
1

CS473 - Algorithms I

CS 473 – Lecture 7 Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent University

Lecture 7
Medians and Order Statistics

View in slide-show mode

2CS 473 – Lecture 7 Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent University

Medians and Order Statistics

ith order statistic: ith smallest element of a set of n elements

minimum: first order statistic
maximum: nth order statistic

median: “halfway point” of the set

 i = (n+1)/2 or (n+1)/2

3CS 473 – Lecture 7 Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent University

Selection Problem

◻ Selection problem: Select the ith smallest of n elements

◻ Naïve algorithm: Sort the input array A; then return A[i]
T(n) = Θ(nlgn)
using e.g. merge sort (but not quicksort)

◻ Can we do any better?

4CS 473 – Lecture 7 Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent University

Selection in Expected Linear Time

◻ Randomized algorithm using divide and conquer

◻ Similar to randomized quicksort
Like quicksort: Partitions input array recursively
Unlike quicksort: Makes a single recursive call

Reminder: Quicksort makes two recursive calls

◻ Expected runtime: Θ(n)
Reminder: Expected runtime of quicksort: Θ(nlgn)

5CS 473 – Lecture 7 Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent University

Selection in Expected Linear Time: Example 1

i = 26 10 13 5 8 3 2 11

Select the 2nd smallest element:

Partition the input array:

2 3 5 13 8 10 6 11

make a recursive call to
select the 2nd smallest

element in left subarray

6CS 473 – Lecture 7 Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent University

Selection in Expected Linear Time: Example 2

i = 76 10 13 5 8 3 2 11

Select the 7th smallest element:

Partition the input array:

2 3 5 13 8 10 6 11

make a recursive call to
select the 4th smallest

element in right subarray

CS473 – Lecture 7 Cevdet Aykanat - Bilkent University
Computer Engineering Department

7

Selection in Expected Linear Time

 R-SELECT(A,p,r,i)
 if p = r then
 return A[p]
 q ← R-PARTITION(A, p, r)
 k ← q–p+1
 if i ≤ k then
 return R-SELECT(A, p, q, i)
else
 return R-SELECT(A, q+1, r, i-k)

x = pivot ≤ x (k smallest elements) ≥ x
p q r

CS473 – Lecture 7 Cevdet Aykanat - Bilkent University
Computer Engineering Department

8

Selection in Expected Linear Time

x = pivot

 ≤ x ≥ x
p q r

L R

• All elements in L ≤ all elements in R

• L contains |L| = q–p+1 = k smallest elements of A[p...r]
 if i ≤ |L| = k then
 search L recursively for its i-th smallest element
 else
 search R recursively for its (i-k)-th smallest element

9CS 473 – Lecture 7 Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent University

Runtime Analysis

◻ Worst case:
 Imbalanced partitioning at every level
and the recursive call always to the larger partition

1 2 3 4 5 6 7 8

recursive call

2 3 4 5 6 7 8

recursive call

i=8

i=7

10CS 473 – Lecture 7 Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent University

Runtime Analysis

◻ Worst case:
T(n) = T(n-1) + Θ(n)

 ⇒ T(n) = Θ(n2)
Worse than the naïve method (based on sorting)

◻ Best case: Balanced partitioning at every recursive level
T(n) = T(n/2) + Θ(n)

 ⇒ T(n) = Θ(n)

◻ Avg case: Expected runtime – need analysis

11CS 473 – Lecture 7 Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent University

Reminder: Various Outcomes of
H-PARTITION

P(rank(x) = i) = 1/n for 1≤ i ≤ n

if rank(x) = 1 then |L| = 1

if rank(x) > 1 then |L| = rank(x) - 1

x: pivot
|L|: size of left region

P(|L| = 1) = P(rank(x) = 1) + P(rank(x) = 2) P(|L| = 1) = 2/n

P(|L| = i) = P(rank(x) = i+1)
for 1< i < n

P(|L| = i) = 1/n
 for 1< i < n

12CS 473 – Lecture 7 Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent University

Average Case Analysis of Randomized Select

◻ To compute the upper bound for the avg case, assume that the
ith element always falls into the larger partition.

