CS473-Algorithms I

Lecture 6-b
 Randomized Quicksort

View in slide-show mode

Randomized Quicksort

- In the avg-case analysis, we assumed that all permutations of the input array are equally likely.
\square But, this assumption does not always hold
- e.g. What if all the input arrays are reverse sorted?
\square Always worst-case behavior
- Ideally, the avg-case runtime should be independent of the input permutation.
- Randomness should be within the algorithm, not based on the distribution of the inputs.
i.e. The avg case should hold for all possible inputs

Randomized Algorithms

- Alternative to assuming a uniform distribution:
\square Impose a uniform distribution
e.g. Choose a random pivot rather than the first element
- Typically useful when:
- there are many ways that an algorithm can proceed
- but, it's difficult to determine a way that is always guaranteed to be good.
- If there are many good alternatives; simply choose one randomly.

Randomized Algorithms

Ideally:
\square Runtime should be independent of the specific inputs
\square No specific input should cause worst-case behavior

- Worst-case should be determined only by output of a random number generator.

Randomized Quicksort

Using Hoare's partitioning algorithm:

```
R-QUICKSORT(A, p,r)
    if p<r then
        q\leftarrowR-PARTITION(A, p,r)
        R-QUICKSORT(A, }p,q
        R-QUICKSORT(A, q+1,r)
R-QUICKSORT(A, \(p, r\) )
if \(p<r\) then
\(q \leftarrow\) R-PARTITION(A \(, p, r)\)
R-QUICKSORT(A, \(p, q\) ) R-QUICKSORT(A, \(q+1, r\) )
```

Alternatively, permuting the whole array would also work
\square but, would be more difficult to analyze

Randomized Quicksort

Using Lomuto's partitioning algorithm:

R-QUICKSORT(A, p, r)
if $p<r$ then
$q \leftarrow \mathrm{R}$-PARTITION(A, p, r)
R-QUICKSORT(A, $p, q-1$)
R-QUICKSORT(A, $q+1, r$)

Alternatively, permuting the whole array would also work
\square but, would be more difficult to analyze

Notations for Formal Analysis

Assume all elements in $\mathrm{A}[\mathrm{p} . \mathrm{r}]$ are distinct
Let $\mathrm{n}=\mathrm{r}-\mathrm{p}+1$

- Let $\operatorname{rank}(\mathrm{x})=\mid\{\mathrm{A}[\mathrm{i}]: \mathrm{p} \leq \mathrm{i} \leq \mathrm{r}$ and $\mathrm{A}[\mathrm{i}] \leq \mathrm{x}\} \mid$
i.e. $\operatorname{rank}(x)$ is the number of array elements with value less than or equal to x

i.e. it is the $\mathbf{3}^{\text {rd }}$ smallest element in the array

Formal Analysis for Average Case

- The following analysis will be for Quicksort using Hoare's partitioning algorithm.
- Reminder: The pivot is selected randomly and exchanged with $\mathrm{A}[\mathrm{p}]$ before calling H-PARTITION

Let x be the random pivot chosen.

- What is the probability that $\operatorname{rank}(x)=i$ for $i=1,2, \ldots n$?

$$
P(\operatorname{rank}(x)=i)=1 / n
$$

Various Outcomes of H-PARTITION

Assume that $\operatorname{rank}(\mathrm{x})=1$
i.e. the random pivot chosen is the smallest element

What will be the size of the left partition $(|\mathrm{L}|)$?
Reminder: Only the elements less than or equal to x will be in the left partition.
$\square|\mathrm{L}|=1$

$$
\text { pivot }=x=2
$$

Various Outcomes of H-PARTITION

Assume that $\operatorname{rank}(\mathrm{x})>1$
i.e. the random pivot chosen is not the smallest element

What will be the size of the left partition (|L|)?
Reminder: Only the elements less than or equal to x will be in the left partition.

Reminder: The pivot will stay in the right region after H-PARTITION if $\operatorname{rank}(x)>1$
$\square|\mathrm{L}|=\operatorname{rank}(\mathrm{x})-1$

Various Outcomes of H-PARTITION Summary

$\mathbf{P}(\operatorname{rank}(\mathrm{x})=\mathrm{i})=1 / \mathrm{n} \quad$ for $1 \leq \mathrm{i} \leq \mathrm{n}$
if $\operatorname{rank}(x)=1$ then $|L|=1$
x: pivot
|L|: size of left region
if $\operatorname{rank}(x)>1$ then $|L|=\operatorname{rank}(x)-1$

$$
\mathbf{P}(|\mathrm{L}|=1)=\mathbf{P}(\operatorname{rank}(\mathrm{x})=1)+\mathbf{P}(\operatorname{rank}(\mathrm{x})=2)
$$

$$
\mathbf{P}(|\mathrm{L}|=1)=2 / \mathrm{n}
$$

$$
\begin{aligned}
& \mathbf{P}(|\mathrm{L}|=\mathrm{i})=\mathbf{P}(\operatorname{rank}(\mathrm{x})=\mathrm{i}+1) \\
& \quad \text { for } 1<\mathrm{i}<\mathrm{n}
\end{aligned}
$$

$$
\begin{array}{r}
\mathbf{P}(|L|=i)=1 / n \\
\quad \text { for } 1<i<n
\end{array}
$$

