathrm{c}_{1} \mathrm{n}^{2}-\mathrm{c}_{2} \mathrm{n}
$$

for the base cases.

$$
\begin{aligned}
& \mathrm{T}(\mathrm{n})=\Theta(1) \text { for } 1 \leq \mathrm{n} \leq \mathrm{n}_{0} \text { (implicit assumption) } \\
& \text { " } \Theta(1) \text { " } \leq \mathrm{c}_{1} \mathrm{n}^{2}-\mathrm{c}_{2} \mathrm{n} \quad \text { for } \mathrm{n} \text { small enough (e.g. } \mathrm{n}=\mathrm{n}_{0} \text {) } \\
& \quad \text { We can choose } \mathrm{c}_{1} \text { large enough to make this hold }
\end{aligned}
$$

- We have proved that $T(n)=O\left(n^{2}\right)$

Substitution Method: Example 2

- For the recurrence $T(n)=4 T(n / 2)+n$, prove that $T(n)=\Omega\left(n^{2}\right)$ i.e. $T(n) \geq c n^{2}$ for any $n \geq n_{0}$
- Ind. hyp: $T(k) \geq \mathrm{ck}^{2}$ for any $k<n$
- Prove general case: $T(n) \geq c n^{2}$

$$
\begin{aligned}
T(n) & =4 T(n / 2)+n \\
\geq & 4 c(n / 2)^{2}+n \\
= & \mathrm{cn}^{2}+n \\
\geq & \mathrm{cn}^{2} \quad \text { since } n>0
\end{aligned}
$$

Proof succeeded - no need to strengthen the ind. hyp as in previous example

Example 2 (cont'd)

- We now need to prove that

$$
\begin{aligned}
& \mathrm{T}(\mathrm{n}) \geq \mathrm{cn}^{2} \\
& \text { for the base cases }
\end{aligned}
$$

```
\(\mathrm{T}(\mathrm{n})=\Theta(1)\) for \(1 \leq \mathrm{n} \leq \mathrm{n}_{0}\) (implicit assumption)
" \(\Theta(1)\) " \(\geq \mathrm{cn}^{2}\) for \(\mathrm{n}=\mathrm{n}_{0}\)
```

n_{0} is sufficiently small (i.e. constant)
We can choose c small enough for this to hold

- We have proved that $T(n)=\Omega\left(n^{2}\right)$

Substitution Method - Summary

1. Guess the asymptotic complexity
2. Prove your guess using induction
3. Assume inductive hypothesis holds for $\mathrm{k}<\mathrm{n}$
4. Try to prove the general case for n

Note: MUST prove the EXACT inequality

CANNOT ignore lower order terms

If the proof fails, strengthen the ind. hyp. and try again
3. Prove the base cases (usually straightforward)

Recursion Tree Method

- A recursion tree models the runtime costs of a recursive execution of an algorithm.
- The recursion tree method is good for generating guesses for the substitution method.
- The recursion-tree method can be unreliable.
- Not suitable for formal proofs
- The recursion-tree method promotes intuition, however.

Solve Recurrence: $T(n)=2 T(n / 2)+\boldsymbol{O}(n)$

Solve Recurrence: $T(n)=2 T(n / 2)+\Theta(n)$

Solve Recurrence: $T(n)=2 T(n / 2)+\Theta(n)$

Example of Recursion Tree

$$
\text { Solve } T(n)=T(n / 4)+T(n / 2)+n^{2}
$$

Example of Recursion Tree

Solve $T(n)=T(n / 4)+T(n / 2)+n^{2}$:

$$
T(n)
$$

Example of Recursion Tree

Solve $T(n)=T(n / 4)+T(n / 2)+n^{2}$:

Example of Recursion Tree

Solve $T(n)=T(n / 4)+T(n / 2)+n^{2}$:

Example of Recursion Tree

Solve $T(n)=T(n / 4)+T(n / 2)+n^{2}$:

Example of Recursion Tree

Solve $T(n)=T(n / 4)+T(n / 2)+n^{2}$:

Example of Recursion Tree

Solve $T(n)=T(n / 4)+T(n / 2)+n^{2}$:

Example of Recursion Tree

Solve $T(n)=T(n / 4)+T(n / 2)+n^{2}$:

Example of Recursion Tree

Solve $T(n)=T(n / 4)+T(n / 2)+n^{2}$:

$\Theta(1)$
Total $=\mathrm{n}^{2}\left(1+5 / 16+(5 / 16)^{2}+(5 / 16)^{3}+\ldots\right)$ $=\Theta\left(\mathrm{n}^{2}\right) \quad$ geometric series

The Master Method

- A powerful black-box method to solve recurrences.
- The master method applies to recurrences of the form

$$
T(n)=a T(n / b)+f(n)
$$

where $a \geq 1, b>1$, and f is asymptotically positive.

The Master Method: 3 Cases

- Recurrence: $T(n)=a T(n / b)+f(n)$
- Compare $f(n)$ with $n^{\log _{b} a}$
- Intuitively:

Case 1: $f(n)$ grows polynomially slower than $n^{\log _{b} a}$
Case 2: $f(n)$ grows at the same rate as $n^{\log _{b} a}$
Case 3: $f(n)$ grows polynomially faster than $n^{\log _{b} a}$

The Master Method: Case 1

- Recurrence: $T(n)=a T(n / b)+f(n)$

Case 1: $\frac{n^{\log _{b} a}}{f(n)}=\Omega\left(n^{\epsilon}\right)$ for some constant $\epsilon>0$
i.e., $f(n)$ grows polynomially slower than (by an n^{ε} factor).