array A
qp r

left partition right partition

We will analyze the case where the recursive call is always
made to the larger partition

🡺 this will give us an upper bound for the avg case

13CS 473 – Lecture 7 Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent University

Various Outcomes of H-PARTITION

rank(x) prob. T(n) .
 1 1/n ≤ T(max(1, n-1)) + Θ(n)

 2 1/n ≤ T(max(1, n-1)) + Θ(n)

 3 1/n ≤ T(max(2, n-2)) + Θ(n)
 . . .
 . . .
 . . .
 i+1 1/n ≤ T(max(i, n-i)) + Θ(n)
 . . .
 . . .
 . . .
 n 1/n ≤ T(max(n-1, 1)) + Θ(n)

1 n-1

1 n-1

2 n-2

i n-i

1n-1

CS473 – Lecture 7 Cevdet Aykanat - Bilkent University
Computer Engineering Department

14

Average-Case Analysis of Randomized Select
 2/n for i =1

1/n for i = 2,3,... ,n–1
Recall: P(|L|=i) =

Upper bound: Assume i-th element always falls into the larger part

T(n) ≤ T(max(1, n–1)) + Σ T(max(q, n–q)) + O(n)

Note: T(max(1, n–1)) = T(n–1)= O(n²) = O(n)

 n -1

 q = 1
1
n

1
n

1
n

1
n

1
n... T(n) ≤ 1

n
Σ T(max(q, n–q))+O(n)
 n-1

 q = 1

CS473 – Lecture 7 Cevdet Aykanat - Bilkent University
Computer Engineering Department

15

Average-Case Analysis of Randomized Select
 Σ T(max(q, n–q))+O(n)

 n-1

 q = 1
1
n

T(n) ≤...

 n is odd: T(k) appears twice for k = n/2 +1, n/2 +2,...,n–1
 n is even:T(n/2) appears once T(k) appears twice for
 k = n/2 +1, n/2 +2,...,n–1
 Hence, in both cases:

max(q, n–q) =
n–q if q < n/2
q if q ≥ n/2

Σ T(max(q, n–q))+O(n) ≤ 2 Σ T(q) + O(n)
 n-1

 q=1

...
 n-1

 q= n/2
T(n) ≤ 2

n
Σ T(q)+O(n)

 n-1

 q= n/2

CS473 – Lecture 7 Cevdet Aykanat - Bilkent University
Computer Engineering Department

16

Average-Case Analysis of Randomized Select

T(n) ≤ 2
n

Σ T(q)+O(n)
 n -1

 q= n/2

By substitution guess T(n) = O(n)
Inductive hypothesis: T(k) ≤ ck, A k < n

(2/n) Σ ck + O(n)
 n-1

 k= n/2
T(n) ≤

=
2c
n

Σ k – Σ k
 n -1

 k=1

 n/2 -1

 k=1
+ O(n)

2c
n

1
2

n (n-1) – 1
2

n
2

n
2

– 1 + O(n)

CS473 – Lecture 7 Cevdet Aykanat - Bilkent University
Computer Engineering Department

17

Average-Case Analysis of Randomized Select

T(n) ≤ 2c
n

1
2

n(n-1) – 1
2

n
2

– 1 + O(n)n
2

n≤ c(n-1) – c
4

+ c
2

c
2

n –= cn – c
4

 + O(n)

+ O(n)

= cn – c
4

n + c
2

– O(n)

≤ cn
since we can choose c large enough so that (cn/4+c/2) dominates O(n)

CS473 – Lecture 7 Cevdet Aykanat - Bilkent University
Computer Engineering Department

18

Summary of Randomized Order-Statistic Selection

• Works fast: linear expected time
• Excellent algorithm in practise
• But, the worst case is very bad: Θ(n²)

Q: Is there an algorithm that runs in linear time in the worst
case?
A: Yes, due to Blum, Floyd, Pratt, Rivest & Tarjan[1973]
Idea: Generate a good pivot recursively..

