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CS 473 – Lecture 7 Cevdet Aykanat and Mustafa Ozdal 
Computer Engineering Department, Bilkent University

Lecture 7 
Medians and Order Statistics

View in slide-show mode
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Medians and Order Statistics

ith order statistic: ith smallest element of a set of n elements

minimum: first order statistic
maximum: nth order statistic

median: “halfway point” of the set

           i =   (n+1)/2   or   (n+1)/2 
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Selection Problem

◻ Selection problem: Select the ith smallest of n elements

◻ Naïve algorithm:  Sort the input array A; then return A[i]
T(n) = Θ(nlgn)
using e.g. merge sort (but not quicksort)

◻  Can we do any better?
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Selection in Expected Linear Time

◻ Randomized algorithm using divide and conquer

◻ Similar to randomized quicksort
Like quicksort: Partitions input array recursively
Unlike quicksort: Makes a single recursive call

Reminder: Quicksort makes two recursive calls

◻ Expected runtime: Θ(n)
Reminder: Expected runtime of quicksort: Θ(nlgn)
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Selection in Expected Linear Time: Example 1

i = 26 10 13 5 8 3 2 11

Select the 2nd smallest element:

Partition the input array:

2 3 5 13 8 10 6 11

make a recursive call to
select the 2nd smallest

element in left subarray
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Selection in Expected Linear Time: Example 2

i = 76 10 13 5 8 3 2 11

Select the 7th smallest element:

Partition the input array:

2 3 5 13 8 10 6 11

make a recursive call to
select the 4th smallest

element in right subarray
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Selection in Expected Linear Time

 R-SELECT(A,p,r,i)
     if p = r then 
          return A[p]
  q ← R-PARTITION(A, p, r)
  k ← q–p+1
  if i ≤ k then 
         return R-SELECT(A, p, q, i)
else
        return R-SELECT(A, q+1, r, i-k)

x = pivot ≤ x (k smallest elements) ≥ x
p q r
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Selection in Expected Linear Time

x = pivot

 ≤ x ≥ x
p q r

L R

• All elements in L ≤  all elements in R 

• L contains |L| = q–p+1 = k smallest elements of A[p...r]
   if i ≤ |L| = k  then
       search L recursively for its i-th smallest element 
  else 
       search R recursively for its (i-k)-th smallest element 
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Runtime Analysis

◻ Worst case: 
      Imbalanced partitioning at every level
and the recursive call always to the larger partition

1 2 3 4 5 6 7 8

recursive call

2 3 4 5 6 7 8

recursive call

i=8

i=7
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Runtime Analysis

◻ Worst case:
T(n) = T(n-1) + Θ(n) 

      ⇒ T(n) = Θ(n2)
Worse than the naïve method (based on sorting)

◻ Best case: Balanced partitioning at every recursive level
T(n) = T(n/2) + Θ(n)

  ⇒ T(n) = Θ(n)

◻ Avg case: Expected runtime – need analysis
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Reminder: Various Outcomes of 
H-PARTITION

P(rank(x) = i) = 1/n    for 1≤ i ≤ n

if rank(x) = 1 then |L| = 1

if rank(x) > 1 then |L| = rank(x) - 1

x: pivot
|L|: size of left region

P(|L| = 1) = P(rank(x) = 1) + P(rank(x) = 2) P(|L| = 1) = 2/n

P(|L| = i) = P(rank(x) = i+1)
for 1< i < n

P(|L| = i) = 1/n
     for 1< i < n
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Average Case Analysis of Randomized Select

◻ To compute the upper bound for the avg case, assume that the 
ith element always falls into the larger partition.

array A
qp r

left partition right partition

We will analyze the case where the recursive call is always
made to the larger partition

🡺 this will give us an upper bound for the avg case
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Various Outcomes of H-PARTITION

rank(x)        prob.                        T(n)                    .              
      1              1/n        ≤ T(max(1, n-1)) + Θ(n)

      2              1/n        ≤ T(max(1, n-1)) + Θ(n)

      3              1/n        ≤ T(max(2, n-2)) + Θ(n)
      .            .       .
      .            .       .
      .            .       .
    i+1            1/n         ≤ T(max(i, n-i)) + Θ(n)
      .            .       .
      .            .       .
      .            .       .
      n             1/n         ≤ T(max(n-1, 1)) + Θ(n)

1 n-1

1 n-1

2 n-2

i n-i

1n-1
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Average-Case Analysis of Randomized Select
 2/n   for i =1 

1/n   for i = 2,3,... ,n–1 
Recall: P(|L|=i) =

Upper bound: Assume i-th element always falls into the larger part

T(n) ≤        T(max(1, n–1)) +         Σ T(max(q, n–q)) + O(n)