Various Outcomes of H-PARTITION Summary

n
$1 / n$

$$
T(n-1)+T(1)+\Theta(n)
$$

Average - Case Analysis: Recurrence

$$
\begin{aligned}
& \operatorname{rank}(x) \\
& \mathrm{T}(n)=1 / \mathrm{n}(T(1)+T(n-1)) \\
& +1 / \mathrm{n}(T(1)+T(n-1)) \\
& +\quad 1 / \mathrm{n}(T(2)+T(n-2)) \\
& 3 \\
& +\quad 1 / \mathrm{n}(T(\mathrm{i})+T(n-\mathrm{i})) \\
& \text {... } \\
& +\quad 1 / \mathrm{n}(T(\mathrm{n}-1)+T(1)) \\
& +\Theta(n)
\end{aligned}
$$

Recurrence

$$
\begin{aligned}
& \mathrm{T}(n)=\frac{1}{n} \sum_{\boldsymbol{q}=\mathbf{1}}^{n-1}(T(q)+T(n-q))+\frac{\mathbf{1}}{\mathbf{n}}(T(1)+T(n-1))+\Theta(n) \\
& \text { Note: } \frac{1}{n}(T(1)+T(n-1))=\frac{1}{\boldsymbol{n}}\left(\Theta(1)+\mathrm{O}\left(n^{2}\right)\right)=\mathrm{O}(n) \\
\Rightarrow & \mathrm{T}(n)=\frac{\mathbf{1}}{\boldsymbol{n}} \sum_{\boldsymbol{q}=\mathbf{1}}^{n-1}(T(q)+T(n-q))+\Theta(n)
\end{aligned}
$$

- for $k=1,2, \ldots, n-1$ each term $T(k)$ appears twice once for $q=k$ and once for $q=n-k$

$$
\mathrm{T}(n)=\frac{2}{n} \sum_{k=1}^{n-1} T(k)+\Theta(n)
$$

Solving Recurrence: Substitution

Guess: $T(n)=\mathrm{O}(n \lg n)$
I.H. : $T(k) \leq a k \lg k$ for $k<n$, for some constant $a>0$

$$
\begin{aligned}
\mathrm{T}(n) & =\frac{2}{n} \sum_{k=1}^{n-1} T(k)+\Theta(n) \\
& \leq \frac{2}{n} \sum_{k=1}^{n-1}(a k \lg k)+\Theta(n) \\
& =\frac{2 a}{n} \sum_{k=1}^{n-1}(k \lg k)+\Theta(n)
\end{aligned}
$$

Need a tight bound for $\sum k \lg k$

Tight bound for $\sum k \lg k$

- Bounding the terms

$$
\sum_{k=1}^{n-1} k \lg k \leq \sum_{k=1}^{n-1} n \lg n=n(n-1) \lg n \leq n^{2} \lg n
$$

This bound is not strong enough because

$$
\text { - } \mathrm{T}(n) \leq \frac{2 \boldsymbol{a}}{\boldsymbol{n}} n^{2} \lg n+\Theta(n)
$$

$$
=2 a n \lg n+\Theta(n) \quad \rightarrow \text { couldn't prove } T(n) \leq a n \lg n
$$

Tight bound for $\sum k \lg k$

- Splitting summations: ignore ceilings for simplicity

$$
\sum_{k=1}^{n-1} k \lg k \leq \sum_{k=1}^{n / 2-1} k \lg k+\sum_{k=n / 2}^{n-1} k \lg k
$$

First summation:

$$
\lg k<\lg (n / 2)=\lg n-1
$$

Second summation: $\lg k<\lg n$

Splitting: $\sum_{k=1}^{n-1} k \lg k \leq \sum_{k=1}^{\prime \prime 2} k \lg k+\sum_{k=N / 2}^{n-1} k \lg k$

$$
\begin{aligned}
\sum_{k=1}^{n-1} k \lg k & \leq(\lg n-1) \sum_{k=1}^{n / 2-1} k+\lg n \sum_{k=n / 2}^{n-1} k \\
& =\lg n \sum_{k=1}^{n-1} k-\sum_{k=1}^{n / 2-1} k=\frac{1}{2} n(n-1) \lg n-\frac{1}{2} \frac{n}{2}\left(\frac{n}{2}-1\right) \\
& =\frac{1}{2} n^{2} \lg n-\frac{1}{8} n^{2}-\frac{1}{2} n(\lg n-1 / 2) \\
\sum_{k=1}^{n-1} k \lg k & \leq \frac{1}{2} n^{2} \lg n-\frac{1}{8} n^{2} \text { for } \lg n \geq 1 / 2 \Rightarrow n \geq \sqrt{2}
\end{aligned}
$$

Substituting: $\sum_{k=1}^{n-1} k \lg k \leq \frac{1}{2} n^{2} \lg n-\frac{1}{8} n^{2}$

$$
\begin{aligned}
T(n) & \leq \frac{2 a}{n} \sum_{k=1}^{n-1} k \lg k+\Theta(n) \\
& \leq \frac{2 a}{n}\left(\frac{1}{2} n^{2} \lg n-\frac{1}{8} n^{2}\right)+\Theta(n) \\
& =a n \lg n-\left(\frac{a}{4} n-\Theta(n)\right)
\end{aligned}
$$

We can choose a large enough so that $\quad \frac{a}{4} n \geq \Theta(n)$