CS473 – Lecture 7 Cevdet Aykanat - Bilkent University
Computer Engineering Department

19

Selection in Worst Case Linear TimeSelection in Worst Case Linear Time

SELECT(S, n, i) return i-th element in set S with n elements

 if n ≤ 5 then

SORT S and return the i-th element

 DIVIDE S into ⌈n/5⌉groups

 first ⌈n/5⌉ groups are of size 5, last group is of size n mod 5

 FIND median set M={m , …, m } m : median of j-th group

 x ← SELECT(M, ⌈n/5⌉, (⌊⌈n/5⌉+1)/2⌋)
 PARTITION set S around the pivot x into L and R

 if i ≤ |L| then
return SELECT(L, |L|, i)

 else
return SELECT(R, n–|L|, i–|L|)

⌈n/5⌉1 j

20CS 473 – Lecture 7 Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent University

Selection in Worst Case Linear Time - Example

Input: Array S and index i
Output: The ith smallest value

S = {25 9 16 8 11 27 39 42 15 6 32 14 36 20 33 22 31 4 17 3 30 41
 2 13 19 7 21 10 34 1 37 23 40 5 29 18 24 12 38 28 26 35 43}

21CS 473 – Lecture 7 Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent University

Selection in Worst Case Linear Time - Example

Step 1: Divide the input array into groups of size 5

25
9
16
8
11

27
39
42
15
6

32
14
36
20
33

22
31
4
17
3

30
41
2
13
19

7
21
10
34
1

37
23
40
5
29

18
24
12
38
28

26
35
43

22CS 473 – Lecture 7 Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent University

Selection in Worst Case Linear Time - Example

Step 2: Compute the median of each group

9
8
11
16
25

15
6
27
42
39

14
20
32
33
36

4
3
17
31
22

2
13
19
30
41

7
1
10
34
21

5
23
29
40
37

18
12
24
28
38

26
35
43

Let M be the set of the medians computed:
M = {11, 27, 32, 17, 19, 10, 29, 24, 35}

⇒ Θ(n)

23CS 473 – Lecture 7 Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent University

Selection in Worst Case Linear Time - Example

 x ← SELECT (M, |M|,) where

9
8
11
16
25

15
6
27
42
39

14
20
32
33
36

4
3
17
31
22

2
13
19
30
41

7
1
10
34
21

5
23
29
40
37

18
12
24
28
38

26
35
43

The runtime of the recursive call: T(|M|)

M ⇒ median = 24

Step 3: Compute the median of the median group M

24CS 473 – Lecture 7 Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent University

Selection in Worst Case Linear Time - Example

Step 4: Partition the input array S around the median-of-medians x

S = {25 9 16 8 11 27 39 42 15 6 32 14 36 20 33 22 31 4 17 3 30 41
 2 13 19 7 21 10 34 1 37 23 40 5 29 18 24 12 38 28 26 35 43}

Partition S around x = 24

Claim: Partitioning around x is guaranteed to be well-balanced.

25CS 473 – Lecture 7 Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent University

Selection in Worst Case Linear Time - Example

Claim: Partitioning around x=24 is guaranteed to be well-balanced.

2
13
19
30
41

7
1
10
34
21

4
3
17
31
22

9
8
11
16
25

14
20
32
33
36

5
23
29
40
37

15
6
27
42
39

26
35
43

18
12
24
28
38

About half
of the medians
greater than x

about n/10

2 out of 5 in each group greater
than the median in the group,

which is greater than x

about 2n/10 About 3n/10 elts
greater than x

26CS 473 – Lecture 7 Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent University

Selection in Worst Case Linear Time - Example

Claim: Partitioning around x=24 is guaranteed to be well-balanced.

2
13
19
30
41

7
1
10
34
21

4
3
17
31
22

9
8
11
16
25

14
20
32
33
36

5
23
29
40
37

15
6
27
42
39

26
35
43

18
12
24
28
38

About half
of the medians

less than x

about n/10

2 out of 5 in each group less
than the median in the group,

which is less than x
about 2n/10

About 3n/10 elts
less than x

27CS 473 – Lecture 7 Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent University

Selection in Worst Case Linear Time - Example

Step 5: Make a recursive call to one of the partitions

S = {25 9 16 8 11 27 39 42 15 6 32 14 36 20 33 22 31 4 17 3 30 41
 2 13 19 7 21 10 34 1 37 23 40 5 29 18 24 12 38 28 26 35 43}

