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Heapsort

|
5 Worst-case runtime: O(nlgn)

5 Sorts in-place

5 Uses a special data structure (heap) to manage
information during execution of the algorithm

| Another design paradigm
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Heap Data Structure

| | T,
_ Fela
ORO

Nearly complete binary tree

I Completely filled on all levels except possibly the lowest level
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Heap Data Structures

Height of node i: Length of the longest Height of the tree:
simple downward path from 1 to a leaf height of the root
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Heap Data Structures

Depth of node i: Length of the simple
downward path from the root to node 1
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Heap Property: Min-Heap

e e The smallest element
in any subtree is the root
a g element in a min-heap

Min heap: For every node 1 other than root, A[parent(1)] < A[i]
| Parent node is always smaller than the child nodes
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Heap Property: Max-Heap

@ @ The largest element
in any subtree is the root
@ a @ element in a max-heap
@ e We will focus on max-heaps

Max heap: For every node 1 other than root, A[parent(i)] > A[i]
| Parent node is always larger than the child nodes

CS 473 — Lecture 8 Cevdgt Ay.kanat and Mustafg Ozdal o 7
Computer Engineering Department, Bilkent University



Heap Property: Max-Heap

The largest element
in any subtree is the root
element in a max-heap

Max heap: For every node 1 other than root, A[parent(i)] > A[i]
| Parent node is always larger than the child nodes
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Heap Data Structure

Heap can be stored 1n a linear array

Storage

1 2 3 4 5 6 7 8 9 10
All6/14{10 8| 7|93 |2 4|1
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Heap Data Structure

The links 1n the heap are implicit:
eft(i) = 2i
ight(i)=2i+1

@ rarent(i) =Li /2

1 2 3 4 5 6 7 8 9 10
All6/14{10 8| 7|93 |2 4|1
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Heap Data Structure

lefi(i)=2i

e.g. Left child of node 4 has index 8

right(i)=2i+1
7 e.g. Right child of node 2 has index 5

@ parent(i) = Li /2

e.g. Parent of node 7 has index 3

1 2 3 4 5 6 7 8 9 10
All6/14{10 8| 7|93 |2 4|1
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Heap Data Structures

4
- Computing left child, right child, and parent indices very fast

0 left(i) =21 [ binary left shift
0 right(i) = 2i+1 [ binary left shift, then set the lowest bit to 1
0 parent(1) = floor(i/2) '] right shift in binary

5 A[l1] is always the root element

5 Array A has two attributes:
0 length(A): The number of elements in A
0 n = heap-size(A): The number elements in heap

n <length(A)
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Heap Operations: Extract-Max
_—

max=

EXTRACT-MAX(A. n)

max «— A 1]

All] «— A[n]
n<«—n-—1
HEAPIFY (A, 1, n)

return max

Return the max element,
and reorganize the heap
to maintain heap property
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Heap Operations: HEAPIFY
_—

L Heap property violated at the root
Maintaining heap property:

Subtrees rooted at left[i] and
right[i] are already heaps.

But, A[i] may violate the heap
property (1.e., may be smaller
than its children)

Idea: Float down the value at
A[i] 1n the heap so that subtree
rooted at i becomes a heap.

Heap property satisfied
for left and right subtrees
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Heap Operations: HEAPIFY

-]
HEAPIFY(A, i, n)

—_—

largest B .« . 1nitialize largest | compute the
to be the node i | largest of:

e : .

1{121 _l n an? A[gl] Al . check the left 1) node i

€n 1argesSt «— ~Li ; 4
g child of node i =) left child

if 2i +1 <n and A[2i+1] > A[largest] | of node i

then largest <— 2 +1 _ check the right | 3 rjght child
child of node i of node i

if largest #i then =

exchange A[i]« A[largest] ________ , exchange the largest
HEAPIFY(A, largest, n) of the 3 with node i
--------- » recursive call on the subtree
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Heap Operations: HEAPIFY

]
HEAPIFY(A, i, n)

largest «— i HEAPIFY(A. 1.9)

if 2i <n and A[2i] > A[{]
then largest «— 2i

if 2i +1 <n and A[2i+1] > A[largest]
then largest «— 2i +1

if largest #i then
exchange A[i]«> Aflargest]
HEAPIFY(A, largest, n)

recursive call
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Heap Operations: HEAPIFY

