CS473 - Algorithms I

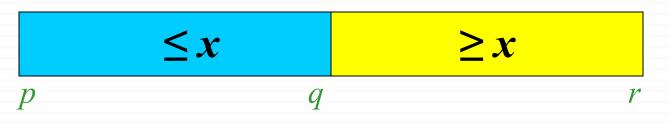
Lecture 6-a Analysis of Quicksort

View in slide-show mode

CS 473 – Lecture 6

Analysis of Quicksort

QUICKSORT (A, p, r) if p < r then $q \leftarrow$ H-PARTITION(A, p, r) QUICKSORT(A, p, q) QUICKSORT(A, q+1, r)



Assume *all elements are distinct* in the following analysis

CS 473 – Lecture 6	Cevdet Aykanat and Mustafa Ozdal
	Computer Engineering Department, Bilkent University

Question

QUICKSORT (A, p, r) if p < r then $q \leftarrow \text{H-PARTITION}(A, p, r)$ QUICKSORT(A, p, q) QUICKSORT(A, q +1, r)

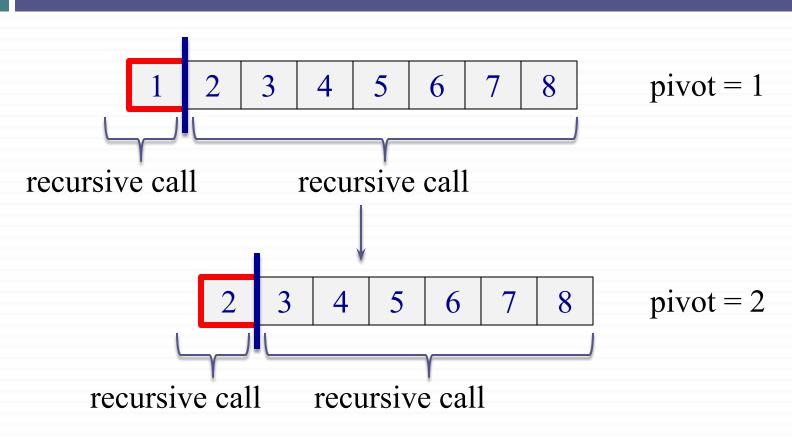
Q: Remember that H-PARTITION always chooses A[p] (the first element) as the **pivot**. What is the runtime of QUICKSORT on an already-sorted array?

★a) Θ(n)★b) Θ(nlogn)

vc) $\Theta(n^2)$

*****d) cannot provide a tight bound

Example: An Already Sorted Array



Partitioning always leads to 2 parts of size 1 and n-1

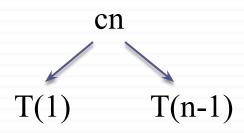
CD 475 Lecture 0	CS 473	– Lecture 6
------------------	--------	-------------

Worst Case Analysis of Quicksort

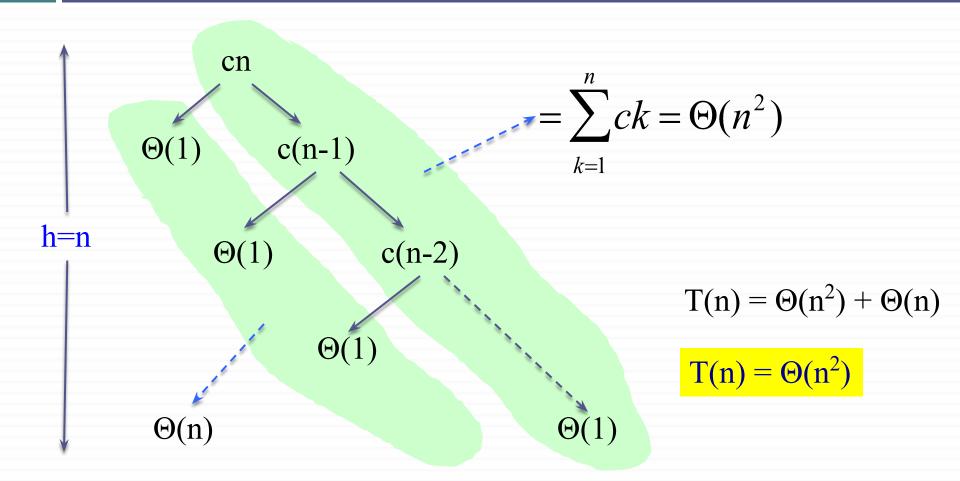
- <u>Worst case</u> is when the <u>PARTITION</u> algorithm always returns imbalanced partitions (of size 1 and n-1) in every recursive call
 - This happens when the pivot is selected to be either the min or max element.
 - This happens for H-PARTITION when the input array is already sorted or reverse sorted

