CS473-Algorithms I

Lecture 6-a
 Analysis of Quicksort
 View in slide-show mode

Analysis of Quicksort

```
QUICKSORT (A, p,r)
    if }p<r\mathrm{ then
    q\leftarrow H-PARTITION(A, }p,r
    QUICKSORT(A, p,q)
    QUICKSORT(A, q+1,r)
```

$\leq \boldsymbol{x}$	$\geq \boldsymbol{x}$
	q

Assume all elements are distinct in the following analysis

Question

QUICKSORT (A, p, r) if $p<r$ then
 $q \leftarrow \mathrm{H}-\mathrm{PARTITION}(\mathrm{A}, p, r)$
 QUICKSORT(A, p, q)
 QUICKSORT(A, $q+1, r$)

Q: Remember that H-PARTITION always chooses $\mathrm{A}[\mathrm{p}]$ (the first element) as the pivot. What is the runtime of QUICKSORT on an already-sorted array?
*a) $\Theta(n)$
Vc) $\Theta\left(n^{2}\right)$
*b) $\Theta(n \log n)$
*d) cannot provide a tight bound

Example: An Already Sorted Array

$$
\text { pivot }=1
$$

recursive call recursive call

Partitioning always leads to 2 parts of size 1 and n-1

Worst Case Analysis of Quicksort

- Worst case is when the PARTITION algorithm always returns imbalanced partitions (of size 1 and n-1) in every recursive call
\square This happens when the pivot is selected to be either the min or max element.
- This happens for H-PARTITION when the input array is already sorted or reverse sorted

$$
\begin{aligned}
\mathrm{T}(\mathrm{n}) & =T(1)+T(\mathrm{n}-1)+\Theta(\mathrm{n}) \\
& =T(\mathrm{n}-1)+\Theta(\mathrm{n}) \\
& =\Theta\left(\mathrm{n}^{2}\right) \quad \text { (arithmetic series) }
\end{aligned}
$$

Worst Case Recursion Tree

$$
\mathrm{T}(\mathrm{n})=\mathrm{T}(1)+\mathrm{T}(\mathrm{n}-1)+\mathrm{cn}
$$

Worst Case Recursion Tree

$$
T(n)=T(1)+T(n-1)+c n
$$

|

$$
\Theta(1) \quad c(n-2)
$$

$$
\mathrm{T}(\mathrm{n})=\Theta\left(\mathrm{n}^{2}\right)+\Theta(\mathrm{n})
$$

$$
\mathrm{T}(\mathrm{n})=\Theta\left(\mathrm{n}^{2}\right)
$$

Best Case Analysis (for intuition only)

- If we're extremely lucky, H-PARTITION splits the array evenly at every recursive call

$$
\begin{aligned}
\mathrm{T}(\mathrm{n}) & =2 \mathrm{~T}(\mathrm{n} / 2)+\Theta(\mathrm{n}) \\
& =\Theta(\mathrm{nlgn}) \quad \square \text { same as merge sort }
\end{aligned}
$$

- Instead of splitting $0.5: 0.5$, what if every split is $0.1: 0.9$?

$$
T(n)=T(n / 10)+T(9 n / 10)+\Theta(n)
$$

\square solve this recurrence

"Almost-Best" Case Analysis

"Almost-Best" Case Analysis

"Almost-Best" Case Analysis

Balanced Partitioning

We have seen that if H-PARTITION always splits the array with 0.1 -to- 0.9 ratio, the runtime will be Θ (nlgn).

- Same is true with a split ratio of 0.01-to-0.99, etc.
- Possible to show that if the split has always constant $(\Theta$ (1)) proportionality, then the runtime will be Θ (nlgn).
- In other words, for a constant $\alpha(0<\alpha \leq 0.5)$:
$\alpha-$ to $-(1-\alpha)$ proportional split yields $\Theta(n \operatorname{lgn})$ total runtime

Balanced Partitioning

- In the rest of the analysis, assume that all input permutations are equally likely.
\square This is only to gain some intuition
- We cannot make this assumption for average case analysis
- We will revisit this assumption later
- Also, assume that all input elements are distinct.
- What is the probability that H-PARTITION returns a split that is more balanced than 0.1-to-0.9?

Balanced Partitioning

Reminder: H-PARTITION will place the pivot in the right partition unless the pivot is the smallest element in the arrays.

Question: If the pivot selected is the $\mathrm{m}^{\text {th }}$ smallest value $(1<\mathrm{m} \leq \mathrm{n})$ in the input array, what is the size of the left region after partitioning?

Balanced Partitioning

Question: What is the probability that the pivot selected is the $\mathrm{m}^{\text {th }}$ smallest value in the array of size n ?
$1 / n \quad$ (since all input permutations are equally likely)

Question: What is the probability that the left partition returned by H-PARTITION has size m , where $1<\mathrm{m}<\mathrm{n}$?
$1 / n \quad$ (due to the answers to the previous 2 questions)

Balanced Partitioning

Question: What is the probability that H-PARTITION returns a split that is more balanced than 0.1-to-0.9?

The partition boundary will be in this region for a more balanced split than 0.1-to-0.9

$$
\begin{aligned}
\text { Probability }=\sum_{q=0.1 n+1}^{0.9 n-1} \frac{1}{n} & =\frac{1}{n}(0.9 n-1-0.1 n-1+1)=0.8-\frac{1}{n} \\
& \approx 0.8 \text { for large } \mathrm{n}
\end{aligned}
$$

Balanced Partitioning

- The probability that H-PARTITION yields a split that is more balanced than 0.1 -to- 0.9 is 80% on a random array.
- Let $\mathrm{P}_{\alpha>}$ be the probability that H-PARTITION yields a split more balanced than α-to-(1- α), where $0<\alpha \leq 0.5$
- Repeat the analysis to generalize the previous result

Balanced Partitioning

Question: What is the probability that H-PARTITION returns a split that is more balanced than α-to- $(1-\alpha)$?