]
HEAPIFY(A, i, n) .
recursive call:

largest «— i HEAPIFY(A. 2.9)

if 2i <n and A[2i] > A[{]
then largest «— 2i

if 2i +1 <n and A[2i+1] > A[largest]
then largest «— 2i +1

if largest #i then
exchange A[i]«> Aflargest]
HEAPIFY(A, largest, n)

recursive call
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Heap Operations: HEAPIFY

]
HEAPIFY(A, i, n) .
recursive call:

largest «— i HEAPIFY(A. 4.9)

if 2i <n and A[2i] > A[{]
then largest «— 2i

if 2i +1 <n and A[2i+1] > A[largest]
then largest «— 2i +1

if largest #i then
exchange A[i]«> Aflargest]
HEAPIFY(A, largest, n)

recursive call

(base case)
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HEAPIFY: Summary (Floating Down the
Value)

]
HEAPIFY(A, i, n)

largest «— i HEAPIFY(A. 1.9)

if 2i <n and A[2i] > A[{]
then largest «— 2i

if 2i +1 <n and A[2i+1] > A[largest]
then largest «— 2i +1

if largest #i then
exchange A[i]«> Aflargest]
HEAPIFY(A, largest, n)
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Heap Operations: HEAPIFY

]
HEAPIFY(A, i, n)

largest «— i after HEAPIFY:

if 2/ < n and A[2{] > A[i] 1
then largest «— 21

if 2i +1 <n and A[2i+1] > A[largest]
then largest «— 2i +1

if largest #i then
exchange A[i]«> Aflargest]
HEAPIFY(A, largest, n)
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Intuitive Analysis of HEAPIFY

* Consider HEAPIFY (A, i, n)
— let h(7) be the height of node i

— at most h(7) recursion levels
 Constant work at each level: ©(1)

— Therefore T(i) = O(h(7))
* Heap 1s almost-complete binary tree
> h(n) = O(Ign)
 Thus|T(n) = O(lgn)
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Formal Analysis of HEAPIFY

I
- What 1s the recurrence?

1 Depends on the size of the subtree on which recursive call
is made

1 In the next couple of slides, we try to compute an upper
bound for this subtree.
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Reminder: Binary trees
_—

For a complete binary tree:

# of nodes at depth d: 2¢
# of nodes with depths less than d: 29-1
Example:

I / Qj)\ # of nodes with depths d<2: 3
d=2 /Q
a\
N
O/ b é Q # of nodes at depth d=2: 4
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Formal Analysis of HEAPIFY

 Worst case occurs when last row of the subtree Sl. rooted at

node i 1s half full

« T() <T(| S, ,)) + (1)
. SL(Z.) and SR(Z.) are complete
binary trees of heights ¢ 7 N S ——
h(7) —1 and h(?) -2, - ~—— m/2leaf
) . ) m leaf nodes nodes
respectively
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Formal Analysis of HEAPIFY

Let m be the number of leaf nodes in SL(Z.

)

|SL(Z.)|=m + m-1)=2m-1;
ext nt
—— —_——
|SR(i)|=m/2+(m/2—1)=m—1
?,_d, m/ 2 leaf
. m iear nodes nodes
Sy T[S [ H1=n

Cm—-1)+ (m—1)+1=n=m=(n+1)/3
| SL(Z.) | =2m — 1=2(n+1)/3 — 1=(2n/3+2/3) —1=2n/3 —1/3 <2n/3

T(n) < T(2n3) + ©(1) = T(n) = O(lgn)
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HEAPIFY: Efficiency Issues

e
- Recursion vs iteration:

0 In the absence of tail recursion, iterative version 1s in
general more efficient

I because of the pop/push operations to/from stack at
each level of recursion.
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Heap Operations: HEAPIFY
N

Recursive: Iterative:
HEAPIFY(A, i, n) HEAPIFY(A, i, n)
j1
while (true) do
largest «— i largest «—j
if 2i <n and A[2i] > A[{] if 2/ <n and A[2/] > A[/]
then largest « 2i then largest < 2/
if 2i +1 < n and A[2i+1] > A[largest] A[larggs?{ t1 <nand A[2j+1] >

then largest «— 2i +1 then largest « 2j +1

if largest #i then
exchange A[i]«> A[largest]
HEAPIFY(A, largest, n)

if largest #; then
exchange A[j]« A[largest]
J <« largest

else return
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Heap Operations: Building Heap

]
- Given an arbitrary array, how to build .

a heap from scratch?