Note:        T(max(1, n–1)) =        T(n–1)=        O(n²) = O(n)

  n -1

    q = 1 
1
n

1
n

1
n

1
n

1
n...  T(n) ≤ 1

n
Σ T(max(q, n–q))+O(n)
 n-1

   q = 1 
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Average-Case Analysis of Randomized Select
 Σ T(max(q, n–q))+O(n)

 n-1

   q = 1 
1
n

T(n) ≤...

  n is odd: T(k) appears twice for k =  n/2  +1, n/2 +2,...,n–1
  n is even:T(  n/2  )  appears once T(k) appears twice for 
  k =  n/2  +1, n/2 +2,...,n–1
  Hence, in both cases: 

max(q, n–q) =
n–q    if  q  <   n/2 
q        if  q  ≥   n/2 

Σ T(max(q, n–q))+O(n) ≤ 2 Σ T(q) + O(n)
 n-1

      q=1 

...
    n-1

      q=  n/2 
T(n) ≤ 2

n
Σ T(q)+O(n) 

   n-1

      q=  n/2 
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Average-Case Analysis of Randomized Select

T(n) ≤ 2
n

Σ T(q)+O(n)
 n -1

   q= n/2 

By substitution guess T(n) = O(n)
Inductive hypothesis: T(k) ≤ ck, A k < n

(2/n) Σ ck + O(n)
 n-1

   k= n/2 
T(n) ≤ 

= 
2c
n

Σ k – Σ k
 n -1

      k=1 

 

    n/2 -1

      k=1 
+ O(n)

2c
n

1
2

n (n-1) – 1
2

n
2

n
2

– 1 + O(n)
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Average-Case Analysis of Randomized Select

T(n) ≤ 2c
n

1
2

n(n-1) – 1
2

n
2

– 1 + O(n)n
2

n≤ c(n-1) – c
4

+ c
2

c
2

n –= cn – c
4

          + O(n)

+ O(n)

= cn – c
4

n + c
2

– O(n)

≤ cn 
since we can choose c large enough so that ( cn/4+c/2 ) dominates O(n)
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Summary of Randomized Order-Statistic Selection

• Works fast: linear expected time
• Excellent algorithm in practise
• But, the worst case is very bad: Θ(n²)

Q: Is there an algorithm that runs in linear time in the worst 
case?
A: Yes, due to Blum, Floyd, Pratt, Rivest & Tarjan[1973] 
Idea: Generate a good pivot recursively..     
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Selection in Worst Case Linear TimeSelection in Worst Case Linear Time

SELECT(S, n, i)     return i-th element in set S with n elements

      if n ≤ 5 then

SORT S and return the i-th element

      DIVIDE S into ⌈n/5⌉groups

          first ⌈n/5⌉ groups are of size 5, last group is of size n mod 5

       FIND median set M={m , …, m     }    m : median of j-th group

      x ← SELECT(M, ⌈n/5⌉, (⌊⌈n/5⌉+1)/2⌋)
      PARTITION set S around the pivot x into L and R

       if i ≤ |L| then
return  SELECT(L, |L|, i)

       else
return  SELECT(R, n–|L|, i–|L|)

⌈n/5⌉1 j 
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Selection in Worst Case Linear Time - Example

Input: Array S and index i
Output: The ith smallest value

S = {25 9 16 8 11 27 39 42 15 6 32 14 36 20 33 22 31 4 17 3 30 41
         2 13 19 7 21 10 34 1 37 23 40 5 29 18 24 12 38 28 26 35 43}
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Selection in Worst Case Linear Time - Example

Step 1: Divide the input array into groups of size 5

25
9
16
8
11

27
39
42
15
6

32
14
36
20
33

22
31
4
17
3

30
41
2
13
19

7
21
10
34
1

37
23
40
5
29

18
24
12
38
28

26
35
43
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Selection in Worst Case Linear Time - Example

Step 2: Compute the median of each group

9
8
11
16
25

15
6
27
42
39

14
20
32
33
36

4
3
17
31
22

2
13
19
30
41

7
1
10
34
21

5
23
29
40
37

18
12
24
28
38

26
35
43

Let M be the set of the medians computed: 
M = {11, 27, 32, 17, 19, 10, 29, 24, 35}

⇒ Θ(n)
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Selection in Worst Case Linear Time - Example

    x ← SELECT (M, |M|,                   )          where 

9
8
11
16
25

15
6
27
42
39

14
20
32
33
36

4
3
17
31
22

2
13
19
30
41

7
1
10
34
21

5
23
29
40
37

18
12
24
28
38

26
35
43

The runtime of the recursive call: T(|M|)

M ⇒ median = 24

Step 3: Compute the median of the median group M
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Selection in Worst Case Linear Time - Example

Step 4: Partition the input array S around the median-of-medians x

S = {25 9 16 8 11 27 39 42 15 6 32 14 36 20 33 22 31 4 17 3 30 41
         2 13 19 7 21 10 34 1 37 23 40 5 29 18 24 12 38 28 26 35 43}

Partition S around x = 24

Claim: Partitioning around x is guaranteed to be well-balanced.
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Selection in Worst Case Linear Time - Example

Claim: Partitioning around x=24 is guaranteed to be well-balanced.

