
1

CS473 - Algorithms I

CS 473 – Lecture 6

Lecture 6-a
Analysis of Quicksort

Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent University

View in slide-show mode

2CS 473 – Lecture 6 Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent University

Analysis of Quicksort

Assume all elements are distinct in the following analysis

≥ x ≤ x
p q r

QUICKSORT (A, p, r)
 if p < r then
 q ← H-PARTITION(A, p, r)

 QUICKSORT(A, p, q)
 QUICKSORT(A, q +1, r)

3CS 473 – Lecture 6 Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent University

Question

Q: Remember that H-PARTITION always chooses A[p] (the first
element) as the pivot. What is the runtime of QUICKSORT on an
already-sorted array?
 a) Θ(n) c) Θ(n2)
 b) Θ(nlogn) d) cannot provide a tight bound

QUICKSORT (A, p, r)
 if p < r then
 q ← H-PARTITION(A, p, r)

 QUICKSORT(A, p, q)
 QUICKSORT(A, q +1, r)

✔

✖

✖

✖

4CS 473 – Lecture 6 Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent University

Example: An Already Sorted Array

Partitioning always leads to 2 parts of size 1 and n-1

1 2 3 4 5 6 7 8 pivot = 1

recursive callrecursive call

2 3 4 5 6 7 8 pivot = 2

recursive callrecursive call

5CS 473 – Lecture 6 Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent University

Worst Case Analysis of Quicksort

◻ Worst case is when the PARTITION algorithm always returns
imbalanced partitions (of size 1 and n-1) in every recursive call

This happens when the pivot is selected to be either the min
or max element.
This happens for H-PARTITION when the input array is
already sorted or reverse sorted

T(n) = T(1) + T(n-1) + Θ(n)
 = T(n-1) + Θ(n)
 = Θ(n2) (arithmetic series)

6CS 473 – Lecture 6 Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent University

Worst Case Recursion Tree
T(n) = T(1) + T(n-1) + cn

cn

T(1) T(n-1)

7CS 473 – Lecture 6 Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent University

Worst Case Recursion Tree
T(n) = T(1) + T(n-1) + cn

cn

Θ(1) c(n-1)

Θ(1) c(n-2)

Θ(1)

Θ(1)

h=n

Θ(n)

T(n) = Θ(n2)

T(n) = Θ(n2) + Θ(n)

8CS 473 – Lecture 6 Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent University

Best Case Analysis (for intuition only)

◻ If we’re extremely lucky, H-PARTITION splits the array
evenly at every recursive call

T(n) = 2 T(n/2) + Θ(n)
 = Θ(nlgn) 🡺 same as merge sort

◻ Instead of splitting 0.5:0.5, what if every split is 0.1:0.9?
T(n) = T(n/10) + T (9n/10) + Θ(n)

🡺 solve this recurrence

9CS 473 – Lecture 6 Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent University

“Almost-Best” Case Analysis

n

Θ(1)

Θ(1)

10CS 473 – Lecture 6 Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent University

“Almost-Best” Case Analysis

n

Θ(1)

Θ(1)

cn

cn

cn

cn

≤ cn

≤ cn

11CS 473 – Lecture 6 Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent University

“Almost-Best” Case Analysis

n

Θ(1)

Θ(1)

cn

cn

cn

cn

≤ cn

≤ cn

hmin= log10n

hmax= log10/9n cn hmin≤ T(n) ≤ cn hmax
cn log10n ≤ T(n) ≤ cn log10/9n

T(n) = Θ(nlgn)

12CS 473 – Lecture 6 Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent University

Balanced Partitioning

◻ We have seen that if H-PARTITION always splits the
array with 0.1-to-0.9 ratio, the runtime will be Θ(nlgn).

◻ Same is true with a split ratio of 0.01-to-0.99, etc.

◻ Possible to show that if the split has always constant (Θ
(1)) proportionality, then the runtime will be Θ(nlgn).

◻ In other words, for a constant α (0 < α ≤ 0.5):
α–to–(1-α) proportional split yields Θ(nlgn) total runtime

13CS 473 – Lecture 6 Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent University

Balanced Partitioning

◻ In the rest of the analysis, assume that all input permutations
are equally likely.

This is only to gain some intuition
We cannot make this assumption for average case analysis
We will revisit this assumption later

◻ Also, assume that all input elements are distinct.

◻ What is the probability that H-PARTITION returns a split
that is more balanced than 0.1-to-0.9?

14CS 473 – Lecture 6 Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent University

Balanced Partitioning

Reminder: H-PARTITION will place the pivot in the right partition
unless the pivot is the smallest element in the arrays.

Question: If the pivot selected is the mth smallest value (1 < m ≤ n) in
the input array, what is the size of the left region after partitioning?

1 nq

pivot is placed in
the right regionthere are m-1 elements

less than the pivot q = m-1

15CS 473 – Lecture 6 Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent University

Balanced Partitioning

Question: What is the probability that the pivot selected is the
mth smallest value in the array of size n?

1/n (since all input permutations are equally likely)

Question: What is the probability that the left partition returned
by H-PARTITION has size m, where 1 < m < n?

1/n (due to the answers to the previous 2 questions)

16CS 473 – Lecture 6 Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent University

Balanced Partitioning

Question: What is the probability that H-PARTITION
returns a split that is more balanced than 0.1-to-0.9?