- Basic idea: Call HEAPIFY on each
node bottom up

0 Start from the leaves (which trivially
satisfy the heap property)

1 Process nodes in bottom up order.

7 When HEAPIFY is called on node i, the \ /
subtrees connected to the left and right \ /
subtrees already satisfy the heap .

child subtrees already
property. satisfy heap property
Cevdet Aykanat and Mustafa Ozdal 28
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Where are the leaves stored?

Lemma: The last [n/2] nodes of
a heap are all leaves

Storage

2 3 4 5 6 7 8 9 10
14110/ 81719132 4]1
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Proof of Lemma

_
Lemma: last [n/2] nodes of a heap are all leaves

Proof:

T f m =21 #nodes at level d — 1
f:#nodes at level d (last level)

d-1 d

[72] nodes # of nodes with depth d-1: m
# of nodes with depth < d-1: m-1

AA A m-fg Y #ofnodes with depth d: f

fleaf nodes leaf nodes Total # of nodes: n =1+ 2m-1
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Proof of Lemma (cont’d)

]
f=n—-2m-+1

? f # of leaves: f+m - [1/2]
a-1 d =m+ | /2]
[#72] nodes =m + [(n-2m+1)/ 2]

) = | (n+1)/2]
KA A m-fpg Y _ [S;)

f leaf nodes leaf nodes

Proof complete
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Heap Operations: Building Heap
N

BUILD-HEAP (A, n)
for i=[n/2] downto 1 do
HEAPIFY(A, i, n)

Reminder: The last [n/2| nodes of a heap are all leaves,
which trivially satisfy the heap property
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Build-Heap: Example

=5
HEAPIFY(A. S, 10)

3 4 5 6 7 8 9 10
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Build-Heap: Example

=4
HEAPIFY(A. 4. 10)

3 4 5 6 7 8 9 10
A4 132169 1014|877
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Build-Heap: Example
_—

=3
HEAPIFY(A. 3. 10)

3 4 5 6 7 8 9 10
A4 |1|314]16]9 10} 2|8 |7
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Build-Heap: Example
_—

=2
HEAPIFY(A. 2. 10)

4 5 6 7 8 9 10
14{16 |/ 9 |32 8|7
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Build-Heap: Example

i=2 (cont’d)
HEAPIFY(A. 2. 10)

4 5 6 7 8 9 10
A|l4(16(10/14] 1|9 3 |2|8 |7
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Build-Heap: Example

=1
HEAPIFY(A. 1. 10)

4 S 6 7 8 9 10
147191312 8]1
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Build-Heap: Example

i=1 (cont’d)
HEAPIFY(A. 1. 10)

4 5 6 7 8 9 10
All6| 4(10/14] 7|93 ]2 |81
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Build-Heap: Example

i=1 (cont’d)
HEAPIFY(A. 1. 10)

4 5§ 6 7 8 9 10
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Build-Heap: Example

After Build-Heap

4 5§ 6 7 8 9 10
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Build-Heap: Runtime Analysis

-4
- Simple analysis:
1 O(n) calls to HEAPIFY, each of which takes O(lgn) time
0 O(nlgn) U] loose bound

5 In general, a good approach:
0 Start by proving an easy bound
0 Then, try to tighten 1t

- Is there a tighter bound?
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Build-Heap: tighter running time analysis

R - 1=0,h~d
- 1=1,d-2<h <d-l

d—1-1<h<d-1I
/ \ o
v l=d,h=0

[f the heap 1s complete bmary tree then /2,=d — |
Otherwise, nodes at a given level do not all have the same height

Butwehaved—l—lshlﬁd—l
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Build-Heap: tighter running time analysis

Assume that all nodes at level / =d — 1 are processed
n,=2'=# of nodes at level /

d-1 d-1
T(n)= 2n, O(h)= O(Zn, h :
(1) “ 0”1 (n) (120”1 ) { h,= height of nodes at level /

]
S T(n)= o(dz 2! (d - 1))