 $T(n) = T(1) + T(n-1) + \Theta(n)$ = T(n-1) + $\Theta(n)$ = $\Theta(n^2)$ (arithmetic series)

Worst Case Recursion Tree T(n) = T(1) + T(n-1) + cn



Worst Case Recursion Tree T(n) = T(1) + T(n-1) + cn



CS 473 – Leo	cture 6
--------------	---------

Best Case Analysis (for intuition only)

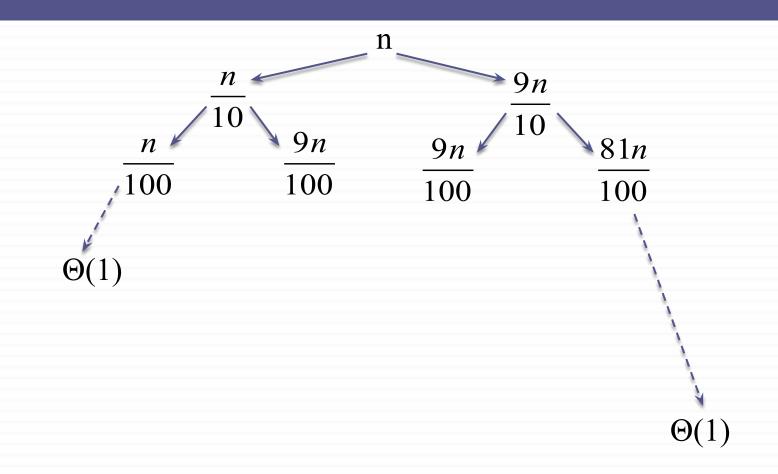
 If we're <u>extremely lucky</u>, H-PARTITION splits the array <u>evenly</u> at <u>every</u> recursive call

 $T(n) = 2 T(n/2) + \Theta(n)$ = $\Theta(nlgn)$ \Box same as merge sort

Instead of splitting 0.5:0.5, what if every split is 0.1:0.9?
 T(n) = T(n/10) + T (9n/10) + Θ(n)
 □ solve this recurrence

