CS473 - Algorithms |

Lecture 6-a
Analysis of Quicksort

View in slide-show mode

CS 473 — Lecture 6 Cevdgt A}{kanat and Mustafg Ozdal o 1
Computer Engineering Department, Bilkent University

Analysis of Quicksort
N

QUICKSORT (A, p, r)
if p <r then
q < H-PARTITION(A, p, r)
QUICKSORT(A, p, q)
QUICKSORT(A, g +1, r)
P q r

Assume all elements are distinct in the following analysis

CS 473 — Lecture 6 Cevdpt Ay.kanat and Mustafg Ozdal o 2
Computer Engineering Department, Bilkent University

Question

-4
QUICKSORT (A, p, r)
if p <r then
q < H-PARTITION(A, p, r)
QUICKSORT(A, p, q)
QUICKSORT(A, g +1, r)

Q: Remember that H-PARTITION always chooses A[p] (t/e first
element) as the pivot. What is the runtime of QUICKSORT on an
already-sorted array?

®a) O(n) V) O(n?)
®b) O(nlogn) #d) cannot provide a tight bound
CS 473 — Lecture 6 Cevdet Aykanat and Mustafa Ozdal 3

Computer Engineering Department, Bilkent University

Example: An Already Sorted Array

1
213als]6]7]s pivot = 1
| LI J
| |
recursive call recursive call

l

3[als5]6[7]8] pivot=2
| |
v

|
recursive call recursive call

Partitioning always leads to 2 parts of size 1 and n-1

CS 473 — Lecture 6 Cevdgt A}{kanat and Mustafq Ozdal o 4
Computer Engineering Department, Bilkent University

Worst Case Analysis of Quicksort

-4
o Worst case is when the PARTITION algorithm always returns
imbalanced partitions (of size I and n-1) in every recursive call

1 This happens when the pivot is selected to be either the min
or max element.

1 This happens for H-PARTITION when the input array 1s
already sorted or reverse sorted

T(n)=T(1) + T(n-1) + O(n)
=T(n-1) + O(n)
= O(n?) (arithmetic series)

CS 473 — Lecture 6 Cevd'et A}{kanat and Mustafg Ozdal o 5
Computer Engineering Department, Bilkent University

Worst Case Recursion Tree

T(n)=T(1) + T(n-1) + cn
S

N

T(1) T(n-1)

CS 473 — Lecture 6 Cevdpt Ay.kanat and Mustafg Ozdal o 6
Computer Engineering Department, Bilkent University

Worst Case Recursion Tree
T(n)=T(1) + T(n-1) + cn

—
f en n
7\ =) ck=0(n")
o(1) ‘}(nl)\k =
= O(1) c(n-2
P T(n) = O() + O(m)
| O(1) \ | T = O
| em o(1)
CS 473 — Lecture 6 Cevdet Aykanat and Mustafa Ozdal 7

Computer Engineering Department, Bilkent University

Best Case Analysis (for intuition only)

|
- If we’re extremely lucky, H-PARTITION splits the array

evenly at every recursive call

T(n) =2 T(n/2) + O(n)

= ®(nlgn) | same as merge sort

- Instead of splitting 0.5:0.5, what 1f every split 1s 0.1:0.9?
T(n) =T(n/10) + T (9n/10) + O(n)

"] solve this recurrence

CS 473 — Lecture 6 Cevdgt A}{kanat and Mustafg Ozdal o 8
Computer Engineering Department, Bilkent University

“Almost-Best” Case Analysis
N
n
i‘/ \ On
n‘//IO\\EﬁL Eﬁil/lox\\§lg

<100 100 100 100
¢ \
¢ \
\
A1) 3
\\
\
\
\
\
\
Y
O(1)
CS 473 — Lecture 6 Cevdet Aykanat and Mustafa Ozdal 9

Computer Engineering Department, Bilkent University

“Almost-Best” Case Analysis
1

n_. _____. > Cn

/ \971
/10\ 9n On /10\8171 B

— —— =====3 > cn
. 100 100 100 100
// \\
4 \\
@(1) . > Cn
\
v ---» Scn
\
\
\
g
@(1) - < cn
CS 473 — Lecture 6 Cevdet Aykanat and Mustafa Ozdal 10

Computer Engineering Department, Bilkent University

“Almost-Best” Case Analysis

0 [n_. i3 > CI

— =====3 > Ch
//10\\5%1 Shz//lo\\\Sln

hmin: log 1 0n

/100 100 100 00 - on
4 \\
@(1) \\\ ______ > Cn
Vv ---» <cn
h — 1 \
max | 0S109"" cn hminﬁ T(n) <cn hmaX \
cnlog. n<T(n)<cnlo n \
l glO () g10/9 @(1) > <ecn

T(n) = O(nlgn)

CS 473 — Lecture 6 Cevdgt Ay.kanat and Mustafg Ozdal o 11
Computer Engineering Department, Bilkent University

Balanced Partitioning

4]
- We have seen that if H-PARTITION always splits the

array with 0.1-t0-0.9 ratio, the runtime will be @(nlgn).