I=0
Let h=d—[= [=d— h (change of variables)

T(n)~ o(:g]h 2 )= o(hih 242t )= O(2dé]h (1/2)")

d
but 29= O(17) = T(n)= O(nX & (1/2)")
h=1
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Build-Heap: tighter running time analysis

d d 0
> h(1/2)" <) h(1/2)" < h(1/2)"
h=1 h=0 h=0
recall infinite decreasing geometric series

o0

Z = — where ‘x‘ <1
dlfferentlate both sides

> e

k=0 (1 x)
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Build—Heap: tighter running time analysis

2k (- X)

lﬁg , multiply both sides by x

2R =y
Inourcase:x=1/2and k= h

R 2
..Zh(l/Z) E =2=0()

- T(n) = O(ni h(1/2)") = O(n)
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Heapsort Algorithm

The HEAPSORT algorithm

(1) Build a heap on array A[1...n] by calling BUILD-HEAP(A, n)
(2) The largest element 1s stored at the root A[1]
Put 1t into its correct final position A[n] by A[1] <> A[n]
(3) Discard node n from the heap
(4) Subtrees (S, & S,) rooted at children of root remain as heaps
but the new root element may violate the heap property
Make A[l...n — 1] a heap by calling HEAPIFY(A, 1,n — 1)
S)n—n-—1
(6) Repeat steps 2—4 until n = 2
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Heapsort Algorithm
_—

HEAPSORT(A, n)
BUILD-HEAP(A, n)
for i <— n downto 2 do

— exchange A[l] < A[i]
HEAPIFY (A, 1,i—1)
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Heapsort Algorithm
_—

HEAPSORT(A, n)
BUILD-HEAP(A, n)
for i — n downto 2 do
exchange A[l] < A[i]
I HEAPIFY (A, 1,i—1)
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Heapsort Algorithm
_—

HEAPSORT(A, n)
BUILD-HEAP(A, n)
for i <— n downto 2 do

—> exchange A[l] < A[i]
HEAPIFY (A, 1,i—1)

CS 473 — Lecture 8 Cevdgt Ay.kanat and Mustafg Ozdal o 50
Computer Engineering Department, Bilkent University



Heapsort Algorithm
_—

HEAPSORT(A, n)
BUILD-HEAP(A, n)
for i — n downto 2 do
exchange A[l] < A[i]
mm) HEAPIFY(A,1,i-1)
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Heapsort Algorithm
_—

HEAPSORT(A, n)
BUILD-HEAP(A, n)
for i <— n downto 2 do

mm) exchange A[l] & Af{]
HEAPIFY (A, 1,i—1)
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Heapsort Algorithm
_—

1

HEAPSORT(A, n)

O
BUILD-HEAP(A, n) @ a
for i — n downto 2 do 4 5 6 7
exchange A[1] < A[i] (4] (1) @

mm) HEAPIFY(A, 1,i-1)
8 9 10

1 2 3 4 5 6 7 8 9 10
A28 9/4[7|1]3]10]| 14|16
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Heapsort Algorithm
_—

1

HEAPSORT(A, n)

PO
BUILD-HEAP(A, n) @
for i — n downto 2 do 4 5 6 7
mm) exchange A[1] & A[i] e @

HEAPIFY(A, 1,i 1)
8 9 10

1 2 3 4 5 6 7 8 9 10
A998 3[4|7|1]2]10]14|16
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Heapsort Algorithm
_—

1

HEAPSORT(A, n)

, QL ;
BUILD-HEAP(A, n) @
for i — n downto 2 do 4 5 6 7
exchange A[1] & A[/] e @

mm) HEAPIFY(A, 1,i-1)
8 9 10

1 2 3 4 5 6 7 8 9 10
Al2[83[4|7|1]9]10]14|16
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Heapsort Algorithm
_—

1

HEAPSORT(A, n)

BUILD-HEAP(A, n)
for i <— n downto 2 do
mm) exchange A[l] < Ali]

HEAPIFY(A, 1,i 1)
8 9 10

1 2 3 4 5 6 7 8 9 10
A8 7]3[4|2|1|9]10]14|16
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Heapsort Algorithm
_—