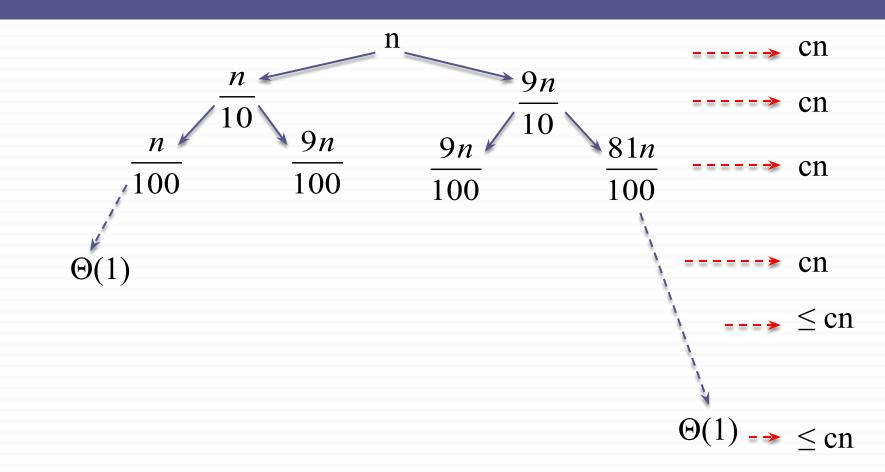
CS 473 – Lecture 6

"Almost-Best" Case Analysis



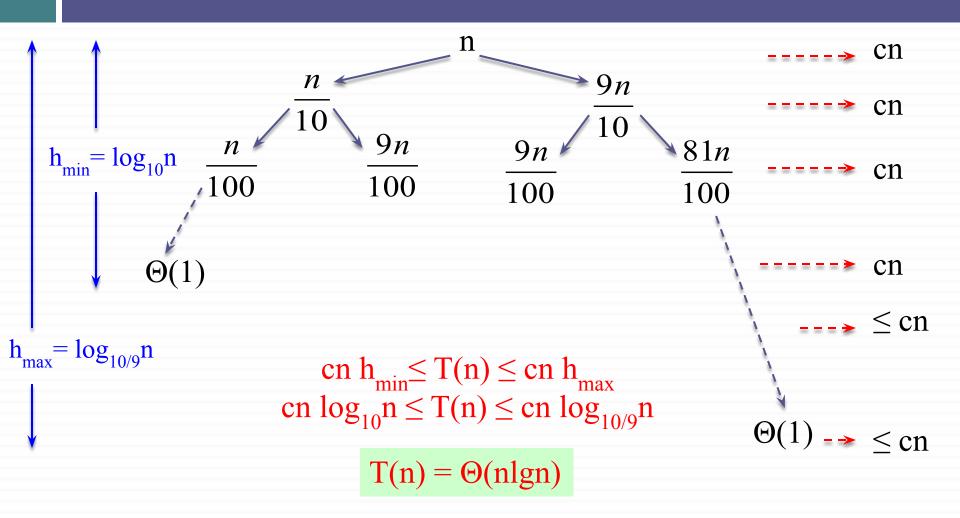
CS 473 – Lecture 6

"Almost-Best" Case Analysis



CS 473 – Lecture 6

"Almost-Best" Case Analysis



CS 473 – Lecture 6

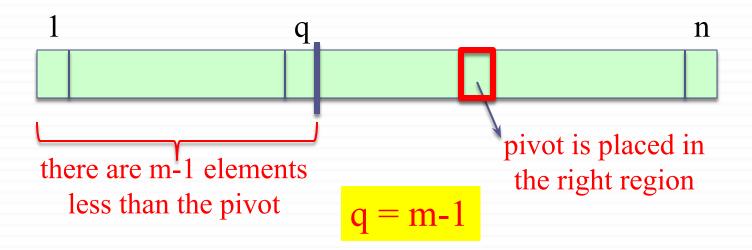
- We have seen that if H-PARTITION always splits the array with 0.1-to-0.9 ratio, the runtime will be Θ(nlgn).
- □ Same is true with a split ratio of 0.01-to-0.99, etc.
- Possible to show that if the split has always constant (

 (1)) proportionality, then the runtime will be O(nlgn).
- In other words, for a <u>constant</u> α ($0 < \alpha \le 0.5$): α -to-(1- α) proportional split yields Θ (nlgn) total runtime

- In the rest of the analysis, assume that *all input permutations* are equally likely.
 - This is only to gain some intuition
 - We cannot make this assumption for average case analysis
 - We will revisit this assumption later
- Also, assume that all input elements are distinct.
- What is the probability that H-PARTITION returns a split that is more balanced than 0.1-to-0.9?

<u>*Reminder*</u>: *H-PARTITION* will place the pivot in the right partition unless the pivot is the smallest element in the arrays.

<u>*Question*</u>: If the pivot selected is the m^{th} smallest value $(1 \le m \le n)$ in the input array, what is the size of the left region after partitioning?



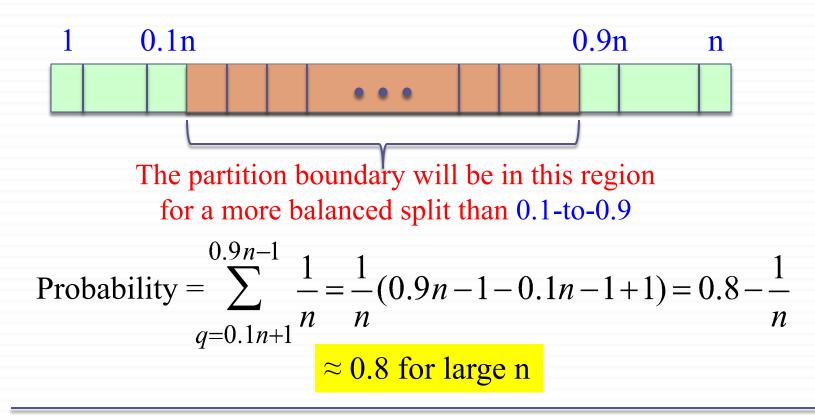
<u>*Question*</u>: What is the probability that the pivot selected is the m^{th} smallest value in the array of size n?

1/n (since all input permutations are equally likely)

<u>*Question*</u>: What is the probability that the left partition returned by H-PARTITION has size m, where 1 < m < n?