- Same 1s true with a split ratio of 0.01-t0-0.99, etc.

- Possible to show that 1f the split has always constant (©®
(1)) proportionality, then the runtime will be ®(nlgn).

5 In other words, for a constant o (0 <o <0.5):

a—to—(1-a) proportional split yields ®(nlgn) total runtime

CS 473 — Lecture 6 CeVd'et Ay.kanat and Mustafg Ozdal o 12
Computer Engineering Department, Bilkent University

Balanced Partitioning
N

5 In the rest of the analysis, assume that a/l input permutations
are equally likely.

0 This 1s only to gain some intuition
0 We cannot make this assumption for average case analysis

0 We will revisit this assumption later

- Also, assume that all input elements are distinct.

- What 1s the probability that H-PARTITION returns a split
that 1s more balanced than 0.1-to-0.9?

Cevdet Aykanat and Mustafa Ozdal 13

CS 473 — Lecture 6 , _ . : :
Computer Engineering Department, Bilkent University

Balanced Partitioning

4
Reminder: H-PARTITION will place the pivot in the right partition
unless the pivot is the smallest element in the arrays.

Question: If the pivot selected is the m™ smallest value (1 <m <n) in
the input array, what is the size of the left region after partitioning?

1 q n

|

\ l

there are m!1 elements
less than the pivot q= m-1

pivot is placed in
the right region

CS 473 — Lecture 6 Cevdgt A}{kanat and Mustafq Ozdal o 14
Computer Engineering Department, Bilkent University

Balanced Partitioning

-4
Question: What 1s the probability that the pivot selected 1s the
m™ smallest value in the array of size n?

I/m (since all input permutations are equally likely)

Question: What 1s the probability that the left partition returned
by H-PARTITION has size m, where 1 <m <n?

I/m (due to the answers to the previous 2 questions)

CS 473 — Lecture 6 Cevdgt A}{kanat and Mustafq Ozdal o 15
Computer Engineering Department, Bilkent University

Balanced Partitioning
_

Question: What is the probability that H-PARTITION
returns a split that 1s more balanced than 0.1-t0-0.9?

| 0.1n 0.9n n
[eee [1]
\ I

The partition boundaYry will be 1n this region
for a more balanced split than 0.1-t0-0.9

0.9n-1 11 |
Probability= Y —=—(0.97-1-0.1n—1+1)=0.8—=
n n n
qg=0.1n+1
~ 0.8 for large n
CS 473 — Lecture 6 Cevdet Aykanat and Mustafa Ozdal 16

Computer Engineering Department, Bilkent University

Balanced Partitioning

4]
- The probability that H-PARTITION yields a split that 1s

more balanced than 0.1-t0-0.9 1s 80% on a random array.

- Let P__ be the probability that /-PARTITION yields a
split more balanced than a-to-(1-a), where 0 <o < 0.5

- Repeat the analysis to generalize the previous result

CS 473 — Lecture 6 Cevd'et A}{kanat and Mustafg Ozdal o 17
Computer Engineering Department, Bilkent University

Balanced Partitioning
_

Question: What is the probability that H-PARTITION
returns a split that 1s more balanced than a-to-(1-a))?

1 on (1-a)n n

\ I

The partition boundaYry will be 1n this region
for a more balanced split than an-to-(1-a)n

(1-c)n-1

. 1 1 1
Probability = Y —=—((—a)n—1—an—1+1)=(1-20)——
n o on n
g=an+l1
~ (1-2a) for large n
CS 473 — Lecture 6 Cevdet Aykanat and Mustafa Ozdal 18

Computer Engineering Department, Bilkent University

Balanced Partitioning

I
- We found Pa> =1-2a

Examples: P, =0.8 P, . =0.98

- Hence, H-PARTITION produces a split

0 more balanced than a

1 0.1-t0-0.9 split 80% of the time

1 0.01-t0-0.99 split 98% of the time
0 less balanced than a

1 0.1-t0-0.9 split 20% of the time

1 0.01-t0-0.99 split 2% of the time

CS 473 — Lecture 6 Cevd'et A}{kanat and Mustafg Ozdal o 19
Computer Engineering Department, Bilkent University

Intuition for the Average Case

]
- Assumption: All permutations are equally likely

0 Only for intuition; we’ll revisit this assumption later

- Unlikely: Splits always the same way at every level

- Expectation:
Some splits will be reasonably balanced
Some splits will be fairly unbalanced