HEAPSORT(A, n) 2
BUILD-HEAP(A, n) e
for i <— n downto 2 do

4 7
exchange A[1] & A[/] e @

mm) HEAPIFY(A, 1,i-1)

AlL|7]3[4|2|8|9]10]14|16
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Heapsort Algorithm
_—

HEAPSORT(A, n) 2
BUILD-HEAP(A, n) e
for i <— n downto 2 do

4 7
mm) exchange A[1] & A[] a @

HEAPIFY(A, 1,i 1)

Al7[43]1]2|8]9]10] 14|16
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Heapsort Algorithm

]
1
HEAPSORT(A, n) 2 @ 3
BUILD-HEAP(A, n) 9 \@
for i <— n downto 2 do 4 5 6 7
exchange A[1] & A[/] a @ @

mmdp HEAPIFY(A, 1,i-1)
8 9 10

1 2 3 4 5 6 7 8 9 10
Al2l4]3[1]|7]8]9]10]14|16
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Heapsort Algorithm
_—

1

HEAPSORT(A, n) @ 3

2
BUILD-HEAP(A, n)
for i — n downto 2 do 4 5
mm) cxchange A[1] < A[i] @

HEAPIFY(A, 1,i 1)
8 9 10

1 2 3 4 5 6 7 8 9 10
Al4]12]3[1]|7|8|9]10]14|16

!

&

CS 473 — Lecture 8 Cevdgt Ay.kanat and Mustafg Ozdal o 60
Computer Engineering Department, Bilkent University



Heapsort Algorithm
_—

HEAPSORT(A, n) 2 - 3
BUILD-HEAP(A, n)
for i <— n downto 2 do

exchange A[1] < A[/] @ é é

) HEAPIFY(A, 1,i-1)

AllL][2]3[4|7|8|9]10]14|16
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Heapsort Algorithm
_—

HEAPSORT(A, n) 2 - 3
BUILD-HEAP(A, n)
for i <— n downto 2 do

mm) exchange A[l] & A[{] @ é é

HEAPIFY(A, 1,i 1)

Al3[2]1[4|7|8|9]10]14|16
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Heapsort Algorithm
_—

HEAPSORT(A, n) 2 /@ 3
BUILD-HEAP(A, n) @
for i <— n downto 2 do

exchange A[1] < A[/] @ é é

mm) HEAPIFY(A, 1,i-1)

AlL][2]3[4|7|8|9]10]14|16
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Heapsort Algorithm
_—

HEAPSORT(A, n) 2 /@ 3
BUILD-HEAP(A, n) @
for i <— n downto 2 do

mm) exchange A[1] & A[] @ é é

HEAPIFY(A, 1,i 1)

Al2[1]3[4|7|8|9]10]14|16
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Heapsort Algorithm
_—

HEAPSORT(A. n) :

BUILD-HEAP(A, n) @ @

for i <— n downto 2 do

exchange A[1] < A[/] @ é é

mm) HEAPIFY(A, 1,i—1)

AlL[2]3[4|7|8|9]10]14|16
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Heapsort Algorithm
_—

HEAPSORT(A. n) :

BUILD-HEAP(A, n) @ @

for i <— n downto 2 do

exchange A[1] < A[/] @ é é

HEAPIFY(A, 1,i 1)

AlL][2]3[4|7|8|9]10]14|16

CS 473 — Lecture 8 Cevdgt Ay.kanat and Mustafg Ozdal o 66
Computer Engineering Department, Bilkent University



Heapsort Algorithm: Runtime Analysis
B

HEAPSORT(A, n)
BUILD-HEAP(A, #)  aasszeszzsszzssss O(n)
for i — n downto 2 do
exchange A[l1] > AlZ] ______________ O(1)
HEAPIFY(A, 1,i—1) -
-------------- O(lg(i-1))

T'(n)=0(n)+ iO(lgi) =0O(n)+ O(i O(lgn)] =0(nlgn)

i=2 =2
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Heapsort - Notes

4
- Heapsort 1s a very good algorithm but, a good
implementation of quicksort always beats heapsort in
practice

- However, heap data structure has many popular
applications, and 1t can be efficiently used for
implementing priority queues
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Data structures for Dynamic Sets

* Consider sets of records having key and
satellite data

-  key

X > — | — satellite data

record
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Operations on Dynamic Sets
* Queries: Simply return info; Modifying operations: Change the set