Solution: $\quad T(n)=\Theta\left(n^{\log _{b} a}\right)$

The Master Method: Case 2 (simple version)

- Recurrence: $T(n)=a T(n / b)+f(n)$

Case 2: $\quad \frac{f(n)}{n^{\log _{b} a}}=\Theta(1)$
i.e., $f(n)$ and $n^{\log _{b} a}$ grow at similar rates

Solution: $T(n)=\Theta\left(n^{\log _{b} a} \lg n\right)$

The Master Method: Case 3

Case 3: $\frac{f(n)}{n^{\log _{b} a}}=\Omega\left(n^{\epsilon}\right)$ for some constant $\varepsilon>0$
i.e., $f(n)$ grows polynomially faster than $n^{\log _{b} a}$ (by an n^{ε} factor).
and the following regularity condition holds:

$$
a f(n / b) \leq \mathrm{c} f(n) \text { for some constant } \mathrm{c}<1
$$

Solution: $T(n)=\Theta(f(n))$

Example: $T(n)=4 T(n / 2)+n$

$$
\begin{aligned}
a & =4 \\
b & =2 \\
f(n) & =n \\
n^{\prime g_{b} a} a & =n^{2}
\end{aligned}
$$

$$
\mathrm{f}(\mathrm{n}) \text { grows polynomially slower than } n^{\log _{b} a}
$$

$$
\frac{n^{\log _{b} a}}{f(n)}=\frac{n^{2}}{n}=n=\Omega\left(n^{\epsilon}\right)
$$

$$
\text { for } \varepsilon=1
$$

\Rightarrow CASE 1
$\Rightarrow T(n)=\Theta\left(n^{\log _{b} a}\right)$

$$
T(n)=\Theta\left(n^{2}\right)
$$

Example: $T(n)=4 T(n / 2)+n^{2}$

$$
\begin{aligned}
a & =4 \\
b & =2 \\
f(n) & =n^{2} \\
n^{\log _{b} a} & =n^{2}
\end{aligned} \quad \mathrm{f}(\mathrm{n}) \text { grows at similar rate as } n^{\log _{b} a}
$$

CASE 2

$$
\Rightarrow T(n)=\Theta\left(n^{\log _{b} a} \log n\right)
$$

$$
T(n)=\Theta\left(n^{2} \log n\right)
$$

Example: $T(n)=4 T(n / 2)+n^{3}$

$$
\begin{aligned}
a & =4 \\
b & =2 \\
f(n) & =n^{3} \\
n^{\log _{b} a} & =n^{2}
\end{aligned}
$$

$\mathrm{f}(\mathrm{n})$ grows polynomially faster than $n^{\log _{b} a}$

$$
\begin{array}{r}
f(n)=\frac{f(n)}{n^{\log _{b} a}}=\frac{n^{3}}{n^{2}}=n=\Omega\left(n^{\epsilon}\right) \\
\\
\text { for } \varepsilon=1
\end{array}
$$

seems like CASE 3, but need to check the regularity condition

Regularity condition: $a f(n / b) \leq \mathrm{c} f(n)$ for some constant $\mathrm{c}<1$
$4(\mathrm{n} / 2)^{3} \leq \mathrm{cn}^{3}$ for $\mathrm{c}=1 / 2$
\Rightarrow CASE 3
$\Rightarrow \mathrm{T}(\mathrm{n})=\Theta(\mathrm{f}(\mathrm{n}))$
$T(n)=\Theta\left(n^{3}\right)$

Example: $T(n)=4 T(n / 2)+n^{2} / \operatorname{lgn}$

$$
\begin{aligned}
& a=4 \\
& b=2 \\
& \mathrm{f}(\mathrm{n}) \text { grows slower than } n^{\log _{b} a} \\
& \text { but is it polynomially slower? } \\
& f(n)=\frac{n^{\log _{b} a}}{f(n)}=\frac{n^{2}}{\frac{n^{2}}{\lg n}}=\lg n \neq \Omega\left(n^{\epsilon}\right) \\
& \text { for any } \varepsilon>0
\end{aligned}
$$

The Master Method: Case 2 (general version)

- Recurrence: $T(n)=a T(n / b)+f(n)$

Case 2: $\frac{f(n)}{n^{\log _{b} a}}=\Theta\left(\lg ^{k} n\right)$ for some constant $k \geq 0$

$$
\underline{\text { Solution: }} T(n)=\Theta\left(n^{\log _{b} a} \lg ^{k+1} n\right)
$$

General Method (Akra-Bazzi)

$$
T(n)=\sum_{i=1}^{k} a_{i} T\left(n / b_{i}\right)+f(n)
$$

Let p be the unique solution to

$$
\sum_{i=1}^{k}\left(a_{i} / b_{i}^{p}\right)=1
$$

Then, the answers are the same as for the master method, but with n^{p} instead of $n^{\log _{b} a}$
(Akra and Bazzi also prove an even more general result.)

Idea of Master Theorem

Idea of Master Theorem

Idea of Master Theorem

Idea of Master Theorem

Recursion tree:

$h=\log _{\mathrm{b}} n$

CASE 3 : The weight decreases

 geometrically from the root to the leaves. The root holds a constant fraction of the total weight.$$
n^{\log _{b} a} T(1)
$$

Conclusion

- Next time: applying the master method.