1/n (due to the answers to the previous 2 questions)

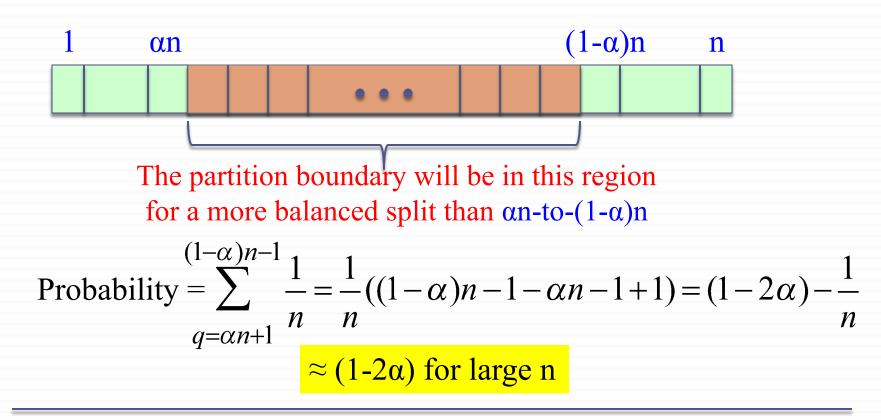
<u>Question</u>: What is the probability that H-PARTITION returns a split that is more balanced than 0.1-to-0.9?



CS 473 – Lecture 6

- The probability that *H-PARTITION* yields a split that is more balanced than 0.1-to-0.9 is 80% on a random array.
- □ Let $P_{\alpha>}$ be the probability that *H-PARTITION* yields a split more balanced than α -to- $(1-\alpha)$, where $0 < \alpha \le 0.5$
- Repeat the analysis to generalize the previous result

<u>Question</u>: What is the probability that H-PARTITION returns a split that is more balanced than α -to-(1- α)?



CS 473 – Lecture 6

We found $P_{\alpha>} = 1 - 2\alpha$ *Examples*: $P_{0.1>} = 0.8$ $P_{0.01>} = 0.98$

Hence, *H-PARTITION* produces a split
 more balanced than a

 0.1-to-0.9 split 80% of the time
 0.01-to-0.99 split 98% of the time

 less balanced than a

 0.1-to-0.9 split 20% of the time
 0.01-to-0.99 split 20% of the time

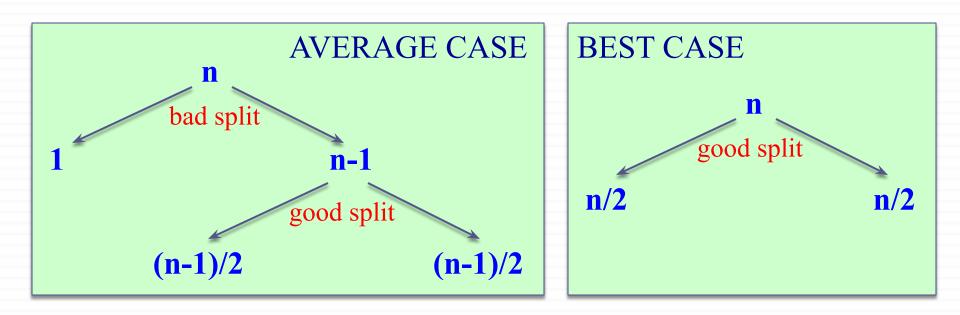
CS 473 – Lecture 6

- <u>Assumption</u>: All permutations are equally likely
 - Only for intuition; we'll revisit this assumption later
- <u>Unlikely</u>: Splits always the same way at every level
- Expectation:

Some splits will be reasonably balanced Some splits will be fairly unbalanced

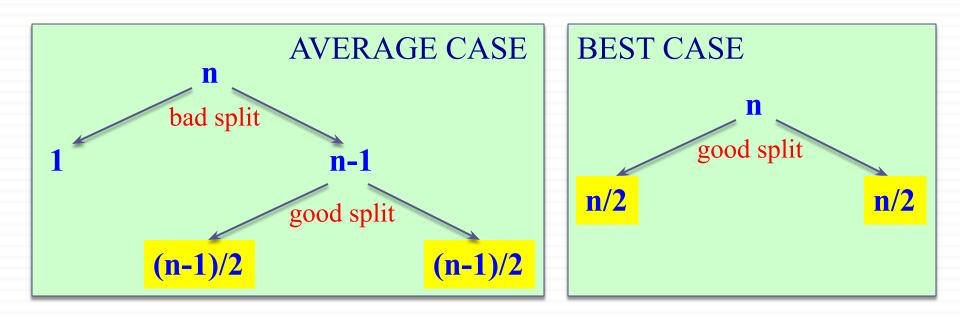
<u>Average case</u>: A mix of good and bad splits
 Good and *bad* splits distributed randomly thru the tree

Assume for intuition: Good and bad splits occur in the alternate levels of the tree
 Good split: Best case split
 Bad split: Worst case split