— INSERT(S, x): (Modifying) S«— § U {x}
— DELETE(S, x): (Modifying) S «— 5 — {x}
— MAX(S) / MIN(S): (Query) return x &S with the largest/smallest key

— EXTRACT-MAX(S) / EXTRACT-MIN(S) : (Modifying) return and
delete x © S with the largest/smallest key

— SEARCH(S, k): (Query) return x &S with key[x]= k

— SUCCESSOR(S, x) / PREDECESSOR(S, x) : (Query) return y & S which
1s the next larger/smaller element after x

 Different data structures support/optimize different operations
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Priority Queues (PQ)

e Supports
— INSERT

— MAX/ MIN
— EXTRACT-MAX / EXTRACT-MIN

e One application: Schedule jobs on a shared resource

— PQ keeps track of jobs and their relative priorities

— When a job is finished or interrupted, highest priority job is
selected from those pending using EXTRACT-MAX

— A new job can be added at any time using INSERT
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Priority Queues

* Another application: Event-driven simulation

— Events to be simulated are the items in the PQ

— Each event 1s associated with a time of occurrence which serves
as a key

— Simulation of an event can cause other events to be simulated in
the future

— Use EXTRACT-MIN at each step to choose the next event to
simulate

— As new events are produced insert them into the PQ) using
INSERT
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Implementation of Priority Queue

 Sorted linked list: Simplest implementation
— INSERT
— O(n) time
— Scan the list to find place and splice in the new item
— EXTRACT-MAX
—O(1) time
— Take the first element

> Fast extraction but slow 1nsertion.
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Implementation of Priority Queue

* Unsorted linked list: Simplest implementation

— INSERT
— O(1) time
— Put the new item at front
— EXTRACT-MAX
— O(n) time
— Scan the whole list
> Fast insertion but slow extraction

Sorted linked Iist 1s better on the average
— Sorted list: on the average, scans 7/2 elem. per insertion
— Unsorted list: always scans # elem. at each extraction
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Heap Implementation of PQ

 INSERT and EXTRACT-MAX are both O(lgn)

— good compromise between fast insertion but slow extraction and vice versa

« EXTRACT-MAX: already discussed HEAP-EXTRACT-MAX

INSERT: Insertion 1s like that of Insertion-Sort.

Traverses O(lgn) nodes, as
HEAPIFY does but makes
fewer comparisons and

HEAP-INSERT(A, key, n)

n<«—n-tl
I «<—n

assignments d while i >1 and A[li/21] < key
)
~HEAPIFY: compares parent Ali] < A[li/21]
with both children [ 1i/2]
~HEAP-INSERT: with only one Ali] « key
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Example: HEAP-INSERT(A, 15)
]

HEAP-INSERT (A, key. n)

while i >1 and A[li/2]] < key do
Ali] < Ali/2]
[« |i/2]

Ali] « key
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Example: HEAP-INSERT(A, 15)
]

HEAP-INSERT (A, key. n)
n<«—nt+l1

[ <—n
while i >1 and A[li/2]] < key do
= Ali] < Ali/2]
[« |i/2]

Ali] « key
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Example: HEAP-INSERT(A, 15)
]

HEAP-INSERT (A, key. n)
n<«—nt+l1

[ <—n
while i >1 and A[li/2]] < key do
= Ali] < Ali/2]
[« |i/2]

Ali] « key
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Example: HEAP-INSERT(A, 15)
]

HEAP-INSERT (A, key. n)
n<«—n-+l
[ «—n
while i >1 and A[li/2]] < key do
Ali] < Ali/2]

n

- [« i/2] \
10 11
Ali] « key a @
key =15
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Example: HEAP-INSERT(A, 15)
]

HEAP-INSERT (A, key. n)
n<«—n-+l
[ «—n
while i >1 and A[li/2]] < key do
Ali] < Ali/2]

n

[« i/2] \
10 11
» Ali] « key a @
key =15
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Heap Increase Key

» Key value of i-th element of heap 1s

increased from Al7] to key

HEAP-INCREASE-KEY (A, i, key)
if key < A[i] then
return error
while i >1 and A[li/21] <key do
Ali] « A[1i/2]]
[« 11/2]
Ali] « key
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Example: HEAP-INCREASE-KEY (A, 9, 15)
]