2
13
19
30
41

7
1
10
34
21

4
3
17
31
22

9
8
11
16
25

14
20
32
33
36

5
23
29
40
37

15
6
27
42
39

26
35
43

18
12
24
28
38

About half
of the medians
greater than x

about n/10

2 out of 5 in each group greater
than the median in the group,

which is greater than x 

about 2n/10 About 3n/10 elts
greater than x
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Selection in Worst Case Linear Time - Example

Claim: Partitioning around x=24 is guaranteed to be well-balanced.

2
13
19
30
41

7
1
10
34
21

4
3
17
31
22

9
8
11
16
25

14
20
32
33
36

5
23
29
40
37

15
6
27
42
39

26
35
43

18
12
24
28
38

About half
of the medians

less than x

about n/10

2 out of 5 in each group less 
than the median in the group,

which is less than x 
about 2n/10

About 3n/10 elts
less than x
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Selection in Worst Case Linear Time - Example

Step 5: Make a recursive call to one of the partitions

S = {25 9 16 8 11 27 39 42 15 6 32 14 36 20 33 22 31 4 17 3 30 41
         2 13 19 7 21 10 34 1 37 23 40 5 29 18 24 12 38 28 26 35 43}

Partitioning S around x = 24 will lead to partitions
of  sizes ~3n/10 and ~7n/10 in the worst case. 

 if i ≤ |L| then
return  SELECT(L, |L|, i)

       else
return  SELECT(R, n–|L|, i–|L|)
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Selection in Worst Case Linear TimeSelection in Worst Case Linear Time

SELECT(S, n, i)     return i-th element in set S with n elements

      if n ≤ 5 then

SORT S and return the i-th element

      DIVIDE S into ⌈n/5⌉groups

          first ⌈n/5⌉ groups are of size 5, last group is of size n mod 5

       FIND median set M={m , …, m     }    m : median of j-th group

      x ← SELECT(M, ⌈n/5⌉, (⌊⌈n/5⌉+1)/2⌋)
      PARTITION set S around the pivot x into L and R

       if i ≤ |L| then
return  SELECT(L, |L|, i)

       else
return  SELECT(R, n–|L|, i–|L|)

⌈n/5⌉1 j 
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Choosing the Pivot

1. Divide S into groups of size 5
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Choosing the Pivot

lesser

greater

1. Divide S into groups of size 5
2. Find the median of each group
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Choosing the Pivot

x

≥ x

1. Divide S into groups of size 5
2. Find the median of each group
3. Recursively select the median x of the medians

x

≥ x
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Choosing the Pivot

x

x

≥ x
≥ x

At least half of the medians ≥ x 
Thus m =     n/5  / 2   groups contribute 3 elements to 
R except  possibly the last group and
the group that contains x 
|R| ≥ 3  m – 2  ≥        – 6 3n

 10
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Analysis

Similarly
|L| ≥        – 6
Therefore, SELECT is recursively called on at most
n –         – 6  =        + 6 elements

 3n
 10

 3n
 10

 7n
 10

x

x

≥ x
≥ x
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Selection in Worst Case Linear Time

Θ(n) 

7n
10         T(     +6)

n/5
Θ(n) 

Θ(n) 
         T(       )

Selection in Worst Case Linear Time

SELECT(S, n, i)     return i-th element in set S with n elements

      if n ≤ 5 then

SORT S and return the i-th element

      DIVIDE S into ⌈n/5⌉groups

          first ⌈n/5⌉ groups are of size 5, last group is of size n mod 5

       FIND median set M={m , …, m     }    m : median of j-th group

      x ← SELECT(M, ⌈n/5⌉, (⌊⌈n/5⌉+1)/2⌋)
      PARTITION set S around the pivot x into L and R

       if i ≤ |L| then
return  SELECT(L, |L|, i)

       else
return  SELECT(R, n–|L|, i–|L|)

⌈n/5⌉1 j 
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Thus recurrence becomes

T(n) ≤ T          + T          + 6   + Θ(n)  7n
10

Inductive step: T(n) ≤ c  n/5  + c (7n/10+6) + Θ(n)
≤ cn/5 + c + 7cn/10 + 6c + Θ(n)

 = 9cn/10 + 7c + Θ(n)
 = cn – [c(n/10 – 7) – Θ(n)] ≤ cn for large c  
Work at each level of recursion is a constant factor (9/10) smaller

Selection in Worst Case Linear Time

Guess T(n) = O(n) and prove by induction

 n
 5