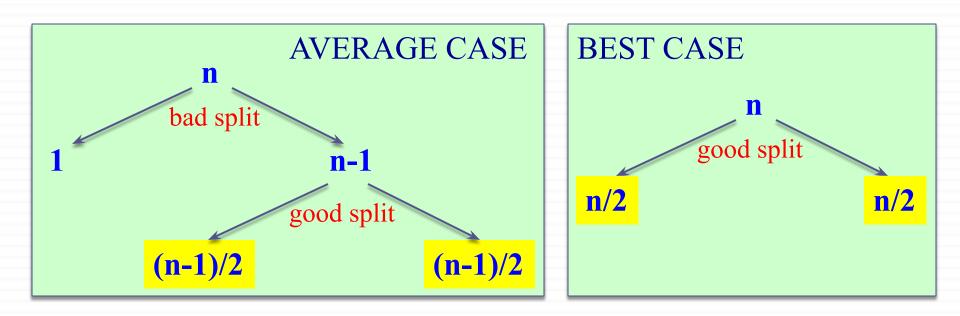


Compare 2-successive levels of avg case vs. 1 level of best case

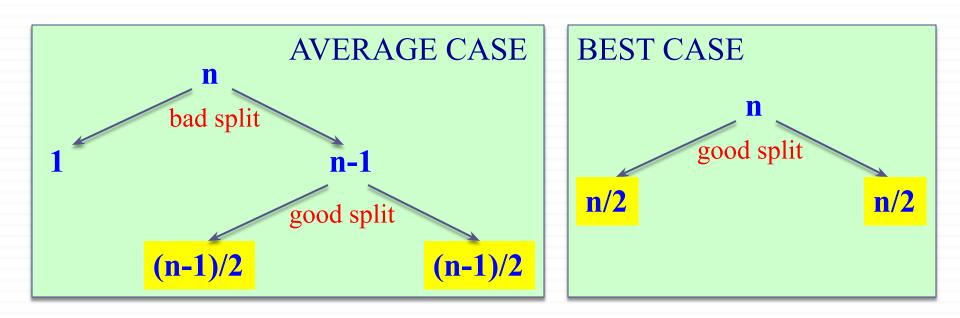
CS 473 – Lecture 6	CS	473	– I	Lect	ure	6
--------------------	----	-----	-----	------	-----	---



- In terms of the remaining subproblems, two levels of avg case is slightly better than the single level of the best case
- The avg case has extra divide cost of $\Theta(n)$ at alternate levels



- The extra divide cost $\Theta(n)$ of bad splits absorbed into the $\Theta(n)$ of good splits.
- □ Running time is still $\Theta(nlgn)$



• Running time is still $\Theta(nlgn)$

 But, slightly larger hidden constants, because the height of the recursion tree is about twice of that of best case.

Another way of looking at it:

Suppose we alternate lucky, unlucky, lucky, unlucky, ... We can write the recurrence as:

 $L(n) = 2 U(n/2) + \Theta(n)$ lucky split (best)

 $U(n) = L(n-1) + \Theta(n)$ unlucky split (worst)

Solving:

 $L(n) = 2 (L(n/2-1) + \Theta(n/2)) + \Theta(n)$

 $= 2L(n/2-1) + \Theta(n)$

 $= \Theta(nlgn)$

How can we make sure we are usually lucky for all inputs?

CS 473 – Lecture 6

Worst case: Unbalanced split at every recursive call $T(n) = T(1) + T(n-1) + \Theta(n)$ $\Box T(n) = \Theta(n^2)$

<u>Best case</u>: Balanced split at <u>every</u> recursive call (extremely lucky)

 $T(n) = 2T(n/2) + \Theta(n)$

 $\Box T(n) = \Theta(nlgn)$

CS 473 – Lecture 6

 $\begin{array}{l} \hline Almost-best \ case \end{array} : \ Almost-balanced \ split \ at \ every \ recursive \ call \\ T(n) = T(n/10) + T(9n/10) + \Theta(n) \\ \hline or \quad T(n) = T(n/100) + T(99n/100) + \Theta(n) \\ \hline or \quad T(n) = T(\alpha n) + T((1-\alpha)n) + \Theta(n) \\ \hline for \ any \ constant \ \alpha, \ 0 < \alpha \le 0.5 \end{array}$

For a <u>random</u> input array, the probability of having a split more balanced than 0.1 - to - 0.9 : 80% more balanced than 0.01 - to - 0.99 : 98% more balanced than $\alpha - to - (1-\alpha) : 1 - 2\alpha$ *for any constant* α , $0 < \alpha \le 0.5$

Avg case intuition: Different splits expected at different levels

some balanced (good), some unbalanced (bad)

Avg case intuition: Assume the good and bad splits alternate i.e. good split □ bad split □ good split □ ... □ T(n) = Θ(nlgn) (informal analysis for intuition)

CS 473 – Lecture 6