» Average case: A mix of good and bad splits
Good and bad splits distributed randomly thru the tree

CS 473 — Lecture 6 Cevd'et A}{kanat and Mustafg Ozdal o 20
Computer Engineering Department, Bilkent University

Intuition for the Average Case

-4
o Assume for intuition: Good and bad splits occur in

the alternate levels of the tree

Good split: Best case split

Bad split: Worst case split

CS 473 — Lecture 6 Cevdgt A}{kanat and Mustafg Ozdal o 21
Computer Engineering Department, Bilkent University

Intuition for the Average Case

1

n

AVERAGE CASE

ﬂd spN

n-1

Ad spN

(n-1)/2

(n-1)/2

BEST CASE

n

Ad spN

n/2

n/2

Compare 2-successive levels of avg case vs. 1 level of best case

CS 473 — Lecture 6

Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent University

22

Intuition for the Average Case

1

n

AVERAGE CASE

ﬂd spN

n-1

‘A)d spN

(n-1)/2

(n-1)/2

BEST CASE

n

Ad spN

n/2

n/2

5 In terms of the remaining subproblems, two levels of avg case

1s slightly better than the single level of the best case

- The avg case has extra divide cost of ®(n) at alternate levels

CS 473 — Lecture 6

Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

23

Intuition for the Average Case

-
. AVERAGE CASE | | BEST CASE
ﬂd spN n
1 n-1 Ad SPN
A q SPN n/2 n/2
(n-1)/2 (n-1)/2

5 The extra divide cost ®(n) of bad splits absorbed into the ®(n)
of good splits.

5 Running time 1s still O@(nlgn)

CS 473 — Lecture 6 Cevdgt A}{kanat and Mustafq Ozdal o 24
Computer Engineering Department, Bilkent University

Intuition for the Average Case

-
. AVERAGE CASE | | BEST CASE
ﬂd spN n
1 n-1 Ad SPN
A q SPN n/2 n/2
(n-1)/2 (n-1)/2

5 Running time 1s still O(nlgn)
0 But, slightly larger hidden constants, because the height of
the recursion tree 1s about twice of that of best case.

CS 473 — Lecture 6 Cevd'et A}{kanat and Mustafg Ozdal o 25
Computer Engineering Department, Bilkent University

Intuition for the Average Case

]
- Another way of looking at it:

Suppose we alternate lucky, unlucky, lucky, unluckys, ...
We can write the recurrence as:
L(n)=2U®m/2)+0O(Mm) lucky split (best)
U(n) = L(n-1) + O(n) unlucky split (worst)
Solving:
L(n) =2 (L(n/2-1) + ®(n/2)) + O(n)
=2L(n/2-1) + O(n)
= O(nlgn)
How can we make sure we are usually lucky for all inputs?

CS 473 — Lecture 6 Cevdgt A}{kanat and Mustafq Ozdal o 26
Computer Engineering Department, Bilkent University

Summary: Quicksort Runtime Analysis
B

Worst case: Unbalanced split at every recursive call
T(n) =T(1) + T(n-1) + O(n)
| T(n) = ©(n?)

Best case: Balanced split at every recursive call (extremely lucky)
T(n) =2T(n/2) + O(n)
| T(n) = O(nlgn)

CS 473 — Lecture 6 Cevd'et A}{kanat and Mustafg Ozdal o 27
Computer Engineering Department, Bilkent University

Summary: Quicksort Runtime Analysis
B

Almost-best case: Almost-balanced split at every recursive call
T(n) = T(n/10) +TOn/10) + O(n)
or T(n)= T(n/100)+ T(991n/100) + O(n)
or T(n)= T(an) +T((1-a)n) + O(n)
for any constant a, 0 < o < 0.5

] T(n) = O(nlgn)

CS 473 — Lecture 6 Cevd'et A}{kanat and Mustafg Ozdal o 28
Computer Engineering Department, Bilkent University

Summary: Quicksort Runtime Analysis
B

For a random input array, the probability of having a split
more balanced than 0.1 —to—0.9 : 80%
more balanced than 0.01 —to—0.99 : 98%

more balanced than o —to—(1-a):1 -2«

for any constant o, 0 < o0 < 0.5

CS 473 — Lecture 6 Cevd'et A}{kanat and Mustafg Ozdal o 29
Computer Engineering Department, Bilkent University

Summary: Quicksort Runtime Analysis
B

Avg case intuition: Different splits expected at different levels

| some balanced (good), some unbalanced (bad)

Avg case intuition: Assume the good and bad splits alternate

1.e. good split [| bad split [good split [] ...
| T(n) = O(nlgn)

(informal analysis for intuition)

CS 473 — Lecture 6 CeVd'et A}{kanat and Mustafg Ozdal o 30
Computer Engineering Department, Bilkent University