Partitioning S around x = 24 will lead to partitions
of sizes ~3n/10 and ~7n/10 in the worst case.

 if i ≤ |L| then
return SELECT(L, |L|, i)

 else
return SELECT(R, n–|L|, i–|L|)

CS473 – Lecture 7 Cevdet Aykanat - Bilkent University
Computer Engineering Department

28

Selection in Worst Case Linear TimeSelection in Worst Case Linear Time

SELECT(S, n, i) return i-th element in set S with n elements

 if n ≤ 5 then

SORT S and return the i-th element

 DIVIDE S into ⌈n/5⌉groups

 first ⌈n/5⌉ groups are of size 5, last group is of size n mod 5

 FIND median set M={m , …, m } m : median of j-th group

 x ← SELECT(M, ⌈n/5⌉, (⌊⌈n/5⌉+1)/2⌋)
 PARTITION set S around the pivot x into L and R

 if i ≤ |L| then
return SELECT(L, |L|, i)

 else
return SELECT(R, n–|L|, i–|L|)

⌈n/5⌉1 j

CS473 – Lecture 7 Cevdet Aykanat - Bilkent University
Computer Engineering Department

29

Choosing the Pivot

1. Divide S into groups of size 5

CS473 – Lecture 7 Cevdet Aykanat - Bilkent University
Computer Engineering Department

30

Choosing the Pivot

lesser

greater

1. Divide S into groups of size 5
2. Find the median of each group

CS473 – Lecture 7 Cevdet Aykanat - Bilkent University
Computer Engineering Department

31

Choosing the Pivot

x

≥ x

1. Divide S into groups of size 5
2. Find the median of each group
3. Recursively select the median x of the medians

x

≥ x

CS473 – Lecture 7 Cevdet Aykanat - Bilkent University
Computer Engineering Department

32

Choosing the Pivot

x

x

≥ x
≥ x

At least half of the medians ≥ x
Thus m = n/5 / 2 groups contribute 3 elements to
R except possibly the last group and
the group that contains x
|R| ≥ 3 m – 2 ≥ – 6 3n

 10

CS473 – Lecture 7 Cevdet Aykanat - Bilkent University
Computer Engineering Department

33

Analysis

Similarly
|L| ≥ – 6
Therefore, SELECT is recursively called on at most
n – – 6 = + 6 elements

 3n
 10

 3n
 10

 7n
 10

x

x

≥ x
≥ x

CS473 – Lecture 7 Cevdet Aykanat - Bilkent University
Computer Engineering Department

34

Selection in Worst Case Linear Time

Θ(n)

7n
10 T(+6)

n/5
Θ(n)

Θ(n)
 T()

Selection in Worst Case Linear Time

SELECT(S, n, i) return i-th element in set S with n elements

 if n ≤ 5 then

SORT S and return the i-th element

 DIVIDE S into ⌈n/5⌉groups

 first ⌈n/5⌉ groups are of size 5, last group is of size n mod 5

 FIND median set M={m , …, m } m : median of j-th group

 x ← SELECT(M, ⌈n/5⌉, (⌊⌈n/5⌉+1)/2⌋)
 PARTITION set S around the pivot x into L and R

 if i ≤ |L| then
return SELECT(L, |L|, i)

 else
return SELECT(R, n–|L|, i–|L|)

⌈n/5⌉1 j

CS473 – Lecture 7 Cevdet Aykanat - Bilkent University
Computer Engineering Department

35

Thus recurrence becomes

T(n) ≤ T + T + 6 + Θ(n) 7n
10

Inductive step: T(n) ≤ c n/5 + c (7n/10+6) + Θ(n)
≤ cn/5 + c + 7cn/10 + 6c + Θ(n)

 = 9cn/10 + 7c + Θ(n)
 = cn – [c(n/10 – 7) – Θ(n)] ≤ cn for large c
Work at each level of recursion is a constant factor (9/10) smaller

Selection in Worst Case Linear Time

Guess T(n) = O(n) and prove by induction

 n
 5