0.1n 0.9n1 n

The partition boundary will be in this region
for a more balanced split than 0.1-to-0.9

Probability =

≈ 0.8 for large n

17CS 473 – Lecture 6 Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent University

Balanced Partitioning

◻ The probability that H-PARTITION yields a split that is
more balanced than 0.1-to-0.9 is 80% on a random array.

◻ Let Pα> be the probability that H-PARTITION yields a
split more balanced than α-to-(1-α), where 0 < α ≤ 0.5

◻ Repeat the analysis to generalize the previous result

18CS 473 – Lecture 6 Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent University

Balanced Partitioning

Question: What is the probability that H-PARTITION
returns a split that is more balanced than α-to-(1-α)?

αn (1-α)n1 n

The partition boundary will be in this region
for a more balanced split than αn-to-(1-α)n

Probability =

≈ (1-2α) for large n

19CS 473 – Lecture 6 Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent University

Balanced Partitioning

◻ We found Pα> = 1 - 2α
Examples: P0.1> = 0.8 P0.01> = 0.98

◻ Hence, H-PARTITION produces a split
more balanced than a

0.1-to-0.9 split 80% of the time
0.01-to-0.99 split 98% of the time

less balanced than a
0.1-to-0.9 split 20% of the time
0.01-to-0.99 split 2% of the time

20CS 473 – Lecture 6 Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent University

Intuition for the Average Case

◻ Assumption: All permutations are equally likely
Only for intuition; we’ll revisit this assumption later

◻ Unlikely: Splits always the same way at every level

◻ Expectation:
Some splits will be reasonably balanced
Some splits will be fairly unbalanced

◻ Average case: A mix of good and bad splits
Good and bad splits distributed randomly thru the tree

21CS 473 – Lecture 6 Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent University

Intuition for the Average Case

◻ Assume for intuition: Good and bad splits occur in
the alternate levels of the tree
Good split: Best case split
Bad split: Worst case split

22CS 473 – Lecture 6 Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent University

Intuition for the Average Case

Compare 2-successive levels of avg case vs. 1 level of best case

n
bad split

1 n-1
good split

(n-1)/2 (n-1)/2

AVERAGE CASE

n
good split

n/2 n/2

BEST CASE

23CS 473 – Lecture 6 Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent University

Intuition for the Average Case

◻ In terms of the remaining subproblems, two levels of avg case
is slightly better than the single level of the best case

◻ The avg case has extra divide cost of Θ(n) at alternate levels

n
bad split

1 n-1
good split

AVERAGE CASE

n
good split

n/2 n/2

BEST CASE

(n-1)/2 (n-1)/2

24CS 473 – Lecture 6 Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent University

Intuition for the Average Case

◻ The extra divide cost Θ(n) of bad splits absorbed into the Θ(n)
of good splits.

◻ Running time is still Θ(nlgn)

n
bad split

1 n-1
good split

AVERAGE CASE

n
good split

n/2 n/2

BEST CASE

(n-1)/2 (n-1)/2

25CS 473 – Lecture 6 Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent University

Intuition for the Average Case

◻ Running time is still Θ(nlgn)
But, slightly larger hidden constants, because the height of
the recursion tree is about twice of that of best case.

n
bad split

1 n-1
good split

AVERAGE CASE

n
good split

n/2 n/2

BEST CASE

(n-1)/2 (n-1)/2

26CS 473 – Lecture 6 Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent University

Intuition for the Average Case

◻ Another way of looking at it:
 Suppose we alternate lucky, unlucky, lucky, unlucky, …
 We can write the recurrence as:
L(n) = 2 U(n/2) + Θ(n) lucky split (best)
U(n) = L(n-1) + Θ(n) unlucky split (worst)

 Solving:
L(n) = 2 (L(n/2-1) + Θ(n/2)) + Θ(n)
 = 2L(n/2-1) + Θ(n)
 = Θ(nlgn)

How can we make sure we are usually lucky for all inputs?

27CS 473 – Lecture 6 Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent University

Summary: Quicksort Runtime Analysis

Worst case: Unbalanced split at every recursive call
T(n) = T(1) + T(n-1) + Θ(n)

 🡺 T(n) = Θ(n2)

Best case: Balanced split at every recursive call (extremely lucky)
T(n) = 2T(n/2) + Θ(n)

 🡺 T(n) = Θ(nlgn)

28CS 473 – Lecture 6 Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent University

Summary: Quicksort Runtime Analysis

Almost-best case: Almost-balanced split at every recursive call
 T(n) = T(n/10) + T(9n/10) + Θ(n)
 or T(n) = T(n/100) + T(99n/100) + Θ(n)
 or T(n) = T(αn) + T((1-α)n) + Θ(n)

for any constant α, 0 < α ≤ 0.5

 🡺 T(n) = Θ(nlgn)

29CS 473 – Lecture 6 Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent University

Summary: Quicksort Runtime Analysis

For a random input array, the probability of having a split
more balanced than 0.1 – to – 0.9 : 80%
more balanced than 0.01 – to – 0.99 : 98%
more balanced than α – to – (1-α) : 1 – 2α

for any constant α, 0 < α ≤ 0.5

30CS 473 – Lecture 6 Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent University

Summary: Quicksort Runtime Analysis

Avg case intuition: Different splits expected at different levels
🡺 some balanced (good), some unbalanced (bad)

Avg case intuition: Assume the good and bad splits alternate
 i.e. good split 🡺 bad split 🡺 good split 🡺 …
 🡺 T(n) = Θ(nlgn)

 (informal analysis for intuition)