The partition boundary will be in this region
for a more balanced split than α n-to-(1- α)n

$$
\begin{aligned}
\text { Probability }=\sum_{q=\alpha n+1}^{(1-\alpha) n-1} \frac{1}{n} & =\frac{1}{n}((1-\alpha) n-1-\alpha n-1+1)=(1-2 \alpha)-\frac{1}{n} \\
& \approx(1-2 \alpha) \text { for large } \mathrm{n}
\end{aligned}
$$

Balanced Partitioning

- We found $P_{\alpha>}=1-2 \alpha$

Examples: $\mathrm{P}_{0.1>}=0.8 \quad \mathrm{P}_{0.01>}=0.98$

Hence, H-PARTITION produces a split
\square more balanced than a

- 0.1-to- 0.9 split 80% of the time
- 0.01-to- 0.99 split 98% of the time
\square less balanced than a
- 0.1-to- 0.9 split 20% of the time
- 0.01-to-0.99 split 2% of the time

Intuition for the Average Case

- Assumption: All permutations are equally likely
- Only for intuition; we'll revisit this assumption later
- Unlikely: Splits always the same way at every level
- Expectation:

Some splits will be reasonably balanced
Some splits will be fairly unbalanced

- Average case: A mix of good and bad splits

Good and bad splits distributed randomly thru the tree

Intuition for the Average Case

- Assume for intuition: Good and bad splits occur in the alternate levels of the tree

Good split: Best case split
Bad split: Worst case split

Intuition for the Average Case

Compare 2-successive levels of avg case vs. 1 level of best case

Intuition for the Average Case

- In terms of the remaining subproblems, two levels of avg case is slightly better than the single level of the best case
- The avg case has extra divide cost of $\Theta(n)$ at alternate levels

Intuition for the Average Case

- The extra divide cost $\Theta(n)$ of bad splits absorbed into the $\Theta(n)$ of good splits.
- Running time is still Θ (nlgn)

Intuition for the Average Case

- Running time is still Θ (nlgn)
\square But, slightly larger hidden constants, because the height of the recursion tree is about twice of that of best case.

Intuition for the Average Case

- Another way of looking at it:

Suppose we alternate lucky, unlucky, lucky, unlucky, ...
We can write the recurrence as:

$$
\begin{array}{ll}
\mathrm{L}(\mathrm{n})=2 \mathrm{U}(\mathrm{n} / 2)+\Theta(\mathrm{n}) & \text { lucky split (best) } \\
\mathrm{U}(\mathrm{n})=\mathrm{L}(\mathrm{n}-1)+\Theta(\mathrm{n}) & \text { unlucky split (worst) }
\end{array}
$$

Solving:

$$
\begin{aligned}
\mathrm{L}(\mathrm{n}) & =2(\mathrm{~L}(\mathrm{n} / 2-1)+\Theta(\mathrm{n} / 2))+\Theta(\mathrm{n}) \\
& =2 \mathrm{~L}(\mathrm{n} / 2-1)+\Theta(\mathrm{n}) \\
& =\Theta(\mathrm{nlgn})
\end{aligned}
$$

How can we make sure we are usually lucky for all inputs?

Summary: Quicksort Runtime Analysis

Worst case: Unbalanced split at every recursive call

$$
\begin{aligned}
& T(n)=T(1)+T(n-1)+\Theta(n) \\
& \square T(n)=\Theta\left(n^{2}\right)
\end{aligned}
$$

Best case: Balanced split at every recursive call (extremely lucky)

$$
\begin{gathered}
T(n)=2 T(n / 2)+\Theta(n) \\
\square T(n)=\Theta(n \operatorname{lgn})
\end{gathered}
$$

Summary: Quicksort Runtime Analysis

Almost-best case: Almost-balanced split at every recursive call

$$
\begin{aligned}
& T(n)=T(n / 10)+T(9 n / 10)+\Theta(n) \\
& \text { or } T(n)=T(n / 100)+T(99 n / 100)+\Theta(n) \\
& \text { or } T(n)=T(\alpha n)+T((1-\alpha) n)+\Theta(n) \\
& \text { for any constant } \alpha, 0<\alpha \leq 0.5 \\
& \square \mathrm{~T}(\mathrm{n})=\Theta(\mathrm{nlgn})
\end{aligned}
$$

Summary: Quicksort Runtime Analysis

For a random input array, the probability of having a split more balanced than $0.1-$ to $-0.9: 80 \%$ more balanced than $0.01-$ to $-0.99: 98 \%$ more balanced than $\quad \alpha-$ to $-(1-\alpha): 1-2 \alpha$

$$
\text { for any constant } \alpha, 0<\alpha \leq 0.5
$$

Summary: Quicksort Runtime Analysis

Avg case intuition: Different splits expected at different levels
 \square some balanced (good), some unbalanced (bad)

Avg case intuition: Assume the good and bad splits alternate i.e. good split \square bad split \square good split $\square \ldots$
$\square \mathrm{T}(\mathrm{n})=\Theta(\mathrm{nlgn})$
(informal analysis for intuition)