HEAP-INCREASE-KEY(A. i, key)
if key < Ali] then

return error
while i >1 and A[li/2]] <key
do
Ali] < A[li/2]]
[ «— i/2]

Ali] « key

key =15
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Example: HEAP-INCREASE-KEY (A, 9, 15)
]

HEAP-INCREASE-KEY(A. i, key)
if key < Ali] then

return error
while i >1 and A[li/2]] <key

0
‘ Ali] <« A[1i/21]
[ «— |1/2]

Ali] « key

key =15
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Example: HEAP-INCREASE-KEY (A, 9, 15)
]

HEAP-INCREASE-KEY(A. i, key)
if key < Ali] then

return error
while i >1 and A[li/2]] <key
do
’ Ali] < A[li/2]]

[ < /2] @

Ali] « key

2

key =15
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Example: HEAP-INCREASE-KEY (A, 9, 15)

HEAP-INCREASE-KEY(A. i, key)
if key < Ali] then

return error
while i >1 and A[li/2]] <key

do
A[l] <« A[ll/ZJ] 10
- [ < li/2]
Ali] « key
key =15
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Example: HEAP-INCREASE-KEY (A, 9, 15)

HEAP-INCREASE-KEY(A. i, key)
if key < Ali] then

return error

S 6 7
while i >1 and A[li/2]] <key
do e @
A[l] <« A[ll/ZJ] 10
[ <« Li/2]
-»
Ali] « key
key =15
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Heap Implementation of PQ

1
Storage in Application Heap Storage Abstract Heap Representation
key |data|H-index handle
al 14 2 pal_ 1 [
bl 3 7 T2 5 Lo
C| 7 5 ps 3[4
d|10 3 | 4
C * - A 5 C L-___
fi4 9 6
g8 4 710
T R B 3 P
1| 9 6 70 9t
j|16 1| .
k| 2 8 t”
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Summary: Max Heap

1
Heapify(A. 1)

Works when both child subtrees of node 1 are heaps

“Floats down” node 1 to satisfy the heap property
Runtime: O(Ign)

Max (A. n)
Returns the max element of the heap (no modification)
Runtime: O(1)

Extract-Max (A, n)
Returns and removes the max element of the heap
Fills the gap in A[1] with A[n], then calls Heapify(A,1)
Runtime: O(lgn)
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Summary: Max Heap

I
Build-Heap(A. n)

Given an arbitrary array, builds a heap from scratch
Runtime: O(n)
Min(A. n)

How to return the min element in a max-heap?

Worst case runtime: O(n)
because ~half of the heap elements are leaf nodes
Instead, use a min-heap for efficient min operations

Search(A. x)

For an arbitrary x value, the worst-case runtime: O(n)

Use a sorted array instead for efficient search operations
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Summary: Max Heap

-]
Increase-Key(A., i, x)

Increase the key of node 1 (from A[1] to x)
“Float up” x until heap property i1s satisfied
Runtime: O(Ign)

Decrease-Key(A., i, x)

Decrease the key of node 1 (from A[1] to x)
Call Heapify(A, 1)
Runtime: O(Ign)
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Example Problem: Phone Operator

A phone operator answering n phones

Each phone 1 has x. people waiting in
~‘ @i = line for their calls to be answered.

RN

Phone operator needs to answer the
phone with the largest number of

<< \% \
{% -4 people waiting in line.
=

New calls come continuously, and
some people hang up after waiting.
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Solution
I

Step 1: Define the following array:

A .. -th .
key  id A[1]: the 1™ element 1n heap
: A[i].id: the index of the
corresponding phone
Al1].key: # of people waiting in line
for phone with index A[i].1d
n
CS 473 — Lecture 8 Cevdet Aykanat and Mustafa Ozdal 92

Computer Engineering Department, Bilkent University



Solution

N
Step 2: Build-Max-Heap (A, n)

Execution:

When the operator wants to answer a phone:
id=A[1].1d
Decrease-Key(A, 1, A[1].key-1)

answer phone with index 1d

When a new call comes 1n to phone i:
Increase-Key(A, 1, A[1].key+1)

When a call drops from phone i:
Decrease-Key(A, 1, A[1].key-1)
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